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Abstract

In this paper, we consider the problem of estimation of a population mean
under two-phase sampling when the population mean of the main auxiliary
variable x is unknown but that of a second auxiliary variable z is known.
Here, we propose a new class of estimators replacing mean by regression
estimators. Numerical examples are also included for comparisons among
the available estimators.
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1 Introduction

Let yi, xi and zi, denote the ith observations on the survey variable y and two auxiliary
variables x and z respectively. We consider a practical situation, where the population

mean of x, X̄ = 1
N

N∑
i=1

xi is unknown but the population mean of z, Z̄ = 1
N

N∑
i=1

zi is

known accurately and we seek to estimate the population mean of y, Ȳ = 1
N

N∑
i=1

yi using

a two-phase sampling mechanism. For instance, if the elements of U are hospitals, and



30 International Journal of Statistical Sciences, Vol. 3, 2004

yi, xi and zi are respectively the number of deaths, number of patients admitted and
number of available beds relating to the ith hospital, then information on Z̄ can easily
be available from the official records of the Health Department.

Considering simple random sampling without replacement for sample selection
and using standard notations as given in Cochran (1977), our two-phase sampling is
described as follows:

a. A first phase sample s′(s′ ⊂ U) of fixed size n′ is drawn to observe x and z.

b. Given s′, a second phase sample s(s ⊂ s′) of fixed size n is drawn to observe y
only.

Define ȳ = 1
n

∑
i∈s

yi, x̄ = 1
n

∑
i∈s

xi, z̄ = 1
n

∑
i∈s

zi, x̄′ = 1
n′

∑
i∈s′

xi and z̄′ = 1
n′

∑
i∈s′

zi.

In the above scenarios, the basic work on estimation was initiated by Chand(1975)
and subsequently studied by several authors producing a huge stock of estimators in
the survey sampling literature during the last two decades. But, a common technique
adopted by Chand(1975) and his followers to construct an estimator is the replacement
of x̄′ by an improved estimator of X̄ in the standard two-phase ratio estimator ȳR =
ȳx̄′/x̄ or product estimator ȳP = ȳx̄/x̄′ or regression estimator ȳRG = ȳ− byx(x̄− x̄′),
where byx =

∑
i∈s

(yi − ȳ)(xi − x̄)/
∑
i∈s

(xi − x̄)2. An improved estimator of X̄ is usually

defined in term of the auxiliary variable z, utilizing data on s′. For example, using
a ratio estimator x̄′Z̄/z̄′ for x̄′ in ȳR, Chand(1975) defined a ratio-in-ratio estimator
ȳCR = ȳ x̄′

x̄
Z̄
z̄′ . Similarly, considering a regression estimator x̄′−b′xz(z̄

′−Z̄), where b′xz =∑
i∈s′

(xi − x̄′)(zi−z̄′)/
∑
i∈s′

(zi − z̄′)2, Kiregyera(1984) obtained a regression-in-regression

estimator ȳCRG = ȳ − byx

[
x̄− {

x̄′ − b′xz(z̄
′ − Z̄)

}]
from ȳRG. In this paper, on the

availability of the same auxiliary information, we consider an alternative approach to
estimate Ȳ and also construct a class of estimators for the purpose.

2 The Proposed Class of Estimators

As stated earlier, an estimator is developed from ȳR or ȳP or ȳRG, with replacement
of x̄′ by a better estimate of X̄ than x̄′, one should think that x̄ provides a less ef-
ficient estimate of X̄ than x̄′. Therefore, he can also hope for a better estimate of
X̄ than x̄ by taking advantage of the correlation between x and z. This philosophy
encourages us to develop a number of estimators from ȳR, ȳP and ȳRG replacing x̄
and x̄′ simultaneously by some improved estimators of X̄ treating z as an auxiliary
variable in many alternative ways. But, for simplicity, we consider difference estima-
tors tx = x̄ − d(z̄ − z̄′) and t′x = x̄′ − d′(z̄′ − Z̄) in places of x̄ and x̄′ respectively,
where the coefficients d and d′ are constants. These difference estimators are not only
simple to handle mathematically, but reduce to many well-known estimators when
their coefficients are rightly chosen.
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Thus, applying our technique of formulating an estimator, we may consider the
following generalized estimators from ȳR, ȳP and ȳRG:

t∗R = ȳ
x̄′ − d′(z̄′ − Z̄)
x̄− d(z̄ − z̄′)

t∗P = ȳ
x̄− d(z̄ − z̄′)
x̄− d′(z̄′ − Z̄)

t∗RG = ȳ − byx[{x̄− d(z̄ − z̄′)} − {x̄′ − d′(z̄′ − Z̄)}].
An infinite number of estimators can be obtained from t∗R, t∗P and t∗RG for various
selections of d and d′. But, we focus attention on the creation of a general class for
estimators having a greater scope than the system of estimators generated from t∗R,
t∗P and t∗RG.

Whatever be the samples s and s′ chosen, let w = tx
t′x

, and h = (ȳ, w) assumes
values in a closed convex subspace, Q, of two-dimensional real space containing the
point H = (Ȳ , 1).

Let λ(h) = λ(ȳ, w) be a known function of ȳ and w, such that λ(ȳ, 1) = ȳ and
satisfying the following conditions:

(i) λ(h) is continuous in Q, and

(ii) the first and second order partial derivatives of λ(h) exist and are continuous in
Q.

These conditions taken together are called regularity conditions and any situation
where these conditions hold is called a regular estimation case. Hence, in any regular
estimation case a general class of estimators of Ȳ may be defined by

t = λ(h). (1)

We note that the generalised estimators t∗R,t∗P and t∗RG, and the estimators like
t1 = ȳ +α(w− 1), t2 = ȳwα, t3 = ȳ

1+α(wβ−1)
, t4 = ȳ(2−wα), t5 = r exp(α(w− 1)) etc.

where α and β are suitably chosen constants, come out as special cases of t.

3 Properties of the Proposed Estimator

Here, λ(h) is a composite function of various statistics. It is therefore impossible to
obtain exact results on its bias and variance. We use the Taylor linearization technique
to yield an approximate expression for the variance of t under the assumptions (i) and
(ii). So, on expanding λ(h) around the point H upto second order, we obtain

t = λ(h) = λ(H) + (ȳ − Ȳ )λ1(H) + (w − 1)λ2(H)

+
1
2
[(ȳ − Ȳ )2λ11(h̃) + 2(ȳ − Ȳ )(w − 1)λ12(h̃) + (w − 1)2λ22(h̃)], (2)
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where h̃ = (ỹ, w̃), ỹ = Ȳ +η(ȳ− Ȳ ), w̃ = 1+η(w−1), for 0 < η < 1; λ1, λ2 denote the
first order partial derivatives of λ, and λ11, λ12, λ22 its second order partial derivatives
w.r.t. first and second arguments respectively.

Noting that λ(H) = Ȳ , λ1(H) = 1 and simplifying (2) under the assumption
|δ t′x| < 1, we obtain

E(t) = Ȳ + 0(n−1)

and t − Ȳ ∼= Ȳ (δ ȳ) + λ2(H)(δ tx − δ t′x), where δ ȳ = ȳ−Ȳ
Ȳ

, δ tx = tx−X̄
X̄

, δ t′x = t′x−X̄
X̄

.
Hence, we have the following theorem:

Theorem 3.1. Under the regularity conditions, the first order variance of t is given
by

V (t) = φS2
y + (φ− φ′)[λ2

2(H){C2
x − 2dGρxzCxCz + d2G2C2

z}
+2λ2(H)Ȳ ρyxCyCx − 2λ2(H)Ȳ dGρyzCyCz]
+φ′[λ2

2
(H)d′2G2C2

z + 2λ2(H)Ȳ d′GρyzCyCz]

where G = Z̄
X̄

, φ =
(

1
n − 1

N

)
, φ′ =

(
1
n′ − 1

N

)
, S2

y = 1
N−1

N∑
i=1

(yi − Ȳ )2,

S2
x = 1

N−1

N∑
i=1

(xi − X̄)2, Cx = Sx/X̄, ρxz = correlation coefficient between x and z

etc.
The asymptotic variance of t is a function of λ2(H), d and d′ and is minimized for

λ2(H) =
−Ȳ

Cy

Cx
(ρyx − ρxzρyz)
1− ρ2

xz

, d =
Cx

GCz

[
ρxzρyx − ρyz

ρyx − ρxzρyz

]
, d′ =

Cx

GCz

[
ρyz(1− ρ2

xz)
ρyx − ρxzρyz

]
.

Thus, these results lead to the following theorem:

Theorem 3.2. The minimum asymptotic variance of t is given by,

minV (t) = [(φ− φ′)(1− ρ2
y.xz) + φ′(1− ρ2

yz)]S
2
y , (3)

where ρy.xz =
√

ρ2
yx+ρ2

yz−2ρyxρxzρyz

1−ρ2
xz

is the multiple correlation coefficient of y on x and
z.

The expression (3) may be called as the asymptotic minimum variance bound
(MVB) of the class of estimators defined by t. An estimator (not necessarily unique)
attaining this bound may be termed as a MVB estimator. For example, a regression-
type estimator of the form

tRG = ȳ − βyx.z(x̄− x̄′)− βyz.x(z̄ − z̄′)− βyz(z̄′ − Z̄),

where βyx.z, βyz.x are the partial regression coefficients of y on x and z respectively
and βyz is the regression coefficient of y on z, suggested by Tripathi and Ahmed(1995)
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is a MVB estimator of this class. So, the proposed general class of estimators tcan not
provide any more imporved estimators over Tripathi and Ahmed (1995), but it is an
another class.

The optimum values of λ2(H), d and d′ are usually unknown. Thus in practice,
one has to use their guessed values either available through one’s past experience or
through a pilot sample survey. Over the history of survey sampling, most of the
considerable experience gathered can also be useful for this purpose under a variety of
survey situations [cf., Reddy (1978)]. However, when these parametric functions are
completely unknown or difficult to obtain accurately, we can replace them by their
consistent estimates. Hence, the class of estimators of Ȳ may be expressed as

t̂ = λ

(
ȳ,

t̂x

t̂′x
, λ̂2(H)

)
,

where t̂x = x̄− d̂(z̄ − z̄′), t̂′x = x̄′ − d̂′(z̄′ − Z̄), d̂ and λ̂2(H) are respectively estimates
of d and λ2(H) based on s, and d̂′ is an estimate of d′ based on s′. But, the first order
of approximation V (t) and V t̂ as well as their minimal values are equal.

4 Comparison of Estimators

To study the effectiveness of the proposed estimation technique, let us now examine
the precision of t in comparison with a few specific classes discussed below.

If an estimation of Ȳ is carried out with the involvement of x only, then a class of es-
timators, covering ȳR, ȳP and ȳRG as its special cases can be defined as ȳf = f(ȳ, x̄, x̄′),
where f(., ., .) is a known function of ȳ, x̄ and x̄′ satisfying certain regularity condi-
tions. ȳf may be considered as an extension of Srivastava’s (1980) class of estimators
into two-phase sampling procedure. The assymptotic MVB of the class is

minV (ȳf ) = [(φ− φ′)(1− ρ2
yx) + φ′]S2

y (4)

and the corresponding MVB estimator is ȳRG.
Replacing x̄′ in ȳf by h(x̄′, z̄′), a class of estimators for X̄ based on s′, Sahoo and

Sahoo (1993) developed a class of estimators for Ȳ defined by lh = f(ȳ, x̄, h(x̄′, z̄′)).
Using concept developed by Singh et al.(1994), we may also consider a class lp =

p
(
ȳ, x̄

x̄′ ,
z̄′
Z̄

)
. Recently, Sahoo and Sahoo (1999) composed an alternative class defined

by lq = q1(q2(ȳ, x̄), x̄′, z̄′) where q2(ȳ, x̄) serves as a class of estimators of ȳ′ based on s.
An analysis of the properties of lh, lp and lq shows that these classes are not necessarily
disjoint but attain the same MVB given by

minV (lh) = minV (lp) = minV (lq) = [(φ− φ′)(1− ρ2
yx) + φ′(1− ρ2

yz)]S
2
y (5)

which is equal to the variance of a regression-type estimator

lRG = ȳ − byx(x̄− x̄′)− byz(z̄′ − Z̄),
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where byz =
∑
i∈s

(yi − ȳ)(zi − z̄)/
∑
i∈s

(zi − z̄)2, considered earlier by Sahoo et al. (1993).

Our aim is to compare the precision of t with that of ȳf ,lh, lp and lq. But, it is not
possible to draw any meaningful conclusion by comparing all estimators belonging to
two different classes, because, an estimator has its own limitation and is suitable only
for a particular situation. However, for simplicity, if we accept MVB as an intrinsic
measure of the precision of a class, our attention will be concentrated on the MVB
estimators only. Thus from (3), (4) and (5), we have

minV (t) ≤ min(lh) ≤ min(ȳf )

⇒ V (tRG) ≤ V (lRG) ≤ V (ȳRG),

i.e., t is superior to ȳf , lh, lp and lq in respect of MVB criterion.

5 Numerical Illustrations and Conclusions

In order to study the gain in precision of the proposed estimation technique over others
numerically, we compute relative precision of different estimators with respect to mean
per unit estimator ȳ using data of 4 natural populations described in table 1. Here,
the relative precision of an estimator e is defined by RP = V (ȳ)

V (e) × 100, where V (e) is
the first order variance of e.

For comparison purpose we have taken the three MVB estimators viz., ȳRG, lRG

and tRG; Chand’s(1975) regression-in-regression estimator ȳCRG and a regression-type
estimator ȳ∗RG obtained from t̄∗RG on considering

d = bxz =
∑

i∈s

(xi − x̄)(zi − z̄)/
∑

i∈s

(zi − z̄)2 and d′ = b′xz

.

Table 1: Description of Populations

Pop. No. Source N y x z
1. Srivastava et al.(1990) 1000 jute yield height diameter
2. Tripathi and 278 villages no. of population no. of

Ahmed (1995) agricultural size cultivators
labourers

3. Tripathi (1980) 225 persons persons in educated
persons employed service persons

4. Sukhatme and 120 bushels of apple trees bushels of
Chand (1977) trees apples of bearing apples

harvested age in 1964 harvested
in 1964 in 1959
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Table 2: Relative Precision of Different Estimators

Pop. No. n′ n Estimators
ȳ ȳRG ȳCRG lRG ȳ∗RG tRG

1 100 75 100 117 135 162 166 177
2 60 40 100 130 164 165 167 170
3 90 68 100 110 107 111 115 118
4 30 15 100 197 394 491 459 549

Based on the expressions (3), (4) and (5), we compute V (tRG), V (ȳRG) and V (lRG)
respectively . To compute V (ȳCRG) we refer to its formula given in Kiregyera(1984).
However, to compute V (ȳ∗RG), we consider its formula given by

V (ȳ∗RG) = [(φ− φ′){1− ρ2
yx(1 + ρ2

xz) + 2ρyxρyzρxz}+ φ′{1 + ρ2
yxρ2

xz − 2ρyxρyzρxz}]S2
y .

Relative precision of the comparable estimators are displayed in table 2. It is seen
that the performance tRG over others is quite appreciable. On the other hand ȳ∗RG is
also better than ȳRG and ȳCRG for all cases, and lRG for three cases.

Analytical as well as empirical findings of this paper indicate that the proposed
class is capable of producing estimators of Ȳ which are no way inferior to those of ȳf ,
lh, lp and lq. The estimators so obtained are also easy to apply in practice as they
are simple to compute without any appreciable increase in cost as compared to the
estimators developed in the line of Chand’s approach. Hence, proposed estimation
procedure is one of optimum classes.
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