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Abstract

The problem of pre-test and shrinkage estimation of the parameters for the linear regres-
sion model with spherically symmetric errors under possible stochastic constraints are
discussed in this paper. We consider five well known estimators, namely, unrestricted
estimator (UE), restricted estimator (RE), preliminary test (PT) estimator, shrinkage
estimator (SE) and positive rule (PR) shrinkage estimator. The bias and risk functions
of the proposed estimators are analyzed under both the null and alternative hypotheses.
Under the null hypothesis, the restricted estimator (RE) has the smallest risk followed
by the pre-test or shrinkage estimators. However, the pre-test or shrinkage estimators
perform the best followed by the unrestricted estimator (UE) and restricted estimator
(RE) when the parameter moves away from the subspace of the restrictions. The condi-
tions of superiority of the proposed estimator for departure parameter are provided. It
is evident that the positive rule shrinkage estimator utilizes both sample and non-sample
information and performs uniformly better than UE and ordinary shrinkage estimator.

Keywords and Phrases: Bias; James and Stein Estimator; Preliminary Test; Risk;
Restricted Estimators; Spherical Distribution; Students t; Stochastic Constraints; Supe-
riority.
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1 Introduction

The pre-test or shrinkage estimation under the general linear hypothesis (exact or non-
stochastic) are available in literature. In rare cases we have exact prior information
on the linear combination of parameters when estimating economic relations. Some
uncertainties about the prior information are stochastic for many practical situation
(see Theil and Goldberger, 1961 and Theil 1963). In that case non-stochastic con-
straint does not work. In most applied as well as theoretical research works, the error
terms in linear models are assumed to be normally and independently distributed.
However, such assumptions may not be appropriate in many practical situation (for
example, see Gnanadesikan 1977 and Zellner 1976). It happens particularly if the
error distribution has heavier tails. For instance, some economic data may be gener-
ated by processes whose distribution have more kurtosis than the normal distribution.
One can tackle such situation by using the well known t distribution as it has heavier
tail than the normal distribution, specially for smaller degrees of freedom (e.g. Fama
(1965), Blatberg and Gonedes 1974, Ullah and Zinde-Walsh 1984, Sutradhar and Ali,
and Kibria 1996). Furthermore, normal distribution can not handle the dependent
but uncorrelated responses which are often common in time series and econometric
studies. The multivariate Student t distribution can overcome both the problems of
outliers and dependent but uncorrelated data. Moreover, the multivariate normal dis-
tribution is a special case of multivariate Student t distribution for large error degrees
of freedoms. Also the Cauchy distribution is a special case of multivariate Student
t distribution for one degrees of freedom. In this paper we consider five estimators,
namely, the unrestricted estimator, the restricted estimator, the preliminary test esti-
mator, the shrinkage estimator and positive rule shrinkage estimator under the possible
stochastic prior information. We also consider that errors follow a spherically sym-
metric distribution and provide the bias and the risk functions of the estimators. We
compared the performance of the estimators based on the quadratic risk functions.

The organization of the paper is as follows. In Section 2, we discuss the model and
the estimators. Section 3 contains the expressions of biases and risks. Section 4 deals
with the relative performance of the estimators. Finally some concluding remarks are
added in Section 5.

2 The Model and the Proposed Estimators

Consider the following linear regression model

y1 = Xβ + e, (1)

where y1 is an n× 1 vector of observations on the dependent variable, X is an n× p
matrix of full rank p, β = (β1, β2, . . . , βp)′ is an p× 1 vector of regression parameters
and e is an n× 1 vector of errors, which is distributed as multivariate Student-t with
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the following probability density function (pdf)

f1(e) =
Γ

(
n+ν

2

)

(πν)n/2Γ(ν/2)σn

(
1 +

e′e
νσ2

)−n+ν
2

, 0 < ν, σ,< ∞, −∞ < ei < ∞. (2)

Our primary object is to estimate β when the error distribution belongs to (2) and it
is suspected that β may be restricted to the subspace defined by

r = Rβ + v, (3)

where r is an q × 1 vector of observations, R is an q × p matrix of known constants
of full rank q, and v is an q × 1 vector of errors, which is distributed according to the
laws belonging to the class of spherical compound normal distributions. This class is
a subclass of the family of spherically symmetric distributions (SSDs) which can be
expressed as a variance mixture of normal distributions, that is,

f2(v) =
∫ ∞

0
fq(v|γ)g(γ)dγ, (4)

where f2(v) is the pdf of v, fq(v|γ) is the normal pdf with mean vector ψ and variance-
covariance matrix γ2Ω (γ > 0) and g(γ) is the inverted Gamma density with scale σ2

and degrees of freedom ν, denoted by IG(ν, σ2). Thus

f2(v) =
Γ

( q+ν
2

) |Ω|− 1
2

(πν)q/2Γ(ν/2)σq

(
1 +

(v − ψ)′Ω−1(v − ψ)′

νσ2

)− q+ν
2

, 0 < ν, σ,< ∞, (5)

−∞ < vi < ∞.

with
E(v) = ψ and E(vv′) = σ2

eΩ + ψψ′, σ2
e =

ν

ν − 2
σ2.

We assume that v|γ and e|γ are independent. We combine the sample and stochastic
prior information to get the following linear statistical model

[
y1

r

]
=

[
X
R

]
β +

[
e
v

]
, (6)

where
[

e
v

] ∣∣∣γ ∼ Nn+q

{[
0
ψ

]
, γ2

[
In 0
0 Ω

]}
, (7)

subject to condition

[−R, Iq]
[

β
Rβ + ψ

]
= ψ = 0. (8)
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Rewrite the model as

y = Zφ + u, (9)

subject to exact restriction

Hφ = ψ = 0, (10)

where

y =
[

y1

Ω−
1
2 r

]
, Z =

[
X 0
0 Ω−

1
2

]
, φ =

[
β

Rβ + ψ

]
, H = [−R, Iq] (11)

and

u =
[

e

Ω−
1
2 (v − ψ)

] ∣∣∣γ ∼ Nn+q(0, γ2In+q). (12)

Then using (4), we have the pdf of u as,

f(u) =
Γ

(n+q+ν
2

)

(πν)
n+q+ν

2 Γ(ν/2)σ(n+q)

(
1 +

u′u
νσ2

)−n+q+ν
2

, 0 < ν, σ,< ∞, (13)

−∞ < ui < ∞.

For the full model the unrestricted least squares estimator (UE) of φ is given by

φ̂UE = (Z ′Z)−1Z ′y =
[

φ̂UE
1

φ̂UE
2

]
=

[
β̂UE

r

]
, (14)

where β̂UE = (X ′X)−1X ′y is the unrestricted estimator of β. The restricted least
squares estimator (RE) of φ is given by

φ̂RE = φ̂UE − (Z ′Z)−1H ′[H(Z ′Z)−1H ′]−1φ̂UE =
[

φ̂RE
1

φ̂RE
2

]
=

[
β̂RE

Rβ̂RE

]
, (15)

where β̂RE is the stochastic hypothesis restricted estimator of β and is given by

β̂RE = β̂UE − S−1R′(RS−1R′ + Ω)−1(Rβ̂UE − r),

where S = X ′X is the information matrix.
The estimator of φ in (14) is usually used in the case when there is no hypothesis

information available on the vector of parameter of interest φ. On the other hand, the
estimator of φ in (15) is useful in the presence of null hypothesis H0 (10). Therefore,
if we have hypothesis information on the parameter space, it is advantageous to use



Tabatabaey, Saleh and Kibria: Estimation of Regression Parameters 5

this additive information in the hope of obtaining better estimator (Ahmed 2002).
Furthermore, it is well known that the RE performs better than the UE, when the
restrictions hold but as the parameters, φ moves away from the subspace Hφ = 0, the
RE becomes biased and inefficient while the performance of the UE remains stable.
As a result, one may combine the UE and RE to obtain a better performance of the
estimators in presence of the uncertain prior information Hφ = 0, which leads to the
preliminary test least squares estimator (PT ) and defined as

φ̂PT = φ̂REI(Ln ≤ Ln,α) + φ̂UEI(Ln > Ln,α),

=
(

β̂PT

Rβ̂REI(Ln ≤ Ln,α) + rI(Ln > Ln,α)

)
(16)

where,
β̂PT = β̂REI(Ln ≤ Ln,α) + β̂UEI(Ln > Ln,α)

is the stochastic preliminary test least squares estimator,

Ln =
(Rβ̂UE − r)′(RS−1R′ + Ω)−1(Rβ̂UE − r)

qS2
e

,

with

S2
e =

(y − Zφ̂UE)′(y − Zφ̂UE)
n− p

=
(y1 −Xβ̂UE)′(y1 −Xβ̂UE)

n− p
,

Ln,α is the upper α-level critical value of Ln and I(A) is the indicator function of the set
A. Under the null hypothesis and normal theory, Ln follows a central F -distribution
with (q, n−p) degrees of freedom while under the alternative hypothesis, Hφ 6= 0, the
pdf of Ln is given by

gq,n−p(Ln, ∆, ν) =
∞∑

r=0

(
q

n− p

)q/2+r Γ
(

ν
2 + r

)
Γ

(n−p+q
2 + r

)

Γ(r + 1)Γ(ν
2 )Γ( q

2 + r)Γ
(n−p

2

)

×

(
∆

ν−2

)r

(
1 + ∆

ν−2

)ν/2+r

Lq/2+r−1
n

(
1 + q

n−pLn

)n−p+q
2

+r
, (17)

where

∆ =
ψ′(RC−1R′ + Ω)−1ψ

σ2
e

, (18)

is the departure parameter from the null hypothesis. It is important to remark that
φ̂PT is bounded and performs better than φ̂RE in some part of the parameter space.
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The preliminary test approach estimation has been pioneered by Bancroft (1944),
followed by Han and Bancroft (1968), Saleh and Sen (1978), Giles (1991), Kibria and
Saleh (1993), Benda (1996) and very recently Ahmed (2002) among others. They have
assumed that the disturbances of the model are normally distributed.

Note that, the preliminary test estimator (PT) has two characteristics: (1) it
produces only two values, the unrestricted estimator and the restricted estimator, (2)
it depends heavily on the level of significance of the preliminary test (PT). What
about the intermediate value between φ̂UE and φ̂RE . To overcome this shortcoming,
we consider the Stein-type estimator. The Stein-type shrinkage estimator (SE) of φ is
defined as

φ̂SE = φ̂UE − dL−1
n (φ̂UE − φ̂RE),

=
(

β̂SE

r − dL−1
n (r −Rβ̂RE))

)
(19)

where,
β̂SE = β̂UE − dL−1

n (β̂UE − β̂RE)

is the stochastic shrinkage estimator,

d =
(q − 2)(n− p)
q(n− p + 2)

, and q ≥ 3.

The SE in (19) will provide uniform improvement over φ̂UE , however it is not a convex
combination of φ̂UE and φ̂RE . Both (16) and (19) involve the statistic Ln which
adjusts the estimator for departure from H0. For large value of Ln both (16) and
(19) yield β̂UE , while for small value of Ln their performance is different. The SE has
the disadvantage that it has strange behavior for small Ln. Also the shrinkage factor
(1 − dL−1

n ) becomes negative for Ln < d. This encourage one to find an alternative
estimator. Hence, we define a better estimator, namely, the positive-rule shrinkage
estimator (PR) of β as follows:

φ̂PR = φ̂SE − (1− dL−1
n )I(Ln ≤ d)(φ̂UE − φ̂RE),

=
(

β̂PR

r − dL−1
n (r −Rβ̂RE)− (1− dL−1

n )I(Ln ≤ d)(r −Rβ̂RE)

)
(20)

where
φ̂PR = β̂SE − (1− dL−1

n )I(Ln ≤ d)(β̂UE − β̂RE)

is the stochastic positive rule shrinkage estimator.
The PR estimator in (20) will provide uniform improvement over φ̂UE and it is

a convex combination of φ̂UE and φ̂RE . The properties of stein-type estimators have
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been analyzed under normal assumption by various researchers such as, James and
Stein (1961), Judge and Bock (1978) and Shalabh (1995) to mention a few. The
positive part shrinkage estimator has been considered under the normal assumption
by Ohtani (1993) and Adkins and Hill (1990) among others.

Since, we are interested only in the marginal estimate of β under the stochastic
information, in the following section we will provide the bias and risk functions of the
proposed estimators.

3 Bias and Risks of the Estimators

In this section we give the expressions for the bias and quadratic risk of the estimators
β̂UE , β̂RE , β̂PT , β̂SE , and β̂PR. In the following subsection we will discuss about the
biases of the estimators.

3.1 Biases of the Estimators

Note that the biases of the proposed estimators are routinely derived following Judge
and Bock (1978, Chapter 10). Therefore, we omit all derivation, instead, we present
the expressions for the biases of the estimators in the following theorem.

Theorem 3.1 Bias of the of the unrestricted estimator (UE), restricted estimator
(RE), preliminary test estimator (PT), shrinkage estimator (SE) and the positive-rule
shrinkage estimator (PR) under the possible stochastic constraints are given respec-
tively

B(β̂UE) = E(β̂UE − β) = 0

B(β̂RE) = E(β̂RE − β) = −η

B(β̂PT ) = E(β̂PT − β) = −ηG
(2)
q+2,n−p(x,∆)

B(β̂SE) = E(β̂SE − β) = −qdηE(2)[χ−2
q+2(∆)] and

B(β̂PR) = E(β̂PR − β) = η

{
qd

q + 2
E(2)

[
F−1

q+2,n−p(∆)I
(

Fq+2,n−p(∆) ≤ qd

q + 2

)]

− qd

q + 2
E(2)[F−1

q+2,n−p(∆)]−G
(2)
q+2,n−p(x,∆)

}
, (21)

where η = S−1R′(RS−1R′ + Ω)−1ψ and

G
(j)
q+2i,n−p(x;∆)

=
∞∑

r=0

Γ
(

ν
2 + r + j − 2

)

Γ(r + 1)Γ
(

ν
2 + j − 2

)
(

∆
ν−2

)r

(
1 + ∆

ν−2

)ν/2+r+j−2
Ix

{
1
2
(q + 2i) + r,

n− p

2

}
,(22)
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where I{.} is the incomplete beta function and

x =
qFα

n− p + qFα
.

Also

E(j)[χ−2
q+s(∆)] =

∞∑

r=0

Γ
(

ν
2 + r + j − 2

) (
∆

ν−2

)r
(q + s− 2 + 2r)−1

Γ(r + 1)Γ
(

ν
2 + j − 2

) (
1 + ∆

ν−2

) ν
2
+r+j−2

E(j)[χ−2
q+s(0)] = (q + s− 2)−1, j = 1, 2 (23)

and

E(j)

[
F−1

q+s,n−p(∆)I
(

Fq+s,n−p(∆) ≤ qd

q + s

)]

=
∞∑

r=0

Γ
(

ν
2 + r + j − 2

) (
∆

ν−2

)r
(q + s)Ix∗

[
1
2(q + s− 2 + 2r), 1

2(n− p + 2)
]

Γ(r + 1)Γ
(

ν
2 + j − 2

) (
1 + ∆

ν−2

) ν
2
+r+j−2

(q + s− 2 + 2r)

E(j)

[
F−1

q+s,n−p(0)I
(

Fq+s,n−p(0) ≤ qd

q + s

)]

= (q + s)(q + s− 2)−1Ix∗

[
1
2
(q + s− 2),

1
2
(n− p + 2)

]
, j = 1, 2 (24)

where
x∗ =

qd

n− p + qd
.

For α = 0, the bias of β̂PT coincides with that of the restricted estimator, β̂RE ,
while for α = 1, it coincides with that of β̂UE , the unrestricted estimator β. Also as
the departure parameter ∆ →∞, B(β̂UE) = B(β̂PT ) = B(β̂SE) = B(β̂PR) = 0, while
the B(β̂RE) becomes unbounded. However, under H0 all the estimators are unbiased.

Now we compare the biases under the alternative hypothesis. In order to present
a clear cut picture of the biases, we transform them in convenient quadratic (scaler)
form. Let β̂∗ be any estimator of β and W be the positive semidefinite matrix, then
the quadratic bias function is defined as QB(β̂∗) = B(β̂∗)′WB(β̂∗). The quadratic
bias functions of the estimators can be expressed by the following theorem.

Theorem 3.2 Quadratic bias of the of the unrestricted estimator (UE), restricted
estimator (RE), preliminary test estimator (PT), shrinkage estimator (SE) and the
positive-rule shrinkage estimator (PR) are given respectively

QB(β̂UE) = 0
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QB(β̂RE) = σ2
eψ

′Dψ

QB(β̂PT ) = σ2
eψ

′Dψ
[
G

(2)
q+2,n−p(x,∆)

]2

QB(β̂SE) = σ2
eψ

′Dψ
[
qdE(2)[χ−2

q+2(∆)]
]2

QB(β̂PR) = σ2
eψ

′Dψ

{
qd

q + 2
E(2)

[
F−1

q+2,n−p(∆)I
(

Fq+2,n−p(∆) ≤ qd

q + 2

)]

− qd

q + 2
E(2)[F−1

q+2,n−p(∆)]−G
(2)
q+2,n−p(x,∆)

}2

, (25)

where
D = [RS−1R′ + Ω]−1RS−1WS−1R′[RS−1R′ + Ω]−1.

The quadratic bias functions of all the estimators except β̂UE depends upon the
parameters only through the ∆; thus the bias is a function of ∆. The bias of the
PT depends on α, the size of the test. The magnitude of the RE increases without a
bound and tends to ∞ as ∆ → ∞. Since both E(χ−2

q+2(∆)) and G
(2)
q+2,n−p(x,∆) are

decreasing function of ∆, the quadratic bias of PT, SE and PR estimators start from
0 and increase to a point and then decrease gradually to 0 when ∆ → ∞. However,
the bias of PR estimator remain below the curve of SE and PT estimators. Based on
the above analysis we may establish the following inequality

QB(β̂UE) ≤ QB(β̂PR) ≤ QB(β̂SE) ≤ QB(β̂PT ) ≤ QB(β̂RE),

if
E[χ−2

q+2(∆)] ≤ 1
qd

Gq+2,n−p(lα;∆)

otherwise

QB(β̂UE) ≤ QB(β̂PR) ≤ QB(β̂PT ) ≤ QB(β̂SE) ≤ QB(β̂RE).

if
E[χ−2

q+2(∆)] ≥ 1
qd

Gq+2,n−p(lα;∆).

3.2 Risks Analysis of the Estimators

In this subsection we will present the quadratic risk function of the proposed estima-
tors. Let β̂∗ be any estimator of β and W be the positive semidefinite matrix, then
the quadratic loss function is defined as

L(β̂∗; β) = (β̂∗ − β)′W (β̂∗ − β). (26)
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The corresponding risk function of the estimator β̂∗ is defined as

R(β̂∗;β) = E(β̂∗ − β)′W (β̂∗ − β). (27)

The quadratic risk functions of the proposed estimators are routinely derived following
Judge and Bock (1978) lead to the following theorem.

Theorem 3.3: Risks of UE, RE, PT, SE and PR are given respectively

R(β̂UE ;W ) = σ2
e tr(S

−1W )

R(β̂RE ;W ) = σ2
e tr(S

−1W )− σ2
e tr(A) + ψ′Dψ

R(β̂PT ;W ) = σ2
e tr(S

−1W )− σ2
e tr(A)G(1)

q+2,n−p(x,∆)

+ ψ′Dψ
[
2G

(2)
q+2,n−p(x,∆)−G

(2)
q+4,n−p(x,∆)

]

R(β̂SE ;W ) = σ2
e tr(S

−1W )− dqσ2
e tr(A)

{
2E(1)[χ−2

q+2(∆)]− (q − 2)E(1)[χ−4
q+2(∆)]

}

+ qdψ′Dψ
{

(q − 2)E(2)[χ−4
q+4(∆)] + 2

(
E(2)[χ−2

q+2(∆)]−E(2)[χ−2
q+4(∆)]

)}

= σ2
e tr(S

−1W )− dqσ2
e tr(A)

{
(q − 2)E(1)[χ−4

q+2(∆)]

+
[
1− (q + 2)ψ′Dψ

2σ2
e∆tr(A)

]
2∆E(2)[χ−4

q+4(∆)]
}

R(β̂PR;W ) = R(β̂SE
n (k);β)

− σ2
e

{
tr(A)E(1)

[(
1− qd

q + 2
F−1

q+2,m(∆)
)2

I

(
Fq+2,n−p(∆) <

qd

q + 2

)]

+
ψ′Dψ

σ2
e

E(2)

[(
1− qd

q + 4
F−1

q+4,n−p(∆)
)2

I

(
Fq+4,n−p(∆) <

qd

q + 4

)]}

− 2ψ′DψE(2)

[(
qd

q + 2
F−1

q+2,n−p(∆)− 1
)

I (Fq+2,n−p(∆) <
qd

q + 2
)
]

, (28)

where
A = (RS−1R′ + Ω)−1RS−1WS−1R′

and
D = [RS−1R′ + Ω]−1RS−1WS−1R′[RS−1R′ + Ω]−1.

Also,

E(j)[χ−4
q+s(∆)] =

∞∑

r=0

Γ
(

ν
2 + r + j − 2

) (
∆

ν−2

)r
(q + s− 2 + 2r)−1(q + s− 4 + 2r)−1

Γ(r + 1)Γ
(

ν
2 + j − 2

) (
1 + ∆

ν−2

) ν
2
+r+j−2

E(j)[χ−4
q+s(0)] = (q + s− 2)−1(q + s− 4)−1, j = 1, 2 (29)
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and

E(j)

[
F−2

q+s,n−p(∆)I
(

Fq+s,n−p(∆) ≤ qd

q + s

)]

=
∞∑

r=0

Γ
(

ν
2 + r + j − 2

) (
∆

ν−2

)r

(q + s)2Ix∗
[
1
2 (q + s− 4 + 2r), 1

2 (n− p + 4)
]

Γ(r + 1)Γ
(

ν
2 + j − 2

) (
1 + ∆

ν−2

) ν
2 +r+j−2

(n− p)(q + s− 2 + 2r)(q + s− 4 + 2r)

E(j)

[
F−2

q+s,n−p(0)I
(

Fq+s,n−p(0) ≤ qd

q + s

)]

=
(q + s)2

(n− p)(q + s− 2)(q + s− 4)
Ix∗

[
1
2
(q + s− 4),

1
2
(n− p + 4)

]
, j = 1, 2 (30)

Based on the above information we consider the performance of the estimators in the
following section.

4 Risk Analysis of the Estimators

In this section we will compare the performance of the proposed estimators in the light
of quadratic risk function. For our convenience we assume that ν is known. We obtain
from Anderson (1984, Theorem A.2.4, p.590) that

λp ≤ ψ′Dψ

ψ′[RS−1R′ + Ω]−1ψ
≤ λ1, or

σ2
e∆λp ≤ ψ′Dψ ≤ σ2

e∆λ1, (31)

where λ1 and λp are the largest and the smallest characteristic roots of the matrix A.

4.1 Comparison of β̂UE and β̂RE

First, we compare between β̂UE and β̂RE . Using (28), the risk difference is,

R(β̂UE ; W )−R(β̂RE ; W ) = σ2
e tr(A)− ψ′Dψ. (32)

The difference in (32) will be non-negative whenever ∆ ≤ tr(A)
λ1

. That is RE will

dominate UE when ∆ ≤ tr(A)
λ1

, otherwise UE will dominate RE when ∆ ≥ tr(A)
λp

. For

W = S, and Ω = 0, we note that β̂RE performs better than β̂UE in the interval [0, q]
and worse outside this interval.

4.2 Comparison of β̂UE, β̂RE and β̂PT

First we compare β̂PT versus β̂UE . The risk difference is

R(β̂UE ; W )−R(β̂PT ; W ) = σ2
e tr(A)G(1)

q+2,n−p(x,∆)
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− ψ′Dψ
[
2G

(2)
q+2,n−p(x,∆)−G

(2)
q+4,n−p(x,∆)

]
. (33)

The difference in (33) will be non-negative whenever

∆ ≤ tr(A)G(1)
q+2,n−p(x,∆)

λ1

[
2G

(2)
q+2,n−p(x,∆)−G

(2)
q+4,n−p(x,∆)

]
.

(34)

Thus β̂PT is superior to β̂UE if ∆ ∈
[
0,

tr(A)G
(1)
q+2,n−p(x,∆)

λ1

[
2G

(2)
q+2,n−p(x,∆)−G

(2)
q+4,n−p(x,∆)

]
)

and β̂UE

performs better than β̂PT if ∆ ∈
[

tr(A)G
(1)
q+2,n−p(x,∆)

λp

[
2G

(2)
q+2,n−p(x,∆)−G

(2)
q+4,n−p(x,∆)

] ,∞
)

It follows from

(33) that under H0, β̂PT is superior to β̂UE for all α ∈ (0, 1). We can describe the graph
of R(β̂PT ; W ) as follows. It assumes a value of σ2

e tr(S
−1W ) − σ2

e tr(A)G(1)
q+2,n−p(x, 0)

at ∆ = 0, then increase crossing the risk of β̂UE to a maximum then drops gradually
towards σ2

e tr(S
−1W ) as ∆ →∞.

Now we compare the risk between β̂RE and β̂PT . Both are superior than β̂UE under
the null hypothesis. We note that

R(β̂RE ; W )−R(β̂PT ; W ) = −σ2
e tr(A)[1−G

(1)
q+2,n−p(x,∆)]

+ ψ′Dψ
[
1− 2G

(2)
q+2,n−p(x,∆) + G

(2)
q+4,n−p(x,∆)

]
.(35)

The difference in (35) will be non-positive whenever

∆ ≤ tr(A)[1−G
(1)
q+2,n−p(x,∆)]

λ1

[
1− 2G

(2)
q+2,n−p(x,∆) + G

(2)
q+4,n−p(x,∆)

] . (36)

Thus β̂PT is superior to β̂RE if ∆ ∈
[
0,

tr(A)[1−G
(1)
q+2,n−p(x,∆)]

λ1

[
1−2G

(2)
q+2,n−p(x,∆)+G

(2)
q+4,n−p(x,∆)

]
)

and β̂RE

performs better than β̂PT if ∆ ∈
[

tr(A)[1−G
(1)
q+2,n−p(x,∆)]

λp

[
1−2G

(2)
q+2,n−p(x,∆)+G

(2)
q+4,n−p(x,∆)

] ,∞
)

.

4.3 Comparison of β̂UE, β̂RE, β̂PT and β̂SE

Now we investigate the comparative statistical properties of the Stein-type estimator.
First we compare between UE and SE. The risk difference is

R(β̂UE ; W )−R(β̂SE ; W ) = dqσ2
e tr(A)

{
(q − 2)E(1)[χ−4

q+2(∆)]
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+
[
1− (q + 2)ψ′Dψ

2σ2
e∆tr(A)

]
(2∆)E(2)[χ−4

q+4(∆)]
}

. (37)

Using (31), the risk difference in (37) is positive for all F such that

F =
{
F :

tr(A)
λ1

≥ q + 2
2

}
. (38)

Thus β̂SE uniformly dominates β̂UE . Further, as ∆ →∞, the risk difference tends to
0 from below. Now we wish to compare β̂RE and β̂SE . We have

R(β̂SE ; W )−R(β̂RE ; W ) = σ2
e tr(A)− ψ′Dψ − dqσ2

e tr(A)
{

(q − 2)E(1)[χ−4
q+2(∆)]

+
[
1− (q + 2)ψ′Dψ

2σ2
e∆tr(A)

]
(2∆)E(2)[χ−4

q+4(∆)]
}

. (39)

From (39) we note that under H0, R(β̂SE ; W ) ≥ R(β̂RE ; W ). Thus β̂RE performs
better than β̂SE under H0. However, ψ moves away from 0, ψ′Dψ increases and the
risk of β̂RE becomes unbounded while the risk of β̂SE remains below the risk of β̂UE

and merges with it as ∆ →∞. Thus β̂SE dominates β̂RE outside an interval around
the origin.

Now we compare β̂PT and β̂SE under H0. We have

R(β̂SE ;W )−R(β̂PT ;W ) = σ2
e tr(A)

[
G

(1)
q+2,n−p(x, 0)− d

]
. (40)

The above difference is positive for all α ∈ (0, 1) such that Fα satisfies the following
inequality

{
α : Fα >

q + 2
q

F−1
q+2,n−p(d, 0)

}
. (41)

Thus PT dominates SE when (41) satisfies, while SE dominates PT when Fα satisfies
the following inequality

{
α : Fα <

q + 2
q

F−1
q+2,n−p(d, 0)

}
. (42)

Thus it is clear that Stein-type shrinkage estimator, β̂SE does not always dominate
PT under H0. Whichever dominates depend on size of the critical level.

Under the alternative hypothesis the risk difference is

R(β̂SE ; W )−R(β̂PT ; W ) = −σ2
e tr(A)

{
qd

[
2E(1)[χ−2

q+2(∆)]− (q − 2)E(1)[χ−4
q+2(∆)]

]

− G
(1)
q+2,n−p(x;∆)

}
+ ψ′Dψ

{
dq(q − 2)E(2)[χ−4

q+2(∆)]
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+ 2qd
[
E(2)[χ−2

q+2(∆)]− E(2)[χ−2
q+4(∆)]

]

−
[
2G

(2)
q+2,n−p(x;∆)−G

(2)
q+4,n−p(x; ∆)

]}
. (43)

The risk difference in (43) is positive and therefore PT will dominate SE if

∆ ≥
tr(A)

{
dq

(
2E(1)[χ−2

q+2(∆)]− (q − 2)E(1)[χ−4
q+2(∆)]

)
−G

(1)
q+2,n−p(x;∆)

}

λp × f1(∆, α)
, (44)

while SE will dominate PT whenever

∆ ≤
tr(A)

{
dq

(
2E(1)[χ−2

q+2(∆)]− (q − 2)E(1)[χ−4
q+2(∆)]

)
−G

(1)
q+2,n−p(x;∆)

}

λ1 × f1(∆, α)
, (45)

where

f1(∆, α) = dq(q − 2)E(2)[χ−4
q+2(∆)] + 2qd

[
E(2)[χ−2

q+2(∆)]− E(2)[χ−2
q+4(∆)]

]

−
[
2G

(2)
q+2,n−p(x;∆)−G

(2)
q+4,n−p(x;∆)

]
.

Thus under alternative hypothesis, RE will dominate SE if

∆ ≤
tr(A)

{
dq

(
2E(1)[χ−2

q+2(∆)]− (q − 2)E(1)[χ−4
q+2(∆)]

)
− 1

}

λ1

{
dq(q − 2)E(2)[χ−4

q+2(∆)] + 2qd
[
E(2)[χ−2

q+2(∆)]− E(2)[χ−2
q+4(∆)]

]
− 1

} ,

while SE will dominate RE if

∆ ≥
tr(A)

{
dq

(
2E(1)[χ−2

q+2(∆)]− (q − 2)E(1)[χ−4
q+2(∆)]

)
− 1

}

λp

{
dq(q − 2)E(2)[χ−4

q+2(∆)] + 2qd
[
E(2)[χ−2

q+2(∆)]− E(2)[χ−2
q+4(∆)]

]
− 1

} .

4.4 Comparison of β̂UE, β̂RE, β̂PT , β̂SE, β̂PR

First we compare between β̂UE and β̂PR. From (28) and (31) it is observed that

R(β̂PR; W ) ≤ R(β̂UE ; W ), ∀∆, q ≥ 3. (46)

This β̂PR uniformly dominates β̂UE . Further the risk of β̂PR remains below the risk
of β̂UE and merges with it when ∆ → ∞. To compare β̂RE and β̂PR, under null
hypothesis, we have

R(β̂PR; W )−R(β̂RE ;W ) = σ2
e tr(A)

{
(1− d)−E(1)

[(
1− qd

q + 2
F−1

q+2,n−p(0)
)2
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×I

(
Fq+2,n−p(0) ≤ dq

q + 2

)]}
. (47)

Since

E(1)

[(
1− qd

q + 2
F−1

q+2,n−p(0)
)2

I

(
Fq+2,n−p(0) ≤ dq

q + 2

)]

≤ E

[(
1− qd

q + 2
F−1

q+2,n−p(0)
)2

]
= 1− d,

the difference in (47) is always positive. This β̂RE performs better than β̂PR under
H0. However, ψ moves away from 0, ψ′Dψ increases and the risk of β̂RE becomes
unbounded while the risk of β̂PR remains below the risk of β̂UE and merges with it as
∆ →∞. Thus β̂PR dominates β̂RE outside an interval around the origin.

Now we compare β̂PT and β̂PR. Under H0, the risk difference is

R(β̂PR; W )−R(β̂PT ; W )

= σ2
e tr(A)

{
(G(1)

q+2,n−p(x, 0)− d− E(1)

[(
1− qd

q + 2
F−1

q+2,n−p(0)
)2

×I

(
Fq+2,n−p(0) ≤ dq

q + 2

)]}
. (48)

The difference in (48) is always positive for all α satisfying the condition
{

α : Fα >
q + 2

q
F−1

q+2,n−p(d
∗, 0)

}
, (49)

where d∗ = d+E(1)
(
1− qd

q+2F−1
q+2,n−p(0)

)2
×I

(
Fq+2,n−p(0) ≤ dq

q+2)
)
. The risk of β̂PR

is smaller than that of the risk of β̂PT when the critical value Fα satisfies the following
condition

{
α : Fα <

q + 2
q

F−1
q+2,n−p(d

∗, 0)
}

. (50)

This leads to the conclusion that neither of the estimators, β̂PR or β̂PT uniformly
dominate under H0. This is because, under H0, the PT reduces to RE.

Now we compare β̂PR and β̂PT under the alternative hypothesis. The risk difference
is

R(β̂PR;W )−R(β̂PT ;W )

= −σ2
e tr(A)

{
dq

(
2E(1)[χ−2

q+2(∆)]− (q − 2)E(1)[χ−4
q+2(∆)]

)
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+ E(1)

[(
1− qd

q + 2
F−1

q+2,n−p(∆)
)2

I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]

− G
(1)
q+2,n−p(x,∆)

}
+ ψ′Dψ

{
qd(q − 2)E(2)[χ−4

q+2(∆)]

+ 2qd
(
E(2)[χ−2

q+2(∆)]− E(2)[χ−2
q+2(∆)]

)

−
(
2G

(2)
q+2,n−p(x,∆)−G

(2)
q+4,n−p(x,∆)

)

+ E(2)

[(
1− qd

q + 2
F−1

q+2,n−p(∆)
)2

I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]

− E(2)

[(
qd

q + 2
F−1

q+2,n−p(∆)− 1
)
× I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]}
. (51)

The right hand side of (51) will be non-negative if

∆ ≥ f2(∆, α)
λp × f3(∆, α)

, (52)

where

f2(∆, α) = σ2
e tr(A)

{
dq

(
2E(1)[χ−2

q+2(∆)]− (q − 2)E(1)[χ−4
q+2(∆)]

)

+ E(1)

[(
1− qd

q + 2
F−1

q+2,n−p(∆)
)2

I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]

− G
(1)
q+2,n−p(x,∆)

}
(53)

and

f3(∆, α) =
{

qd(q − 2)E(2)[χ−4
q+2(∆)] + 2qd

(
E(2)[χ−2

q+2(∆)]−E(2)[χ−2
q+2(∆)]

)

−
(
2G

(2)
q+2,n−p(x,∆)−G

(2)
q+4,n−p(x,∆)

)

+ E(2)

[(
1− qd

q + 2
F−1

q+2,n−p(∆)
)2

I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]

− E(2)

[(
qd

q + 2
F−1

q+2,n−p(∆)− 1
)
× I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]}
.(54)

Thus PR estimator will dominate PT estimator when (52) holds, while PT will dom-
inate PR when

∆ ≤ f2(∆, α)
λ1 × f3(∆, α)

. (55)

Finally we compare the risks of β̂PR and β̂SE . The risk difference is given by

R(β̂PR; W )−R(β̂SE ; W )

= −σ2
e tr(A)E(1)

[(
1− qd

q + 2
F−1

q+2,n−p(∆)
)2

I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]
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− ψ′DψE(2)

[(
1− qd

q + 4
F−1

q+2,n−p(∆)
)2

I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]

− 2ψ′DψE(2)

[(
qd

q + 2
F−1

q+2,n−p(∆)− 1
)

I

(
Fq+2,n−p(∆) ≤ dq

q + 2

)]
. (56)

The right hand side of (56) is always negative since the expectation of a positive
random variable is positive. Thus for all β, the risk of β̂PR is smaller than that of
β̂SE . Therefore, under the stochastic restriction, the positive rule shrinkage estimator
(PR) not only confirms the inadmissibility of the shrinkage estimator (SE), but also
demonstrates a simple superior estimator. Now, based on the above discussion we may
state the following theorem.

Theorem 4.1: Under the null hypothesis and the inequalities (41), (42), (49), and
(50) the dominance picture of the estimators is as follows

β̂RE ≥ β̂PT ≥ β̂PR ≥ β̂SE ≥ β̂UE , (57)

where the notations > means dominates in the sense of smaller risk. The position of
preliminary test estimator may shift from “in between” R(β̂RE ; W ) and R(β̂PR; W )
to “in between” R(β̂SE ; W ) and R(β̂UR; W ). Thus the dominance picture under the
H0 may change as follows:

β̂RE ≤ β̂PR ≤ β̂SE ≤ β̂PT ≤ β̂UE . (58)

The dominance pictures in (57) and (58) changes as ψ moves away from 0. We note
that β̂UE has constant risk σ2

e tr(S
−1W ) while the risk of β̂RE depends on ψ and

therefore, the risk of β̂RE becomes unbounded as ψ moves always from 0. Also for
∆ →∞, the risk of β̂PT and β̂PR converge to the risk of β̂UE . For reasonable ψ near
0, the risk of β̂PT is smaller than that of β̂PR for q ≥ 3. Thus neither β̂PT nor β̂PR

dominates the other except they share common property that as ∆ → ∞ the risk of
both becomes σ2

e tr(S
−1W ). However the risk of β̂PR is below the risk of β̂UE while

the risk of β̂PT exceeds the risk of β̂UE at some intermediate values of ∆ depends on
α.

5 Concluding Remarks

In this paper we have discussed some finite sample theory of five well known possible
stochastic restricted estimators of β that are a combination of the sample and non
sample information. The RE performs the best compare to other estimators in the
neighborhood of the null hypothesis, however, it performs the worst when ∆ moves
away from its origin. We have demonstrated the superiority conditions of the estima-
tors based on the quadratic risk function. We find that β̂SE and β̂PR are more efficient
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than β̂UE in the whole parameter space. Note that the application of β̂PR and β̂SE

is constrained by the requirement q ≥ 3, while β̂PT does not need such constraint.
However, the choice of the level of significance of the test has a dramatic impact on
the nature of the risk function for the PT estimator. Thus when q ≥ 3, one would use
β̂PR otherwise β̂PT with some optimum size α. Student’s t distribution covers a class
of symmetric and long tailed distributions for moderate degrees of freedom (ν). The
distribution of the estimators are robust for 2 < ν < moderate value of ν. However,
when the degrees of freedom goes to infinity, the robustness property disappears and
the properties of the estimators are induced by the normality assumptions. Therefore,
we may conclude that the findings of this paper is also valid for normal distribution
when degrees of freedoms is large.

It is noted that the stochastic estimators and the departure parameter depend on
the covariance matrix Ω. It is advisable to consider the cases when requirements for
knowledge of Ω are less demanding and more feasible. The prior information about
the Ω may come either from the analysis of previous sample or from introspection
which may be due to theory and casual observation. For more discussion about the
possible solution for Ω, see Judge and Bock (1978).
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