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Abstract

Multicollinearity often causes a huge interpretative problem in linear regres-
sion analysis. An important and almost inevitable, but not much focused
source of multicollinearity is the existence of high leverage points. Omission
of high leverage points from the analysis could be a remedy to this problem,
but in the presence of multiple high leverage points, we anticipate that it
may not be easy to eliminate the problem of multicollinearity. Generalised
potentials have been in use to detect multiple high leverage points in linear
regression. In this paper an attempt has been made to show how gener-
alised potentials can be used as a remedy to multicollinearity problem. At
first we present a few examples and figures, which draw our attention to
this problem. Then we report a Monte Carlo simulation experiment de-
signed to investigate how effective this technique is to solve the problem of
multicollinearity caused by the presence of multiple high leverage points in
linear regression.

Keywords and Phrases: Multicollinearity, high leverage points, mask-
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1 Introduction

In a linear regression model, it is a convention to assume that there is no linear re-
lationship among the regressors. Unfortunately in most applications, the regressors
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are nearly perfectly linearly related, and in such cases the inferences based on tradi-
tional methods become erroneous. When there are near linear dependencies among
the regressors, the problem of multicollinearity is said to exit.

We write the multiple regression model as

Y = Xβ+ ∈ (1)

where Y is an n× 1 vector of response or dependent variables, X is an n× k (n > k)
matrix of predictors (explanatory variables) including one constant predictor, β is a
k × 1 vector of unknown finite parameters to be estimated and ∈ is an n× 1 vector of
random disturbances. Let the j−th column of the X matrix be denoted Xj , so that
X = [X1, X2, · · · , Xk]. We define multicollinearity in terms of the linear dependence
of the columns of X.

We generally use the ordinary least squares (OLS) technique to estimate the regres-
sion parameters β because of tradition and ease of computation. But the presence of
multicollinearity has a number of serious effects on the OLS estimates of the regression
coefficients [see Montgomery and Peck (1992, pp. 291). A variety of sources of multi-
collinearity are now available in the literature [see Montgomery and Peck (1992, pp.
289). Kamruzzaman and Imon (2002) pointed out that the presence of high leverage
points in a data set could be responsible for causing the problem of multicollinear-
ity. In regression diagnostics we are more concerned with the identification of high
leverage points together with outliers and influential observations. But in our work
we deal with the cases where high leverage points are mainly responsible for causing
multicollinearity. In section 2 we introduce the term leverage and briefly discuss some
of the commonly used measures of leverages. However, it is now evident [see Imon
(2002)] that in the presence of multiple high leverage points, many of them are masked
in such a way that their identification becomes very difficult. We also introduce gen-
eralised potentials that were first proposed by Imon (1996) and then further studied
[see Imon (2002)] for the identification of multiple high leverage points. We focus
on the problem of multicollinearity caused by the presence of multiple high leverage
points more extensively in section 3. We also show how the existing methods except
generalised potentials fail to address this issue. We report a Monte Carlo simulation
study in section 4, which is designed to investigate the role of generalised potentials
as a remedy to the multicollinearity problem caused by the presence of multiple high
leverage points.

2 High Leverage Points and Their Measures

In regression analysis it is sometimes very important to know whether any set of X-
values are exerting too much influence on the fitting of the model. A set of influential
X-values is known as a high leverage point. We can re-express the general linear model
(1) by

yi = xT
i β+ ∈i, i = 1, 2, · · · , n (2)



Imon and Khan: A Solution to the Problem of Multicollinearity 39

where yi is the i-th observed response and xi is a k × 1 vector of predictors. When
the OLS method is employed to estimate the regression parameters we obtain β̂ =(
XT X

)−1
XT Y . Then the i-th residual is given by

∈̂i = yi − xT
i β̂, i = 1, 2, · · · , n (3)

In matrix notation this becomes

∈̂ = Y − Xβ̂ (4)

which can also be expressed as

∈̂ = (I − W ) ∈ (5)

where W = X
(
XT X

)−1
XT which is generally known as weight matrix or leverage

matrix. The diagonal elements of W , where

wii = xT
i

(
XT X

)−1
xi, i = 1, 2, · · · , n (6)

are called the leverage values. Observations corresponding to excessively large wii

values are termed as high leverage points.
Much works have been done on the identification of high leverage points in linear

regression. We know that the average value of wii is k/n. Hoaglin and Welsch (1978)
considered observations unusual when wii exceeded 2k/n which is known as twice-the-
mean-rule. Vellman and Welsch (1981) considered wii as large when it exceeds 3k/n
(thrice-the-mean-rule). For a definition of how large is a wii, Huber (1981, pp. 162)
suggested breaking the range of possible values, (0 ≤ wii ≤ 1) into three intervals.
Values wii ≤ 0.2 appear to be safe, values between 0.2 and 0.5 are risky, and values
above 0.5 should be avoided. Well known Mahalanobis distances are also suggested to
use as a measure of leverages in the literature, but Mahalanobis distance for each of
the points has a one-to-one relationship with wii [see Rousseeuw and Leroy (1987, pp.
224)].

Hadi (1992) pointed out that in the presence of a high leverage point the informa-
tion matrix may break down and hence the observations may not have the appropriate
leverages. He introduced a single case deleted measure of leverages known as poten-
tials. We define the i-th potential as

pii = xT
i

(
XT

(i)X(i)

)−1
xi (7)

where X(i) is the data matrix X with the i-th row deleted. However, it is easy to
obtain a simple relationship between wii and pii as pii = wii

1−wii
[see Hadi (1992)].

Observations corresponding to excessively large potential values are considered as high
leverage points. Hadi (1992) proposed a cut-off point for pii as

Mean(pii) + c. St. dev.(pii) (8)
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where c is an appropriately chosen constant such as 2 or 3. This form is analogous to
a confidence bound for a location parameter. But the problem with this cut-off point
is that both mean and variance of pii may be non-robust in the presence of a single
extreme value yielding a high cut-off point. To avoid such a problem Hadi (1992)
suggested to replace the mean and the standard deviation in (8) by the median and
the median absolute deviation (MAD) respectively.

It is reported by many authors [see Imon (2002)] that the presence of multiple
high leverage points may cause masking and swamping and in that case a single case
deletion method like potential is not enough to address this problem. Imon (1996)
extends the idea of a single case deleted potential to a group deletion study. Let us
denote a set of cases ‘remaining’ in the analysis by R and a set of cases ‘deleted’ by
D. Hence R contains (n − d) cases after d < (n − k) cases in D are deleted. Without
loss of generality, assume that these observations are the last of d rows of X and Y .
Using the result of Henderson and Searle (1981), we obtain

(XT
RXR)−1 = (XT X)−1 + (XT X)−1XT

D(ID − UD)−1XD(XT X)−1 (9)

where UD = XD(XT X)−1XT
D is a symmetric matrix and ID is an identity matrix of

order d. When a group of observations D is omitted, we define weights for the entire
data set as

w
(−D)
ii = xT

i (XT
RXR)−1xi, i = 1, 2, · · · , n. (10)

It should be noted that w
(−D)
ii is the i-th diagonal element of X(XT

RXR)−1XT matrix.
Imon (1996) introduced generalised potentials for all members in a data set that are
defined as

p∗ii =
w

(−D)
ii

1 − w
(−D)
ii

for i = 1, 2, · · · , n − d

= w
(−D)
ii for i = n − d + 1, n − d + 2, · · · , n (11)

There exists no finite upper bound for p�
ii’s and it may not be easy to derive a theo-

retical distribution of them. But this does not make any problem to obtain a suitable
confidence bound type cut-off point for them. One could consider p�

ii to be large if

p∗ii > Median(p∗ii) + c MAD(p�
ii) (12)

where MAD(p∗ii) = Median{|p∗ii − Median(p∗ii)|}/0.6745.
Imon (2002) suggested a procedure for the identification of multiple high leverage

points using generalised potentials to decide which points are of high leverages. As we
observe from (11) that every value of p∗ii depends on the selection of the deletion set
D, it is therefore important to be able to include all suspect cases into the D set. For
a k variable regression, the j-th point of any regressor Xi can be treated as suspect
when it falls outside the interval

Median(Xi) ± c MAD(Xi), i = 1, 2, · · · , k. (13)
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Not necessarily, the same data points (if any) of each regressor will satisfy rule (13).
We would like to include all data points as members of the deletion set D if they
satisfy rule (13) for any Xi. But we have to impose a restriction on the maximum size
of the deletion set D. The number of deleted observations by no means should exceed
n/2, because if more than 50% observations are suspect then it is very difficult to
distinguish high leverage points from low leverage points. At the same time we must
make sure that the minimum number of observations remains in the analysis for the
execution of the OLS technique. Thus the size of the remaining set R should exceed
min(n/2, n − k). We then apply rule (12) to see whether all members of the deletion
set have potentially high leverages or not. If all members of the D set satisfy rule (12),
we declare them as high leverage points. Since p∗ii’s are measured in a similar scale, it
should not matter too much if a low leverage point is included in the deletion set. But
to be on the safe side, if members of the D set do not satisfy rule (12), we prefer to
put them back into the estimation subset R sequentially (observation with the least
p∗ii value will be replaced at the first) and to re-compute p∗ii values. We continue this
process until all members of the deletion set individually satisfy rule (12). The points
thus identified will be finally declared as high leverage points.

3 High Leverage Points and Muiticollinearity

It is now evident that high leverage points may cause multicollinearity in linear re-
gression. If we are able to detect the high leverage points correctly we may get rid
of the multicollinearity problem by deleting those observations. But we suspect that
the commonly used detection techniques may fail to identify all of multiple high lever-
age points and the omission of observations thus identified may not help reduce the
effect of multicollinearity. Here we present an example in favour of our proposition.
We consider a well-known data set, which is frequently referred to the study of mea-
suring influence of observations and identification of outliers. Hawkins et al. (1984)
constructed this artificial data set containing 75 observations with 10 high leverage
outliers (cases 1-10), 4 high leverage inliers (cases 11-14) and 61 low leverage inliers
(cases 15-75). It is interesting to note that for this data set all of the commonly used
measures of leverages fail to focus on most of the high leverage cases that in fact
appear as points of low leverages.

Table 1 presents the commonly used leverage values wii together with Hadi’s po-
tential values pii and generalised potentials p∗ii. It is clear from the results presented
in this table that wii values corresponding to the most of the high leverage points are
not large enough and if any one considered ‘twice-the-mean’ rule only observations
12, 13 and 14 appear as the points of high leverages. Thrice-the-mean rule identifies
only the 14th observation as high leverage point. Similar conclusion might be drawn
following Huber (1981)’s suggestion. Though the pii values are more sensitive to high
leverage points this table shows that they fail to focus on the first 13 cases. When we
apply rule (12) of the previous section we observe that the first 14 observations are



42 International Journal of Statistical Sciences, Vol. 2, 2003

appearing as points of high leverages. The generalised potential values presented in
Table 1 are thus obtained from (11) with cases 1-14 deleted. This table also shows
that the generalised potential values for the first 14 observations are clearly separated
from the rest of the values.

Now we present various multicollinearity diagnostics for Hawkins et al. (1984) data.
These results are presented in Table 2 that consider diagnostics for the original data set
and the deleted data sets where high leverage points identified by twice-the-mean rule
and generalised potentials are omitted. Several techniques have been proposed in the
literature for detecting multicollinearity. Among them examination of the correlation
matrix, variance inflation factor, tolerance, variance decomposition, examinations of
eigen values, condition index and eigen value decomposition are very commonly used.
For this particular data set we consider correlations, eigen values, variance inflation
factors (VIF) and variance decompositions. For the original data we observe that the
correlation coefficients between X1, X2 and X3 are very high. We also observe two
high variance inflation factors and two very low eigen values, which clearly indicate the
presence of multicollinearity. Variance proportions corresponding to X2 and X3 also
show that these two variables are affected by multicollinearity in the presence of X1. As
we suspect that the high leverage points are responsible for causing multicollinearity,
their omission from the analysis should improve the situation. That is why we expect
better results for the data set where deletion takes place on the leverage consideration.
But we observe that the single case deleted diagnostic methods does not help identify
high leverage points and consequently we observe a little improvement in the results
of multicollinearity. But the use of generalised potentials produces stunning results.
When the high leverage points identified by this method are omitted from the analysis,
we observe that the values of correlation coefficients among X1, X2 and X3 are very
low. We also observe that neither of the VIF’s is very high nor eigen values is very
low. The results of variance proportions also show that there is no evidence of the
presence of mulicollinearity in this data set and none of the three variables is affected
by it.
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Table 1: Leverages, potentials and generalised potentials for Hawkins et al. data

Index wii pii p∗ii Index wii pii p∗ii
1 0.063 0.067 14.46 39 0.035 0.036 0.075
2 0.060 0.064 15.22 40 0.030 0.031 0.037
3 0.086 0.094 16.97 41 0.052 0.055 0.094
4 0.081 0.088 18.02 42 0.055 0.058 0.076
5 0.073 0.079 17.38 43 0.061 0.065 0.104
6 0.076 0.082 15.61 44 0.041 0.043 0.092
7 0.068 0.073 15.70 45 0.029 0.030 0.080
8 0.063 0.067 14.82 46 0.038 0.040 0.081
9 0.080 0.087 17.03 47 0.066 0.071 0.115
10 0.087 0.095 15.97 48 0.041 0.043 0.082
11 0.094 0.104 22.39 49 0.047 0.049 0.062
12 0.144 0.168 24.03 50 0.016 0.016 0.056
13 0.109 0.122 22.73 51 0.036 0.037 0.058
14 0.564 1.294 28.16 52 0.072 0.078 0.098
15 0.058 0.062 0.091 53 0.079 0.086 0.139
16 0.076 0.082 0.104 54 0.040 0.042 0.083
17 0.039 0.041 0.086 55 0.034 0.035 0.051
18 0.023 0.024 0.027 56 0.037 0.039 0.066
19 0.031 0.032 0.046 57 0.023 0.024 0.050
20 0.048 0.050 0.096 58 0.040 0.042 0.072
21 0.029 0.030 0.036 59 0.019 0.019 0.046
22 0.046 0.048 0.072 60 0.062 0.066 0.099
23 0.029 0.030 0.041 61 0.051 0.054 0.111
24 0.026 0.027 0.047 62 0.021 0.021 0.090
25 0.022 0.022 0.089 63 0.036 0.037 0.076
26 0.032 0.033 0.069 64 0.026 0.027 0.080
27 0.042 0.044 0.090 65 0.031 0.032 0.060
28 0.024 0.025 0.035 66 0.036 0.037 0.055
29 0.018 0.018 0.039 67 0.019 0.019 0.022
30 0.047 0.049 0.100 68 0.046 0.048 0.099
31 0.059 0.057 0.070 69 0.029 0.030 0.072
32 0.036 0.037 0.073 70 0.027 0.028 0.050
33 0.026 0.027 0.046 71 0.019 0.019 0.034
34 0.032 0.033 0.094 72 0.028 0.029 0.032
35 0.034 0.035 0.082 73 0.043 0.045 0.048
36 0.023 0.024 0.040 74 0.050 0.053 0.058
37 0.059 0.063 0.092 75 0.062 0.066 0.096
38 0.021 0.021 0.056
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Figure 1. 3D plot of the original X’s of Hawkins et al. data 
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Figure 2. 3D plot of the X’s after deleting the cases by 2M method for Hawkins et al. data 
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Figure 3. 3D plot of the X’s after deleting the cases by GP method for Hawkins et al. data 

           
 
 
 



Imon and Khan: A Solution to the Problem of Multicollinearity 45

Table 2: Multicollinearity diagnostics for Hawkins et al. data

Data Correlation Eigen VIF Variance Proportion
Value X1 X2 X3

Original (n = 75)

r12 = 0.946 3.369 2.402 0.00 0.00 0.00
r13 = 0.962 0.584 10.026 0.80 0.28 0.02
r23 = 0.979 0.034 15.997 0.20 0.72 0.98

0.013

Del. Lev. (n = 72)

r12 = 0.945 3.352 2.364 0.00 0.00 0.00
r13 = 0.951 0.600 9.320 0.97 0.08 0.05
r23 = 0.987 0.039 19.091 0.03 0.92 0.95

0.009

Del. GP. (n = 61)

r12 = 0.044 3.383 3.434 0.76 0.22 0.07
r13 = 0.107 0.287 3.823 0.03 0.44 0.68
r23 = 0.127 0.232 5.862 0.21 0.34 0.25

0.098

Now we present some 3D plots of explanatory variables that will show how gen-
eralised potentials contribute in handling the multicollinearity problem. Figure 1
presents a 3D plot of the X’s with the original data. As we know that 14 out of
75 observations are high leverage points we observe a strong indication of the presence
of multicollinearity in the data. We observe similar picture in Figure 2 where 3 out
of 14 high leverage points are omitted. Figure 3 presents a 3D plot of the X’s where
high leverage points detected by generalised potential method are omitted. This plot
clearly shows no sign of multicollinearity that reemphasises our view that the problem
of multicollinearity could be eliminated if all of the genuine high leverage points are
omitted from the analysis.

4 Simulation Results

In this section we report a Monte Carlo simulation study, which is designed to inves-
tigate how high leverage points behave as a source of multicollinearity. We consider
an artificial two-predictor data set where our X’s are generated independently as Uni-
form (0,1) so that the correlation coefficient becomes very low (near to 0). We then
deliberately change or set some values of X ′s so that they become points of high lever-
ages. At first we consider cases where high leverage points have equal weight. We also
investigate the performances of different methods for detecting high leverage points
in the process of multicollinearity reduction when high leverage points thus identified
are omitted from the regression model. Then we extend this experiment to the cases
where multiple high leverage points have different weights. We generate artificial data
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sets for multiple (10%) high leverage cases with equal and unequal weights. For both
of the designs we consider cases for six different sample sizes (n = 20, 30, 40, 50, 100
and 200) and six high leverage points (x = 2, 3, 4, 5, 8, 10) and then the correlation
coefficient for these two regressors are computed. The correlation method is certainly
not the best way of detecting multicollinearity but we use this method because it is
very simple, easy to compute and higher correlation always guarantee multicollinearity
[Belsley (1991, pp. 20)]. Throughout our simulation experiment we use five detection
techniques, twice the mean rule (2M), thrice the mean rule (3M), Huber method [cut-
off rule (wii > 0.2)], Hadi’s potential [cut-off rule pii > Median(pii) + 3MAD(pii)]
and Imon’s generalised potential methods to identify high leverage points. Correla-
tion coefficients are computed after omitting the observations identified by these five
detection techniques. The results of these experiments are presented in Tables 3 and
4, each of which is based on 10000 simulations.

First we present the simulation results where the X variables contain 10% equal
high leverage points. For each of the cases the first 90% observations are simulated
as Uniform (0,1). The last 10% observations of X1and X2 are set at six set of high
x values (i.e. x = 2, 3, 4, 5, 8 and 10) so that these points are considered as high
leverage points with equal weights. Correlation coefficients of X ′s together with the
results after excluding the suspect high leverage cases by different detection techniques
are presented in Table 3.

We observe from Table 3 that for every n, the presence of multiple high leverage
points causes strong multicollinearity. It is interesting to note that the correlations
between the X’s tend to reduce slightly with the increase in sample size but the
correlation tends to increase with the increase in leverage values. Throughout the
simulations we observe that the performance of 3M is very poor. We observe no
improvement of using this technique in multicollinearity reduction. Huber’s method is
appeared to be good for small samples, but even for the moderate sample size like 50
it breaks down. Potential method is also good for small samples, but its performance
tends to deteriorate with the increase in sample size. The performance of 2M rule
is satisfactory for all samples but throughout the simulation experiment generalised
potentials over perform the rest of the methods considered in this study.

Next we report another simulation experiment where the X variables contain 10%
high leverage points having unequal weights. For each of the cases the first 90%
observations are simulated as Uniform (0,1). The last 10% observations of X1 and X2

are taken serially from a set of observations starting from 2 and then having increments
of 2 (i.e. x = 2, 4, 6, 8, 10,· · ·, 40) so that these points are considered as high leverage
points with unequal weights. Correlation coefficients of X ′s together with the results
after excluding the suspect high leverage cases by different detection techniques are
computed and these results are presented in Table 4.

We observe from results of Table 4 that the presence of multiple unequal high lever-
age points causes strong multicollinearity, even stronger than the equal high leverage
cases. Likewise the previous experiment the correlations between the X’s tend to in-
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Table 3: Correlation coefficients of the X’s with 10% equal high leverage points

Sample Measures Correlation
size x =2 x =3 x =4 x =5 x =8 x =10

n= 20

ACTUAL 0.7484 0.8890 0.9411 0.9630 0.9861 0.9915
2M 0.0358 0.0203 0.0351 0.0300 0.0192 0.0333
3M 0.7487 0.8890 0.9411 0.9630 0.9861 0.9915

Huber 0.0292 0.2789 0.2928 0.2945 0.2761 0.2906
Potential 0.0862 0.0377 0.0503 0.0450 0.0288 0.0112

GP 0.0160 -0.0051 0.0180 0.0090 -0.0006 0.0032

n= 30

ACTUAL 0.7369 0.8868 0.9390 0.9621 0.9860 0.9913
2M 0.0328 0.0179 0.0292 0.0201 0.0184 0.0181
3M 0.7394 0.8869 0.9389 0.9621 0.9859 0.9912

Huber 0.0951 0.0788 0.0935 0.0912 0.0859 0.0845
Potential 0.1822 0.0892 0.0740 0.0641 0.0526 0.0497

GP 0.0086 0.0018 0.0072 0.0025 -0.0026 0.0030

n= 40

ACTUAL 0.7357 0.8862 0.9380 0.9617 0.9858 0.9912
2M 0.0219 0.0240 0.0133 0.0138 0.0212 0.0204
3M 0.7372 0.8863 0.9380 0.9617 0.9858 0.9911

Huber 0.0219 0.0240 0.0133 0.0138 0.0212 0.0204
Potential 0.2837 0.1504 0.0970 0.1164 0.1064 0.1084

GP 0.0025 0.0053 -0.0047 -0.0017 0.0030 0.0050

n= 50

ACTUAL 0.7347 0.8846 0.9378 0.9614 0.9859 0.9911
2M 0.0119 0.0152 0.0153 0.0169 0.0233 0.0208
3M 0.7348 0.8846 0.9378 0.9614 0.9859 0.9911

Huber 0.7353 0.8850 0.9381 0.9615 0.9859 0.9911
Potential 0.3489 0.2085 0.1894 0.1851 0.1745 0.1612

GP -0.0018 -0.0008 0.0005 0.0012 0.0104 0.0046

n= 100

ACTUAL 0.7335 0.8839 0.9374 0.9610 0.9857 0.9909
2M 0.0212 0.0122 0.0166 0.0122 0.0193 0.0242
3M 0.7335 0.8839 0.9374 0.9610 0.9857 0.9909

Huber 0.7335 0.8839 0.8970 0.9610 0.9857 0.9909
Potential 0.5681 0.4428 0.4065 0.3849 0.3801 0.3689

GP 0.0067 0.0001 0.0056 -0.0013 0.0059 0.0010

n= 200

ACTUAL 0.7308 0.8830 0.9366 0.9606 0.9856 0.9909
2M 0.0106 0.0101 0.0108 0.0112 0.0152 0.0149
3M 0.7308 0.8830 0.9366 0.9606 0.9856 0.9909

Huber 0.7308 0.8830 0.9366 0.9606 0.9856 0.9909
Potential 0.6864 0.6675 0.6197 0.6187 0.5810 0.5773

GP 0.0006 0.0012 0.0008 -0.0013 0.0041 0.0033
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Table 4: Correlation coefficients of the X’s with 10% unequal high leverage points

Measures
Correlation

n =20 n = 30 n = 40 n = 50 n = 100 n = 200
ACTUAL 0.9042 0.9498 0.9698 0.9799 0.9945 0.9986

2M 0.5178 0.6204 0.8345 0.9252 0.9626 0.9896
3M 0.6066 0.8631 0.9356 0.9217 0.9766 0.9950

Huber 0.5811 0.8120 0.8345 0.9221 0.9896 0.9985
Potential 0.6370 0.6755 0.8342 0.9094 0.9674 0.9920

GP 0.0056 0.0041 0.0068 -0.0029 0.0016 0.0015

crease with the increase in leverage values. For this experiment both the number and
magnitude of leverage values go up with the increase in sample size which also lead to
higher correlation. But it is interesting to note that all detection techniques except the
generalised potentials break down completely in the presence of unequal high leverage
points. So far successful 2M method also breaks down here. Even for a small sample
size like n = 20, we observe little improvement of using this technique in the mul-
ticollinearity reduction and its performance tends to deteriorate with the increase in
sample size. Similar remarks may go with 3M, Huber and potential methods. But the
performance of generalised potentials is quite outstanding. For all samples we observe
that the omission of the cases identified by this method produces very low correlation
coefficients.

5 Conclusions

The handling of multicollinearity generated by the presence of high leverage points in a
linear regression model is investigated in this paper. One simple remedy is to detect the
high leverage points and then to fit the model excluding them. But from the examples,
figures and simulation results we observe that the detection and consequently the
multicollinearity reduction process may be extremely complicated in the presence of
multiple high leverage points. For multiple high leverage points with equal weights we
observe that the performance of generalised potentials is the best followed by twice-the-
mean rule. The performances of Huber and potential methods are good only for small
samples. Thrice-the-mean rule performs very poorly in this case. But in the presence
of multiple high leverage points with unequal weights masking/swamping may occur.
That is, most of the commonly used detection methods may fail to identify all of the
high leverage points. In that case, multicollinearity is reduced though the problem
still remains unresolved. On the contrary performance of generalised potentials is
quite outstanding. Irrespective of sample size and leverage structure its performance
is very robust. We observe that the omission of the cases identified by this method
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can remove the multicollinearity effect from the data.
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