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Abstract

The probability density function (pdf) of the r**, 1 < r < n and the joint
pdf of the " and s, 1 < r < s < n , concomitants of order statistics
are derived for bivariate Pareto II distribution introduced by Sankaran and
Nair (1993) and their moments and product moments are obtained.
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1 Introduction

Let (X;,Y;), i = 1,2,---,n, be n pairs of independent random variables from some
bivariate population with distribution function F'(x,y). If we arrange the X-variates
in ascending order as X, < Xo, < -+ < X, then the Y-variates paired (not
necessarily in ascending order) with these ordered statistics are called the concomitants
of order statistics and are denoted by Y1.,), Yj2:n]s -+ s Yjnm)- The probability density
function(pdf) of Y., the rth concomitant of order statistics, is given by David (1981)

g[rn](y) :/f(y‘x)frn(x)dx (1)

where f,.,(x) is the pdf of X,.,. That is,

_ n! T r—1r1 _ T f (e
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The joint pdf of the Y}, ,jand Vs, 1 <7 <s<nis

Glr,s:n] (yhy?) = / / 2 f(yl|$1)f(y2|$2)fr,s:n(x17x?)dxldx2 (3)

where f, ¢.n(21,22) is the joint pdf of (2., xsn). That is,
Fram(@1,22) = Cran[F(21)] ™ [F(w2) = F(20) 7 7ML = Fla)]" " f(21) f(z2)  (4)
with Crsin = Gy ey
Here we consider bivariate Pareto II distribution (Sankaran and Nair, 1993) with
distribution function(df)
Flr,y) = 1= +az)™” = (1+by) ™"+ (1 +az +by + cey)™; (5)
z,y>0, p,a,b>0, 0<c<(p+1)ab

and probability density function (pdf)

_ plpla+cy)(b+cx) +ab—c]
flay) = PEEAE L 6)

z,y>0, pab>0 0<c<(p+1)ab
Then the conditional pdf of Y, given X will be
[p(a+ cy)(b+ cx) + ab — c|(1 + az)PT!
= ; 0 7
f(yl) a(l+ ax + by + cxy)r+? ’ y= 9
and the marginal df of X is

Flz) = 1—-(1+azx)?;, x>0 (8)

Expressions for the single and joint pdf for the 7" and s concomitants of order
statistics from bivariate Pareto II distribution are obtained and their single and prod-
uct moments are derived. For applications of concomitants of order statistics, one may
refer to David (1982) & David and Nagaraja (1998).

Putting ¢ = 0 in (5), then it reduces to the Lindley-Singpurwalla model (Lindley
and Singpurwalla, 1986). Begum and Khan (1998) have also considered the distribu-
tion form in (5) at ¢ = 0.

2 Probability Density Function of Y}y

For bivariate Pareto II distribution with distribution function (5), the pdf of the 1%
concomitant of the order statistics, in view of (1) and (2) for r =1 is,

) = /OO [p(a + cy)(b+ cx) + ab — c](1 + ax)PT! npa s
Ipn)y) = 0 a(l + az + by + cxy)Pt2 (1 4 az)metl

= / np(1 + az) PP (1 4 ax + by + cay)”P+?)
0

[p(a+ cy)(b+ cx) + ab — cldz (9)
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Let ax + cxy = t, then the RHS of (9) reduces to

= np(a+ cy)”p_p_la_("p_p){[p(ab + bey) + ab — (]

%0 ~(np—p)
0

= ~(p)
+pc/ t[a Ty, t} RN by)—(P+2)dt} (10)
0 a
Noting that, (Erdélyi et al., 1954)

< - - )T (u—v+p)y”" p, v y
v—1 “w pd — F ’ -1—-2) - 11

larg a| < m, Rev >0, |arg y| <m, Rep>Re(v—pu)

we get, after simplification,

np T(np+1)(1+by)*!
. = b+b b—
9em)(9) (a+ cy) {[p(a +bey) +ab -] ['(np +2)
w (=P 1 1_ a(l+by) I'(np)(1 +by) P
I np+2 ’ a+cy C(np +2)
F ;1 — ———= 12
20 ( np + 2 ’ a+cy (12
np 1
= G[in) (y) = (@t cy) [pb(a + cy) + ab — ] (np + 1)(1 + by)pt1
P < np—p, 1 (c— ab)y> pe
2 np+2 " oa+cy np(np +1)(1 + by)?
np—p, 2  (c—ab)y
F ; 1
where,
a1, = (), o (ap)y, 2R
F, L z) = ——s __— k __ 14
vFy < Bi By 2By (B B )
is generalized hypergeometric series and
(A +n)
()‘)n - W’ A 7& 0,-1,-2, (15)

is Pochhammer symbol (Prudnikov et al., 1986).
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Using the relation (Prudnikov et al., 1986)

2F1<Z’ b z) — fe—2a—(b—a)s]! [a(z—mgﬂ(Z“’ b z)

e —a)sFy <Z‘1’ b ;z)] (16)

b
and then o F} ( Z’ ; O) = 1 in the last hypergeometric series of the equation (13),

we obtain, after simplification,

1

(np + 1)(1 + by)p+?

7 <np—p, 1 (C—ab)y>Jr pc

P np+2 " atey np(np + 1)(1 + by)?

{np(a+cy>—(np—p—l)(c—ab)yF np—p, 1  (c—ab)y
—a(1 7+ by) 2 np+2 " oa+cy

(np+1)(a+ cy) }

a(l+ by)

np
(a+cy)

9[1:n) (y) [pb(a + Cy) +ab— C]

npc 4 np
na(l+by)Pt = (np+1)(a + cy)(1 + by)PT!
2F1< np—p, 1 (c—ab)y> [(p—i- 1)(ab — ¢)(na + cy)

np + 2 " oatcy na
| ap (p+ 1)(ab — ) na + )
. g[ln}(y) na(l + by)p—i-l [C + (np + 1)(& -+ Cy)
np—p, 1 (c—ab)y
2 LN A . 0 17
’ 1(np+2 Coatey )] v o

It can be seen that [ gj1.,(y)dy =1 for ¢ =0 and ¢ = ab.
It is well-known that the distribution functions of order statistics are connected by
the relation (David, 1981).

Falw)= > 0 () (M Rae: 1<r<a a9
i=n—r+1

The relation in (18) is also clearly true interms of pdfs of concomitants of order statis-
tics.
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Thus the pdf of Yy, is

n

g = 3 o (T () )

i=n—r+1
_ iﬂ;“(—l)i_w_l < ; - 1 ) (?)W o+
e —ointey) (1 (Y] g

Also, using (1) directly, we obtain,
p

n! — r—1
1+ by)pt! CJr(r—l)!(n—r)!iz;(l)( i )
(p+1)(ab—c)(na—ra+ia+a+cy)
(a+cy)np—rp+ip+p+1)(n—r+i+1)

np—rp+ip, 1 (c —ab)y
F ; 0y >0 20
2 1<np—rp—|—2p—|—p+2 (a+ cy) 4 (20)

G[r:n) (y) = (I(

Putting ¢ = 0 in equations (17), (19) and (20), then its become the pdfs of the 1%
and 7" concomitants of order statistics from the Lindley-Singpurwalla model (Lindley
and Singpurwalla, 1986). The above results were obtained by Begum and Khan (1998).

Sankaran and Nair (1993) find out the particular case of bivariate Pareto II dis-
tribution when ¢ = ab. Further, setting ¢ = ab in equations (17), (19) and (20), then
we obtain the pdfs of 1°¢ and r*" concomitants of order statistics from the particular
case of bivariate Pareto II distribution introduced by Sankaran and Nair (1993). It is
an interesting case that the pdfs of 1%¢ and " concomitants of order statistics both
are equal to the pdf of Y, i.e,

b
f(y)zw; y>0

which is known as univariate Pareto II distribution.

3 Moments of Y|,
k

Let us denote ME )} = E(Y[fn]) as the k" moment of Y] Then for ¢ = 0 we get,

k) n Fp—k+1I'(k+1) 91
M[l:n] - (np_ ]{Z)bk Ip ; p>k ( )
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Thus, the k™ moment of Vj,.,, is

n

i—n+r— —1
T VR s [

i=n—r+1

- > e () () e e

i=n—r+1

Begum and Khan (1998) have already obtained these results.
Also, using the equation (20), after simplification, we get,

®  1T(p—k+1I(k+1) Tn+1) To+1-%—r)

;s p>k

Hirm] = 3k T(p+1) L(n+1-r) T(n+1-1%)
A recurrence relation satisfied by the moments is
(k) (n—r) ®
'u[r—‘rl n] k /’L[T:n}
(n—E=7)
which can be used to evaluate the successive moments.
It may be noted here that,
Z W, 1 _py) p>1
Hipm) = ) =n ;D
and
) 2 2
= =nE(Y?); 2
Z'u[rn] _1)( 2) n ( )7 p>
In particular,
(1)
Pln)  (n—=1)p
(1 _ _
Plim) (n=1p—1
and hence,
1) (1)
_ Hizin) _ E (Ym n1)
N S O B “nE D~y
(n )[N[g ] M[l;n]] (n JE{ Qn] [1:n]}

Thus, an estimate of p can be proposed as

W)
Yio.n)

(n = D{Yi5h = Yiin)

p=

3 D

>k

(22)

(26)
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in terms of the first two concomitants. Being a ratio it is obviously biased, but can be
used a quick estimate of p. The estimate of b is then

lA) . n
-
(mp — 1)Y;(3),
The parameters p and b can be expressed interms of p and 2 as follows
202 o? — ,u2
p=—5——5 and b=—p——0n.
o —p p(o? + p?)

Mean of the concomitant of order statistics from the bivariate Pareto II distribution

have been shown in Begum and Khan (1998).

(k) (k)

For ¢ = ab, [rin]

and both are equal to the moments of Y which is

Ip—Kk)(k+1)
bET'p ’

> k.

4 Joint Distribution of Two Concomitants Yi,.,) and Y[,y

For the bivariate pareto II distribution with pdf (6) for ¢ = 0, we have,

— ! i fr—1 s—r—1 1
g[r,s:n](ylny) = Cr,s:nb2p2(p+ 1)2 (_1)Z+] < i > ( . > —

=0 j=0 J (dv)
——L__ﬁﬂn<v Bod: B —i-—iﬁ'
(by1)P(by2)? 2O\ v+ 1 0 d+1; — by 7 by )’

0<wyi,y2 <0 (27)

with 8 = p+2, d = sp—np—jp+1, v = rp—ip—np+p+2 and C. 5., = (T_l)!(s_:f!_l)!( =
where,

—

—
S

<.

~—

3
+

w

e
—~~
S
N—

3
—=
—
O
SN—

w

piaik [ (ap) (bg) 5 (ck); z :OO =l J= j=1 _r_s

R G% MUK I ) %% [T (e T30 T 00"
j=1 j=1 j=1

(28)

is known as kampé de Fériet’s series (Srivastava and Karlsson, 1985). This joint pdf
was obtained by Begum and Khan (1998).

For ¢ = ab, the joint distribution of 7" and s*" concomitants of order statistics is
product of two univariate Pareto II distribution, i.e

p2b2
1+ byl)p+1(1 + byg)erl '

We have checked that [ [ gp . (Y1, y2)dyr1dyz = 1.

g[r,s:n](yhyQ) = (
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5 Product Moments of Two Concomitants YJ.,) and Y[,y

The product moments of two concomitants YJ,.,; and Y., for ¢ = 0 is given by

E |:Yv[:fn]yv[:n]:| = y%ygg[r,s:n] (yh y2)dyldy2
0
= Crsnp™( p+127§8i:1 (T
r,8m o ; i
1 Tp—u+1)lN(u+1)T(p—v+ 1T (v+1)
buty I'(p+2) I'(p+2)
1

: : (29)
(sp—np—jp—p+v)(rp—ip—np—p+u+v)

This result was given by Begum and Khan (1998). Here, if we put u = 0 or v = 0,
then we obtain the single moments of concomitant of ordered statistics.
For u =1 and v =1, we get,

r—1s—r—1
] = de T E (7))

=0 j5=0
1

(sp—np—jp—p+1)(rp—np—ip—p+2)
It may be noted here that

Y Eetion] = [ rg=g) - Vo]

r=1s=1

(30)

= nE(Y?) +n(n—1)E*Y).

The product moments between two concomitants of order statistics have been
shown in Begum and Khan(1998). For ¢ = ab, the (u,v)"" product moments be-
tween two concomitants of order statistics is the product of two single moments of
concomitants of order statistics.
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