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Abstract

The purpose of the present study was to confirm a method of VAR (Vector
Autoregression) modeling when the variables are mixed in nature (i.e., a
mixture of stationary and non-stationary variables). Using restricted cross
validity predictive power (RCVPP) and root mean squared forecast error
(RMSFE), it was found that working at level gives better results in this case.
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1 Introduction

The VAR modeling is very important for the forecast of time series variables when they
are interrelated, however it has some limitations. The VAR model may deal with both
stationary and non-stationary variables. If all the variables are non-stationary then
they should be transformed (usually by differencing) to make it stationary (Gujarati,
1995). Sims (1980) recommended against differencing even if the variables contain
a unit root (i.e., non-stationary). According to Sims (1980), Harvey (1990) suggests
to work at level if the variables are mixed in nature. Again, prediction with non-
stationary data may provide unsatisfactory forecast (Cleary and Hay, 1980; Gujarati,
1995; and Pankratz, 1991). The VAR analysis is to determine the interrelationships
among the variables, not the parameter estimates. But, we could not avoid the mod-
eling behavior and the interrelationships of the variables in the model. Although
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differencing throws away the comovements in the data set we may build two types of
models to examine their predictive performance using levels of variables and difference
of non-stationary series along with the stationary series. If a set of variables are all
I(1) and their linear combination is I(0) then that set of variables are cointegrated
(Engel and Granger 1987). But, for mixed series integrated orders are not same. So
there arise complexities in regard to usual error correction (Johansen, 1996). In this
case the approach proposed by Blanchard and Quah (1989) can be applied to build a
VEC model. So, what we can do when the variables are mixed in nature (i.e., mixture
of stationary and non-stationary variables), is a problem. Therefore, the purpose of
the present study is to investigate a concrete decision whether we should work at level
or not when the variables are mixed in nature.

2 Methods

If we include an intercept term, and exogenous variables in the model, then the model
can be written as:

Yt = µ + A1Yt−1 + A2Yt−2 + · · · + ApYt−p + βxt + ut (1)

where, µ is a vector of intercept terms (constants), Yt is a vector of endogenous vari-
ables, xt is a vector of exogenous variables, A1, A2, · · · , Ap are matrices of coefficients
to be estimated, and ut is a vector of innovations that are correlated with each other
but are uncorrelated with their own lagged values and also with Yt−1 through Yt−p

and xt After fitting a model we need to examine its validity. A model validation tech-
nique to examine the validity of the fitted models is known as restricted cross validity
predictive power (Khan and Ali, 2003). The restricted cross validity predictive power,
ρ2

rcv is:

ρ2
rcv = 1 − (n − 1)(n − 2)(n + 1)

n(n − k − 1)(n − k − 2)
(1 − R2) (2)

where n is the number of observations, k is the number of predictors, R2 is the correla-
tion coefficient between observed and fitted response values that satisfies the restriction

R2 ≥ n(n − k − 1)(n − k − 2)
(n − 1)(n − 2)(n + 1)

; n > k + 2

Let us assume that R2
1 and R2

2 are the coefficients of multiple determinations from
VAR model of order p1 at level and that from the VEC model (based on the logic
of Blanchard and Quah (1989)) of order p2, respectively. Then the restricted cross
validity predictive power for VAR model at level and that for VEC model can be
given respectively as:

ρ2
1rcv = 1 − (n − 1)(n − 2)(n + 1)

n(n − k1 − 1)(n − k1 − 2)
(1 − R2

1); n > k1 + 2 (3)
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and

ρ2
2rcv = 1 − (m − 1)(m − 2)(m + 1)

m(m − k2 − 1)(m − k2 − 2)
(1 − R2

2); m > k2 + 2 (4)

where, k1 is the number of predictors in the VAR model, k2 is the number of predictors
in the VEC model, and m is the number of observation in the VEC model, i.e.,
m = n − 1 as one point is lost for error correction. Now, let us assume that the
number of predictors in both the cases are equal i.e. k1 = k2 = k (say). Putting
m = n − 1 and k1 = k2 = k we get:

ρ2
1rcv = 1 − (n − 1)(n − 2)(n + 1)

n(n − k − 1)(n − k − 2)
(1 − R2

1); n > k + 2 (5)

and

ρ2
2rcv = 1 − (n − 2)(n − 3)n

(n − 1)(n − k − 2)(n − k − 3)
(1 − R2

2); n > k + 3 (6)

From Eq.(5) and Eq.(6) we can write

1 − ρ2
1rcv

1 − ρ2
2rcv

=
(n − 1)(n + 1)
n(n − k − 1)

× (n − 1)(n − k − 3)
n(n − 3)

× 1 − R2
1

1 − R2
2

=
n2 − 1

n2
× n2 − nk − 4n + k + 3

n2 − nk − 4n + 3k + 3
× 1 − R2

1

1 − R2
2

(7)

where, R2
1 is obtained using n observed values and R2

2 is obtained from m = n − 1
transformed values. Since the exact relationship between R2

1 and R2
2 is unknown so

we may replace R2
i (i = 1, 2) with their population mean.

We know that for k regressors:

F = 1 − R2/k

(1 − R2)/(n − k − 1)
(8)

⇒ R2

1 − R2
=

k

n − k − 1

⇒ R2 =
1

1 + n−k−1
k F1

, whereF1 =
1
F

∼ Fn−k−1,k

⇒ R2 =
1

1 + n−k−1
k F1

∼ β1

(
k

2
,
n − k − 1

2

)
(9)

Thus, the expected value of R2 is k
n−1 . After replacing R2

i (i = 1, 2) with their
population means we can write Eq.(7) as:

1 − ρ2
1rcv

1 − ρ2
2rcv

=
n2 − 1

n2
× n2 − nk − 4n + k + 3

n2 − nk − 4n + 3k + 3
× 1 − k

n−1

1 − k
n−2
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=
n2 − 1

n2
× n2 − nk − 4n + k + 3

n2 − nk − 4n + 3k + 3
× n2 − nk − 3n + 2k + 2

n2 − nk − 3n + k + 2

=
n2 − 1

n2
× n2 − nk − 4n + k + 3

n2 − nk − 4n + 3k + 3
×
(

1 +
k

n2 − nk − 3n + k + 2

)
=

n2 − 1
n2

×
(

1 +
2k

n2 − nk − 4n + 3k + 3

)
×
(

1 +
k

n2 − nk − 3n + k + 2

)
=

n2 − 1
n2

×
(

1 − k

(n − k − 2)(n − 3)

)
< 1

⇒ 1 − ρ2
1rcv

1 − ρ2
2rcv

< 1

⇒ ρ2
1rcv > ρ2

2rcv (10)

that is, the restricted cross validity predictive power is found to be higher for VAR
modeling at level when the variables are mixed in nature.

Again, ρ2
rcv = 1 − (n − 1)(n − 2)(n + 1)

n(n − k − 1)(n − k − 2)
(1 − R2)

= 1 − (n − 1)(n − 2)(n + 1)
n(n − k − 1)(n − k − 2)

× SS(e)
SS(t)

,

where SS(e) and SS(t) are sum of squared error and sum of squared total, respectively.
Let us assume that we are interested in forecasting for r periods. Now, we divide

SS(e) into two parts SS(e1) and SS(e2) so that SS(e) = SS(e1) + SS(e2) , where
SS(e1) is the sum of squared residuals of first n − r units and SS(e2) is the sum of
squared residuals of last r units.

Hence, ρ2
rcv = 1 − (n − 1)(n − 2)(n + 1)

n(n − k − 1)(n − k − 2)
× SS(e1) + SS(e2)

SS(t)

⇒ (1 − ρ2
rcv) =

(n − 1)(n − 2)(n + 1)
n(n − k − 1)(n − k − 2)

× SS(e1) + SS(e2)
SS(t)

=
(n − 1)(n − 2)(n + 1)

n(n − k − 1)(n − k − 2)
× r

SS(t)

(
SS(e1)

r
+

SS(e2)
r

)
=

(n − 1)(n − 2)(n + 1)
n(n − k − 1)(n − k − 2)

× r

SS(t)

(
SS(e1)

r
+ MSPE

)
where, MSPE = SS(e2)

r is the Mean Squared Prediction Error of r periods based on
pre-head computation. If we consider consistent trend, i.e., the equality of pre-head
and post-head computation, we can use MSPE as MSFE.
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Then MSPE = n(n−k−1)(n−k−2)
r(n−1)(n−2)(n+1) SS(t)(1 − ρ2

rcv) − SS(e1)
r

⇒ RMSFE =

√
n(n − k − 1)(n − k − 2)
r(n − 1)(n − 2)(n + 1)

SS(t)(1 − ρ2
rcv) −

SS(e1)
r

(11)

In Eq.(11) we have computed the RMSFE using pre-head computation process,
a process in which we built model using full sample and compute RMSFE using last
r sample points. However, this pre-head procedure would not serve the forecasting
performance of a fitted model, because, the forecast should be based on ahead process.
Thus, we need to modify Eq.(11) so that it could serve better for forecast purpose.
Replacing SS(t) = SSn(t) by SSn+r(t), SS(e1) by SS(e) and n by (n + r) we get
Eq.(11) as a modified equation. Then the modified equation may be given by

RMSFE =

√
(n + r)(n + r − k − 1)(n + r − k − 2)

r(n + r − 1)(n + r − 2)(n + r + 1)
SSn+r(t)(1 − ρ2

rcv) −
SS(e)

r
(12)

where, SSn+r(t) is the sum of squares total of n observed values and r forecasted
values. From Eq.(12), we can explain that the RMSFE will decrease with the increasing
RCVPP. Also, we have found that the VAR model at the level for all the variables
has more RCVPP (Eq.10). Thus, the VAR model at level has more RCVPP as well
as less RMSFE when the variables are mixed in nature and the numbers of predictors
are equal in both the cases.

3 Numerical Example

To provide a numerical solution of our theory we have considered the annual Gross
Domestic Product (GDP) and Government Consumption Expenditure (GCONS) of
Bangladesh from the year 1974 to 2000 (Bangladesh Bank, 1974-2000). We used the
data from 1974 to 1997 for modeling and that from 1998 to 2000 for examining the
performance of the fitted model. A unit root test is performed first. We have tried to
include the effect of intercept term and trend but no significant effect is found. Also,
the lag specification was done by SC and AIC criteria. Using the critical values of
MacKinnon (1996), it is found that the variable GDP is stationary at the level and
the other variable GCONS becomes stationary after first differencing (Table 1). Thus,
two series under study are mixed in nature. The test of Granger causality leads to a
bi-directional causality between the variables (results in Table 1). So, we may study
the interrelationship among the variables using VEC and VAR models to conduct a
comparative study. Cointegration test is carried out and a VEC model is constructed
for unrestricted VAR with suitable lag length. The comparative results shown in Table
1 divulge that the VAR model at the level of both the variables have more RCVPP as
well as less RMSFE than the VEC model.
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4 Conclusion

The VAR model at level is applicable rather than VEC model when the variables
are mixed in nature. The VAR in difference (non-stationary at level) will be a mis-
specification if the variables are cointegrated; VEC models are appropriate in that
occasion.
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