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Abstract

Karim, Yamamoto and Suzuki (2001a) defined the marginal count failure
data for warranted products in which data arise from two separate indepen-
dent databases. This data is incomplete as it does not give the exact number
of failures of the specific products that were sold in a particular month and
thus it can not distinguish the failures of different ages. The properties of
the estimators proposed by Karim, et al. (2001a) based on nonhomoge-
neous Poisson process for repairable products and Poisson approximation
model for nonrepairable products, are investigated more formally in this
article.
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1 Introduction

The level of customer satisfaction is one key indicator used by manufacturers to under-
stand how well their products perform in the field. Field reliability data for manufac-
tured products helps us to achieve and improve customer satisfaction. A prime source
of field reliability data is a database collected automatically from warranty claims. By
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collecting and analyzing field reliability data from warranty claims, manufacturers can:
predict future claims; determine whether a recall, halt in production, or modification
is necessary; ascertain whether product reliability is affected by the manufacturing
process or usage environment; and compare failure rates among similar or competing
products. Warranty data also relate to costs, causes of failure, and variations in claims
based on time and place of manufacturing spot, in addition to usage. However, due
to cost constraints and often diffused organizations of service departments or repair
service networks, many industrial companies construct warranty databases by gather-
ing data from different sources for a particular time period (Karim, et al., 2001a). For
example, Table 1 illustrates a general structure of the data, constructed by combining
the monthly sales information, obtained by the sales department, and the number of
claims registered for a given month, provided by the service department.

Table 1: General data structure of warranty claims counted monthly

Month of No. of products Warranty claims in a calendar time (month, j)
sale, y sold in y, Ny 1 2 3 · · · Y Y + 1 · · · T

1 N1 r10 r11 r12 · · · r1,Y −1 r1Y · · · r1,T−1

2 N2 r20 r21 · · · r2,Y −2 r2,Y −1 · · · r2,T−2

3 N3 r30 · · · r3,Y −3 r3,Y −2 · · · r3,T−3
...

... · · · · · · · · · · · ·
Y NY rY 0 rY 1 · · · rY,T−Y

No. of claims in month j, rj r1 r2 r3 · · · rY rY +1 · · · rT

Note: Ny and {rj} (marginal count) are observed data; {ryt} (complete data) can not be observed.

In Table 1, Ny is the number of products sold in the yth month for y = 1, 2, · · · , Y ;
{ryt} is the number of failures at age t (t = 0, 1, · · · , T − y) for products sold in month
y, where T (T ≥ Y ) is the number of observed months; and rj is the count of failures
occurring in the jth month, rj =

∑min(j,Y )
y=1 ry,j−y, j = 1, 2, · · · , T . Karim, et al.

(2001a) defined {rj} as the marginal count failure data, which can be observed, and
{ryt} is the complete data, which can not be observed. The marginal count failure
data is incomplete, as it does not give the exact number of failures of the specific
products that were sold in a particular month, and therefore it can not distinguish
failures of different ages.

Karim, et al. (2001a) modeled the marginal count failure data and derived the
maximum likelihood estimates of the models parameters. In this article we study
some properties of those estimators and show that the MLEs of the parameters are
consistent. Also we define the bootstrap estimates of sample variances and show that
bootstrap estimates yield better precision than the asymptotic variances.
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2 Modeling and Estimation

It can be assumed that the distributions of the numbers of failures for different monthly
sales at a certain age are the same for the products which are produced according to
the same design and specifications. In real situation, the proportions of the observed
number of failures at a certain age for each monthly sales are not always the same,
because of the effects of usage environments or the effects of unfavorable seasons. And
these effects are strong, especially for the products which are used outside of houses,
buildings, etc. However, for some products, such as television, personal computer,
cellular phone, etc., these effects are negligible, and it is reasonable to assume that the
distributions of the numbers of failures for different monthly sales at a certain age are
the same. That is, in Table 1, the distributions of {ryt} and {rzt} are the same for all
y and z at each t. This implies the assumption that the distributions of the numbers
of failures for different monthly sales at a certain age are the same in the sense that
the samples have come from the same population, and the expected number of failures
per product depends on the age of the product and is independent of other factors.
This assumption is also used in Karim, et al. (2001a) to model the numbers of failures.

To model the failure counts for repairable products, we define the parameter, qt, as
the expected number of failures per product at age t, t = 0, 1, · · · , T − 1, and assume
that, for each sales month y, the {ryt}, t = 0, 1, · · · , T−y, in Table 1, are independently
distributed as Poisson distributions with mean {Nyqt}. This is a discretization to
monthly intervals of an age-based nonhomogeneous Poisson process. Karim, et al.
(2001a & 2001b) and Suzuki, Karim and Wang (2001) also proposed this model to
analyze warranty claims data.

If all the complete data, ryt’s, are available, the complete data log likelihood func-
tion can be written as

log Lc(qt; ryt) ∝
Y∑

y=1

{
−

T−y∑
t=0

Nyqt +
T−y∑
t=0

ryt log(Nyqt)

}
. (1)

However, we consider situation where only monthly marginal counts rj ’s are available,
where rj =

∑min(j,Y )
y=1 ry,j−y, j = 1, 2, · · · , T , are the sum of the complete data ry,j−y.

Under the above model (1), rj , j = 1, 2, · · · , T , are the sum of independent Poisson
variables which are again distributed as Poisson with means equal to the sum of the
means of the variables ry,j−y, j = 1, 2, · · · , T ; y = 1, 2, · · · , min(j, Y ). That is, rj ’s
are independently distributed as Poisson distributions with means

∑min(Y,j)
y=1 Nyqj−y,

j = 1, 2, · · · , T , and the observed data log likelihood function becomes

log L(qt; rj) ∝
T∑

j=1

⎧⎨⎩−
min(j,Y )∑

y=1

Nyqj−y

⎫⎬⎭+
T∑

j=1

⎧⎨⎩rj log

⎛⎝min(j,Y )∑
y=1

Nyqj−y

⎞⎠⎫⎬⎭ . (2)

Karim, et al. (2001a & 2001b) and Suzuki, et al. (2001) also considered this model.
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Karim et al. (2001a) proposed a multinomial model for nonrepairable products
and applied the EM algorithm to maximize the likelihood function and to estimate
the probability of failures at age t, denoted by qt. Furthermore, they suggested a simple
Poisson approximation under the multinomial model to reduce the computation time
necessary in calculating the conditional expectations in the E-step of the EM algorithm
for the multinomial model. The validity of the Poisson approximation is investigated
numerically by several simulations. They showed that the observed data likelihood
under Poisson approximation model is the same as of the likelihood (2), where qt is
used to represent the probability of failure at age t.

2.1 Unconstrained MLE of the Parameter

Here the MLE of qt is derived by directly maximizing the log likelihood (2). The score
equations are

∂ log L

∂qt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y∑
j=t+1

(
−Nj−t +

rjNj−t∑j−1
i=0 Nj−iq̂i

)
= 0, if t = 0,

Y∑
j=t+1

(
−Nj−t +

rjNj−t∑j−1
i=0 Nj−iq̂i

)

+
min(T,Y +t)∑

j=max(t+1,Y +1)

(
−Nj−t +

rjNj−t∑j−1
i=j−Y Nj−iq̂i

)
= 0, if 0 < t < Y,

min(T,Y +t)∑
j=max(t+1,Y +1)

(
−Nj−t +

rjNj−t∑j−1
i=j−Y Nj−iq̂i

)
= 0, if t ≥ Y.

(3)
These equations gives the MLE q̂t as

q̂t =

⎧⎪⎨⎪⎩
r1/N1, if t = 0,(
rt+1 −

∑min(Y −1,t)
y=1 Ny+1q̂t−y

)
/N1, if t = 1, 2, · · · , T − 1.

(4)

A deficiency of this estimator is that it is liable to produce negative estimates for some
probabilities. Particularly, for any given data set of Ny and rj , if the inequalities

rt+1 ≥
min(Y −1,t)∑

y=1

Ny+1q̂t−y

do not hold, equation (4) produces negative estimates for q̂t for t = 1, 2, · · · , T − 1. To
avoid the problem of negative estimates, in the next section a constrained estimator is
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developed based on the Expectation-Maximization (EM) algorithm (Dempster, Laird
and Rubin, 1977; McLachlan and Krishnan, 1997).

2.2 Constrained MLE of the Parameter via the EM Algorithm

The E-step and M-step of the EM algorithm for model (2) are as follows.

E-step

For this model at the (k + 1)th iteration in the E-step we have to compute

E
q
(k)
t

[ry,j−y|rj ] =
rjNyq

(k)
j−y∑min(Y,j)

i=1 Niq
(k)
j−i

, y = 1, 2, · · · , min(Y, j), (5)

for j = 1, 2, · · · , T .

M-step

At the (k + 1)th iteration, the M-step finds

q̂
(k+1)
t =

∑min(Y,T−t)
y=1 E(k)

q̂t
[ryt|ry+t]∑min(Y,T−t)

y=1 Ny

, t = 0, 1, · · · , T − 1. (6)

Iterating between (5) and (6) until it meets a convergence criterion, the EM algo-
rithm finds the MLE of qt, t = 0, 1, · · · , T − 1. An attractive feature of the estimators
obtained by the EM algorithm is that the positivity constraints on the estimates of
qt are automatically satisfied, providing that the initial estimates q

(0)
t are all positive

for all t, t = 0, 1, · · · , T − 1. Although it gives positive estimates, however sometimes
it belongs on the lower boundary of the parameter space Ω = (0, 1). More details on
the above estimation techniques are also discussed in Karim, et al. (2001a).

3 Properties of the Estimators

3.1 The Consistency of the MLE of the Parameters

Using the marginal data score function from equation (3) under the condition 0 < t <
Y , and replacing the marginal data, {rj}, with the sum of complete data, {ryt}, we
have
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1∏Y
y=1 Ny

∂ log L

∂qt

=
1∏Y

y=1 Ny

Y∑
j=t+1

{
−Nj−t +

Nj−t
∑j−1

i=0 rj−i,i∑j−1
i=0 Nj−iqi

}

+
1∏Y

y=1 Ny

min(T,Y +t)∑
j=max(t+1,Y +1)

{
−Nj−t +

Nj−t
∑j−1

i=j−Y rj−i,i∑j−1
i=j−Y Nj−iqi

}

=
Y∑

j=t+1

{
− Nj−t∏Y

y=1 Ny

+
Nj−t∑j−1

i=0 Nj−iqi

j−1∑
i=0

(
rj−i,i/Nj−i∏j−i−1

y=1 Ny
∏Y

y=j−i+1 Ny

)}

+
min(T,Y +t)∑

j=max(t+1,Y +1)

⎧⎨⎩− Nj−t∏Y
y=1 Ny

+
Nj−t∑j−1

i=j−Y Nj−iqi

j−1∑
i=j−Y

(
rj−i,i/Nj−i∏j−i−1

y=1 Ny
∏Y

y=j−i+1 Ny

)⎫⎬⎭ .

(7)

Here we note that

p lim
Ny→∞,∀y

(
ryt

Ny

)
= qt. (8)

Taking the probability limit in (7) and using (8), we obtain

p lim
Ny→∞,∀y

1∏Y
y=1 Ny

∂ log L

∂qt

=
Y∑

j=t+1

{
− Nj−t∏Y

y=1 Ny

+
Nj−t∑j−1

i=0 Nj−iqi

j−1∑
i=0

(
qi∏j−i−1

y=1 Ny
∏Y

y=j−i+1 Ny

)}

+
min(T,Y +t)∑

j=max(t+1,Y +1)

⎧⎨⎩− Nj−t∏Y
y=1 Ny

+
Nj−t∑j−1

i=j−Y Nj−iqi

j−1∑
i=j−Y

(
qi∏j−i−1

y=1 Ny
∏Y

y=j−i+1 Ny

)⎫⎬⎭
=

Y∑
j=t+1

{
− Nj−t∏Y

y=1 Ny

+
Nj−t∑j−1

i=0 Nj−iqi

j−1∑
i=0

(
Nj−iqi∏Y
y=1 Ny

)}

+
min(T,Y +t)∑

j=max(t+1,Y +1)

⎧⎨⎩− Nj−t∏Y
y=1 Ny

+
Nj−t∑j−1

i=j−Y Nj−iqi

j−1∑
i=j−Y

(
Nj−iqi∏Y
y=1 Ny

)⎫⎬⎭ = 0. (9)

If t = 0 or if t ≥ Y , the proofs follow immediately from (9). Hence the MLE, q̂t

obtained from model (2), is a consistent estimator of qt.
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3.2 Bootstrap Estimation of Sample Variance

As mentioned in the previous section, the constrained MLE sometimes belongs on the
lower boundary of the parameter space, Ω = (0, 1). In this situation, the marginal
asymptotic variance estimation by using Louis (1982) formula, given in Karim, et al.
(2001a), is not appropriate, especially if the Ny or the observed number of failures,
rj is not sufficiently large. Therefore, this section discusses the bootstrap method,
introduced by Efron (1979), to estimate the sample variances of the estimators, and
compares these variances with that of the asymptotic variances by simulations. To
compare the bootstrap estimates of sample variances with asymptotic variances, here
we use the following three sets of parameters given in Table 2, which express con-
stant, increasing and decreasing mean number of failures per product. Monthly sales
amounts, Ny = 5, 000 are considered for y = 1, 2, 3. Karim, et al. (2001a) also
considered the same parameters settings for Monte Carlo simulations.

Table 2: Parameter sets for simulation studies

Set No. qt

q0 q1 q2

1 0.005 0.005 0.005
2 0.003 0.005 0.007
3 0.007 0.005 0.003

The parametric bootstrap approach (e.g., see, Efron and Tibshirani, 1993; Meeker
and Escobar, 1998) is applied with the following steps:

Step 1. Generate r1, r2, r3, from the model (2), with Ny = 5, 000, y = 1, 2, 3, and
the true values of qt, t = 0, 1, 2, given in Table 2, and put them as r̃j , j = 1, 2, 3.

Step 2. Estimate qt, t = 0, 1, 2, from r̃j , j = 1, 2, 3, using the algorithm proposed in
Section 2.2, and put these estimates as q̂ = (q̂0, q̂1, q̂2)′.

Step 3. Generate B replications of r1, r2, r3, from the model (2), with Ny, y = 1, 2, 3,
and the estimates q̂t, t = 0, 1, 2, and put them as r∗jb, j = 1, 2, 3; b = 1, 2, · · · , B.
These are called the bootstrap sample.

Step 4. Again estimate qt, t = 0, 1, 2, for each set {r∗1b, r
∗
2b, r

∗
3b}, b = 1, 2, · · · , B, using

the same algorithm as in Step 2. And obtain B sets of q̂∗
b = (q̂∗0b, q̂

∗
1b, q̂

∗
2b)

′. These
are called the bootstrap replications of estimates of q.

Step 5. Calculate the sample covariance matrix of q̂∗
b as

V̂ =
1

B − 1

B∑
b=1

(q̂∗
b − ¯̂q∗)(q̂∗

b − ¯̂q∗)′, (10)
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where ¯̂q∗ =
∑B

b=1 q̂∗
b/B.

The usual parametric bootstrap contains only Steps 2 – 5. However, as Step 1 uses the
known parameters, to evaluate the precision of this approach, Steps 1 – 5 are repeated
several times.

Table 3: Comparison of variance estimates for the constrained MLEs

Set NHPP parameters
No. q0 q1 q2

1 Sample variance† 0.0102 0.0296 0.0484
Sample mean of mar. avar† 0.0100 0.0299 0.0499
Bootstrap estimates: average of ŝvB 0.0098 0.0281 0.0454

2 Sample variance† 0.0060 0.0220 0.0451
Sample mean of mar. avar† 0.0060 0.0220 0.0460
Bootstrap estimates: average of ŝvB 0.0060 0.0215 0.0452

3 Sample variance† 0.0140 0.0354 0.0444
Sample mean of mar. avar† 0.0139 0.0377 0.0536
Bootstrap estimates: average of ŝvB 0.0134 0.0328 0.0408

Note: † copied from Table 6 of Karim, et al. (2001a); all variances should be
multiplied by 10−4; “mar. avar” means “marginal asymptotic variance”.

Based on the true values of Table 2, the bootstrap results obtained from 1000 sim-
ulations with B = 500 are summarized in Table 3. This table compares the marginal
asymptotic variances and the bootstrap variances. For example, for set 3 the bootstrap
estimate of sample variance of q2 is 0.0408×10−4 whereas the sample mean of marginal
asymptotic variance is 0.0536 × 10−4. The bootstrap estimates of sample variances
are smaller compared with the marginal asymptotic variances, particularly for Set 3
where the constrained MLE gives the estimates on the boundary of the parameter
space with highest frequency out of the three sets (Karim, et al., 2001a). Therefore,
Table 3 suggests that when the maximum likelihood estimators belong on the lower
boundary of the parameter space, the bootstrap estimate of sampling variance yields
better precision than the asymptotic variance.

4 An Example

In this example, the same approach as discussed in Section 3.2, is applied to the data
set of warranty claims of an electronic equipment given in Karim, et al. (2001a) in
which (N1, N2, N3) = (4496, 9296, 7235) and (r1, r2, r3) = (1, 15, 121) to compare the
bootstrap estimates of the variances using the unconstrained and constrained MLEs.
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For the example data set, the Step 1 and Step 2 (see Section 3.2) are replaced by a
single step in which both the unconstrained (Section 2.1) and constrained (Section
2.2) MLEs of qt, t = 0, 1, 2, are computed based on the observed data. The resulting
estimates of (q0, q1, q2) are (0.000222, 0.002876, 0.020608) for unconstrained MLEs and
(0.000222, 0.002876, 0.020607) for constrained MLEs. In Step 3, the bootstrap samples
are generated from model (2). Both the unconstrained and constrained methods are
also used in Steps 3–5, and the procedure is stopped after the Step 5.

Table 4: Comparison of bootstrap variance estimates using the unconstrained and
constrained estimation methods

B Bootstrap Unconstrained method Constrained method
estimates of q0 q1 q2 q0 q1 q2

200 sample mean, ¯̂q∗ 0.00023 0.00274 0.02088 0.00023 0.00274 0.02088
sample variance, ŝvB 0.00050 0.01071 0.10118 0.00047 0.01047 0.10037

500 sample mean, ¯̂q∗ 0.00023 0.00285 0.02057 0.00023 0.00285 0.02057
sample variance, ŝvB 0.00046 0.00997 0.09668 0.00045 0.00987 0.09634

1000 sample mean, ¯̂q∗ 0.00023 0.00284 0.02067 0.00023 0.00284 0.02067
sample variance, ŝvB 0.00047 0.01021 0.09866 0.00047 0.01016 0.09849

1500 sample mean, ¯̂q∗ 0.00023 0.00285 0.02061 0.00023 0.00285 0.02061
sample variance, ŝvB 0.00047 0.00963 0.09820 0.00046 0.00958 0.09805

2000 sample mean, ¯̂q∗ 0.00023 0.00285 0.02064 0.00023 0.00285 0.02064
sample variance, ŝvB 0.00048 0.00950 0.09777 0.00048 0.00946 0.09765

Note: all variances should be multiplied by 10−4; B is bootstrap replications.

Table 4 provides a comparison of the unconstrained and constrained results for
different choices of bootstrap replications, B equals 200, 500, 1,000, 1,500 and 2,000.
The comparison shows that, the both methods are in close agreement for all B’s. This
is because for this example data, the unconstrained MLEs of qt’s are positive and the
constrained MLEs are not close to zero, and the estimates obtained using the two
methods are almost the same. Table 4 also indicates that the effect on the choice of
B is not so significant for this data.

5 Concluding Remarks

Marginal counts of failures for a warranted product can be collected easily and cheaply,
but manufacturers encounter difficulties in estimating the age-based (age-specific) fail-
ure rates of their products, since the data are incomplete and in a form inconvenient
for analysis. Karim, et al. (2001a) proposed methods for analyzing marginal count
failure data and discussed age-based analysis of warranty claims - the mean number
of failures per product at age t for repairable products, and the probability of failures
at age t for nonrepairable products.

In this article it is shown that the unconstrained maximum likelihood estimator
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proposed by Karim, et al. (2001a) is consistent. Also when the constrained MLE
belongs to (or very close to) the lower boundary of the parameter space, the bootstrap
sampling procedure yields better precision than the asymptotic variance estimation
method.
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