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Abstract

The paper obtains two Stein-type estimators of the mean vector of a multi-
variate Student-t population with unknown shape parameter based on two
random samples from populations having common but unknown covariance
matrix by using the preliminary test approach to shrinkage estimation. The
properties of the shrinkage and the positive rule shrinkage estimators are
investigated in terms of bias and the quadratic risk criteria. The relative
performances of the estimators, and dominance over the usual maximum
likelihood estimator are discussed. Comparisons of the estimators for the
multivariate normal model are also included under different conditions. The
uniform dominance of the positive rule shrinkage estimator over the shrink-
age and maximum likelihood estimator is established.
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1 Introduction

Conventional estimators, like the maximum likelihood and least squares estimators,
are based on the sample responses alone. Such estimators disregard any non-sample
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information, either in the form of a prior distribution of the parameter(s) or as a
suspected value of it. Improved estimator, on the other hand, incorporates both
the sample and non-sample information in the definition of the estimators. Among
the popular improved estimators, the well known preliminary test estimator (Ban-
croft, 1944) and James-Stein type shrinkage estimator (Stein 1956, and James and
Stein 1961) perform better than the conventional estimators under certain conditions.
There has been many studies on the topic, mainly for the linear models and one-sample
problems. Khan and Hoque (2002) considered the two-sample problem for the mul-
tivariate normal populations. This paper makes a wider assumption by considering
the Student-t population and deals with the estimation of the location vector using
both the sample and non-sample prior information regarding the value of the mean
vectors. Sampling from Student-t population is not straight forward as in the case of
the normal population. Khan (1997) adopted the mixture distribution of the normal
and the inverted gamma distributions to define samples from Student-t population.
In this paper, we pursue the same approach to obtain Student-t samples and define
unrestricted estimator of the location vector.

Consider an independent random sample, X11,X12, . . . ,X1n1 from a p-variate
normal population with unknown mean vector µ1. Then consider another independent
random sample X21,X22, . . . , X2n2 from a second p-variate normal population with
unknown mean vector µ2. Let τ2Σ be the unknown but common covariance matrix
of the two populations. Then the joint density of the two independent samples can be
given by

f(X1,X2;µ1,µ2, τ
2Σ) = (2π)−

p(n1+n2)
2 (τ2)−

p(n1+n2)
2 |Σ|−

n1+n2
2 e−

1
2τ2

(Q1+Q2) (1)

where Qi =

ni∑
j=1

(Xij − µi)
′Σ−1(Xij − µi) and Xi is a p × ni-dimensional matrix of

the i-th sample for i = 1, 2.

Now assume that τ follows an inverted gamma distribution with the density func-
tion

f(τ) =
2

Γ
(
ν
2

) (ν
2

)ν/2
(τ)−(ν+1)e−

ν
2τ2 , τ > 0 (2)

where ν is the shape parameter. It is well known that the mixture distribution of the
two samples is p(n1 + n2)-dimensional Student-t distribution with the joint density
function

f(X1,X2,µ1,µ2,Σ, ν) = K(ν, n1, n2, p)|Σ|−
n1+n2

2

×

1 + 1

ν

2∑
i=1

ni∑
j=1

(Xij − µi)
′Σ−1(Xij − µi)

− ν+p(n1+n2)
2

(3)
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where

K(ν, n1, n2, p) =
Γ
(
ν+p(n1+n2)

2

)
(πν)

p(n1+n2)
2 Γ

(
ν
2

)
is the normalizing constant. Note that the dispersion matrix of Xij is ν

ν−2Σ for
j = 1, 2, . . . , ni and i = 1, 2, and

Cov(X1,X2) =
ν

ν − 2
Σ⊗

[
In1 On2

On1 In2

]
(4)

where Ini is the identity matrix of order ni and Oi is a ni × ni order matrix of zeros
for i = 1, 2, and ⊗ is the Kronecker product between matrices. Thus the elements
in each column of X1 and X2 are correlated, but the columns of X1 and X2 are
dependent but uncorrelated. This is a special property of the multivariate Student-t
distribution (cf Khan, 1992 and Anderson, 1993). Khan (1998) obtained the prelim-
inary test estimator for the above two-sample problem in the presence of uncertain
prior information and with diagonal covariance matrix, while Khan (1997) proposed
the likelihood based inference for the mean vectors of a similar model. Most of the
textbooks on multivariate analysis cover the multivariate Student-t distribution but
the original work on this distribution is due to Cornish (1954). For convenience, we
assume that ν > 1, and hence the study of the Cauchy and sub-Cauhcy distributions
are beyond the scope of this paper.

There has been an increasing trend in the use of the Student-t model in recent years.
Fisher (1956, p.133) warned against the consequences of inappropriate use of the tra-
ditional normal model. Fisher (1960, p.46) analyzed Darwin’s data (cf. Box and Taio,
1992, p. 133) by using a non-normal model. Fraser and Fick (1975) analyzed the same
data by the Student-t model. Zellner (1976) provided both Bayesian and frequentist
analyses of the multiple regression model with Student-t errors. Fraser (1979) illus-
trated the robustness of the Student-t model. Prucha and Kelegian (1984) proposed
an estimating equation for the simultaneous equation model with the Student-t errors.
Ullah and Walsh (1984) investigated the optimality of different types of tests used in
econometric studies for the multivariate Student-t model. The interested readers may
refer to the more recent work of Singh (1988), Lange et al. (1989), Giles (1991), Khan
(1992), Anderson (1993), Spanos (1994), Lucus (1997) and Khan (1998) for different
applications of the Student-t models.

We wish to define and study Stein-type shrinkage estimators for the mean vector
of the first population, µ1 by applying the preliminary test approach. Assume that
uncertain prior information regarding the equality of the mean vectors, µ1 and µ2, is
available, and that can be expressed by the null hypothesis, H0 : µ1 = µ2, but we do
not have enough evidence in support of H0. Following Bancroft (1944) the preliminary
test estimator of µ1 can be obtained that removes the uncertainty in the above null
hypothesis. Such an estimator is an extreme choice between the usual maximum
likelihood estimator of µ1 and the overall sample mean X (say), depending on the
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rejection or acceptance of the H0 at a given level of significance of the test. Moreover,
it depends on the choice of the level of significance. Khan (1998) investigated the
properties of the preliminary test estimator for the two-sample problem with unknown
but common diagonal covariance matrix. In this paper, we define the Stein-type
estimators of µ1 by applying the same approach. The properties of the estimators are
also investigated based on the unbiasedness, and risk under quadratic loss function
criteria. The relative performance of the estimators under different conditions are also
discussed.

2 The Stein-Type Estimators

It is well known that the maximum likelihood estimator (mle) of µi is µ̃i = Xi =

1
ni

ni∑
j=1

Xij for i = 1, 2, and that the restricted mle (restricted by H0) of µ1 is µ̂1=X=

1
n1+n2

2∑
i=1

ni∑
j=1

Xij , the overall sample mean. Interested readers may see Zellner (1976)

and Khan (1998), for instance, for the detailed derivation of such results. Similarly, it
can be easily seen that the unrestricted and restricted mle’s of Σ become

Σ̃ =
1

n1 + n2
S and Σ̂ =

1

n1 + n2
R (5)

where

S =

2∑
i=1

ni∑
j=1

(Xij −Xi)(Xij −Xi)
′

and

R =
2∑

i=1

ni∑
j=1

(Xij −X)(Xij −X)′.

For details on the derivation of multivariate Student-t model parameters see Khan
(1997).

Based on the above estimators, a test statistic for testing the null hypothesis,
H0 : µ1 = µ2 is found to be

T 2 =
n1n2
n1 + n2

(X2 −X1)
′S−1(X2 −X1) (6)

which follows a modified Hotelling’s T 2 distribution (cf. Anderson 1985, p. 109).
Finally, note that conditional on a given value of τ ,

T 2 ∼ p

m
Fp,m(∆τ ) (7)
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where Fp,m(∆τ ) follows a non-central F -distribution with p and m = n1 + n2 − p− 1
degrees of freedom (d.f.), and non-centrality parameter

∆τ = (µ2 − µ1)
′Σ

−1

τ2
(µ2 − µ1) =

δ′Σ−1δ

τ2
. (8)

The power function and other properties of the test can be found in Khan (1997). In
this paper, we use the above T 2-statistic for the definition of the Stein-type shrinkage
estimators of µ1.

The shrinkage estimator (SE) of µ1 can be defined as

µ̂S
1 = µ̃1 +MCT−2(µ̃2 − µ̃1) (9)

whereM = n2
n1+n2

and 0 < C < 2(p−2)
(N−p+3) is the shrinkage constant withN = n1+n2−2.

The above estimator is a Stein-type estimator (cf. Stein 1956, and James and Stein
1961) and it dominates the usual maximum likelihood estimator of µ1 when p ≥ 3.
However, as T 2 → 0, the above shrinkage estimator becomes unstable. To avoid this
difficulty we define the positive rule shrinkage estimator (PRSE) of µ1 for the Student-t
model as follows:

µ̂S+
1 = µ̂1 + (1− CT−2)I(T 2 > C)(µ̃1 − µ̂1) (10)

where I(T 2 > C) is an indicator function with only two possible values, 0 or 1. The
above PRSE can be expressed as

µ̂S+
1 = µ̂S

1 +M(µ̃2 − µ̃1)I(T
2 > C)− CMT−2(µ̃2 − µ̃1)I(T

2 ≤ C). (11)

Often such a representation makes the derivation of bias and risk functions easier.

3 The Bias of the Estimators

In this section we compute the expressions for the bias of the estimators. The following
representations of the SE and PRSE are useful for the evaluation of the terms under
the expectation operator in the definition of bias:

(µ̂S
1 − µ1) = (µ̃1 − µ1) + CMT−2(µ̃2 − µ̃1) (12)

(µ̂S+
1 − µ1) = (µ̃1 − µ1) + CMT−2(µ̃2 − µ̃1) +M(µ̃2 − µ̃1)I(T

2 ≤ C)

−CMT−2(µ̃2 − µ̃1)I(T
2 ≤ C). (13)

The following theorems provide the bias functions of the SE and the PRSE.

Theorem 3.1. For the Student-t model stated in Section 1, the bias of the SE of µ1

is given by
B(µ̂S

1 ;µ1) = CmMδE(2)[χ−2
p+2(∆

∗)] (14)
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where

E(2)[χ−2
p+2(∆

∗)] =

∞∑
r=0

1

(p+ 2r)

Γ
(
ν
2 + r

)
r!Γ
(
ν
2

)
(

∆∗

ν−2

)r
(
1 + ∆∗

ν−2

) ν
2
+r

(15)

in which ∆∗ = ν−2
ν ∆ with ∆ = n1Mδ′Σ−1δ.

Proof. By definition, the bias of the SE of µ1 is

B(µ̂S
1 ;µ1) = E[µ̂1 − µ1] = E[(µ̃1 − µ1) + CMT−2(µ̃2 − µ̃1)] (16)

by using (12). Since E(µ̃1 − µ1) = 0, we get

B(µ̂1;µ1) = CME[T−2(µ̃2 − µ̃1)]. (17)

Now, for the evaluation of the term under expectation, consider the following trans-
formation:

Y =
√
n1M

Σ−1/2

τ
(µ̃2 − µ̃1). (18)

Then, for a given value of τ , we have

Y ∼ Np

(√
n1M

Σ−1/2

τ
δ, Ip

)
, (19a)

(µ̃2 − µ̃1) =
τΣ1/2

√
n1M

Y ∼ Np

(
δ,

τ2Σ

n1M

)
, (19b)

Y ′Y = n1M(µ̃2 − µ1)
′Σ

−1

τ2
(µ̃2 − µ̃1) ∼ χ2

p(∆τ ), and (19c)

T 2 =
Y ′Y

χ2
m

=
p

m
Fp,m(∆τ ) (19d)

where χ2
p(∆τ ) is a noncentral chi-squared variable with p degrees of freedom and

noncentrality parameter ∆τ ; χ
2
m is a central chi-squared variable with m degrees of

freedom; and Fp,m(∆τ ) is a noncentral F -variable with p and m degrees of freedom
and noncentrality parameter ∆τ . Therefore, we can write

E[T−2(µ̃2 − µ1)|τ ] = E

[
χ2
m

Y ′Y

τΣ1/2

√
n1M

Y

]

= mδEχ−2
p+2(∆τ )]. (20)

by applying Theorem 1 from the Appendix B.2 of Judge and Bock (1979, pp. 321–
324). Finally taking expectation on the last term of the right hand side of (20) with
respect to the distribution of τ , we get

E(2)[χ2
p+2(∆

∗)] = Eτ{E[χ−2
p+2(∆τ )|τ ]}



Khan and Saleh: Stein-type Estimators for Mean Vector 7

=
∞∑
r=0

1

(p+ 2r)

Γ
(
ν
2 + r

)
r!Γ
(
ν
2

)
(

∆∗

ν−2

)r
(
1 + ∆∗

ν−2

) ν
2
+r
. (21)

Hence the theorem.
Clearly the value of ∆∗ is zero when ν = 2, regardless of the value of ∆. Therefore,

for the remainder of the paper we assume that ν > 2, so that ∆∗ ≥ 0 iff ∆ ≥ 0. Note
that for a small ν the value of ∆∗ is significantly smaller than that of ∆.

Theorem 3.2. For the multivariate Student-t model defined in Section 1, the bias of
the PRSE of µ1 is given by

B(µ̂S+
1 ;µ1) = B(µ̂S

1 ;µ1) +MδG
(2)
p+2,m(q;∆∗)

− (p− 2)

m+ 2
mMδE(2)[χ−2

p+2(∆
∗)I(Fp+2,m(∆∗) ≤ q)] (22)

where B(µ̂S
1 ;µ1) is the bias of the SE, µ̂S

1 ;

q =
m(p− 2)

(m+ 2)(p+ 2)
;

G
(2)
p+2,m(q;∆∗) =

∞∑
r=0

Γ
(
p+2+m

2 + r
)

Γ
(
p+2
2 + r

)
Γ
(
m
2

)Buq

(
m
2 ;

p+2
2 + r

)
r!

Γ
(
ν
2 + r

)
Γ
(
ν
2

)

×

(
∆∗

ν−2

)r
(
1 + ∆∗

ν−2

) ν
2
+r

; (23)

and

E(2)[χ−2
p+2(∆

∗)I(Fp+2,m(∆∗) ≤ q)] =
∞∑
r=0

Γ
(
p+2+m

2

)
Γ
(
p+2r
2

)
Γ
(
m
2

)
×

Γ
(
ν+2r
2

)
Buq

(
m
2 ;

p+2+2r
2

)
r!Γ
(
ν
2

)
Γ
(
p+2+2r

2

)
(

∆∗

ν−2

)r
(
1 + ∆∗

ν−2

) ν
2
+r
,

(24)

in which uq = (m+2)(p+2)
(m+2)(p+2)+m(p−2) and Buq(a; b) is an incomplete beta function with

arguments ‘a’ and ‘b’.
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Proof. By definition, the bias of the PRSE of µ1 is

B(µS+
1 ;µ1) = E(µ̂S+

1 − µ1)

= E[(µ̂S
1 − µ1) +M(µ̃2 − µ̃1) I(T

2 ≤ C)

−CMT−2(µ̃2 − µ̃1)I(T
2 ≤ C)]

= B(µ̂S
1 ;µ1) +ME[(µ̃2 − µ̃1) + I(T 2 ≤ C)]

−CME[T−2(µ̃2 − µ̃1)I(T
2 ≤ C)]. (25)

Now applying the transformation in (18), conditional on a given value of τ , we have

E[(µ̃2 − µ̃1)I(T
2 ≤ C)|τ ] = E

[
τΣ1/2

√
n1M

Y I

(
Y ′Y

χ2
m

≤ C

)]

= δE

[
I

(
χ2
p+2(∆τ )

χ2
m

≤ C

)]

= δE

[
I

(
Fp+2,m(∆τ ) ≤

m

p+ 2
C

)]
= δGp+2,m(q;∆τ ) (26)

where q = m
p+2 ×

p−2
m+2 in which the optimal value of the shrinkage constant C, Copt =

p−2
m+2 has been used, and the result from the Appendix B.2 of Judge and Bock (1978)
has been applied. Note that here C is optimal in the sense of minimizing the quadratic
risk (cf. Ahmed and Saleh, 1989).

Similarly, conditional on a given value of τ , we get

E[T−2(µ̃2 − µ̃1) I(T
2 ≤ C)|τ ] = E

[
χ2
m

Y ′Y

τΣ1/2

√
n1M

Y I

(
Y ′Y

χ2
m

≤ C

)]

= mδE[χ−2
p+2(∆τ ) I(Fp+2,m(∆τ ) ≤ q)]. (27)

Computing the expectation on (26) with respect to the inverted gamma distribution
we obtain

Eτ

{
E[(µ̃2 − µ̃1)I(T

2 ≤ C)|τ ]
}
= δG

(2)
p+2,m(q; ∆∗) (28)

and that on (27) yields

Eτ

{
T−2(µ̃2 − µ̃1) I(T

2 ≤ C)|τ ]
}
= mδE(2)

[
χ−2
p+2(∆

∗) I(Fp+2,m(∆∗) ≤ q)
]
. (29)

Finally combining the results of (28) and (29), and substituting in (25) we get the
expression in (22). Hence the theorem.
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Under H0, both SE and PRSE of µ1 are unbiased estimators. However, the bias
of the estimators depends on the value of δ, the departure of µ2 from µ1, under the
alternative hypothesis. Since the difference of the bias of the PRSE and the SE is
given by

MδG
(2)
p+2,m(q;∆∗)− (p− 2)

(m+ 2)
mMδE(2)[χ−2

p+2(∆
∗)I(Fp+2,m(∆∗) ≤ q)], (30)

the PRSE has a smaller bias than the SE if

G
(2)
p+2,m(q; ∆∗) <

(p− 2)

(m+ 2)
mE(2)[χ−2

p+2(∆
∗)I(Fp+2,m(∆∗) ≤ q)], (31)

or equivalently if

∞∑
r=0

Γ

(
p+ 2 +m+ 2r

2

)
<

(p− 2)

(m+ 2)

∞∑
r=0

Γ
(
p+2+m

2

)
Γ
(
p+2r
2

) . (32)

The SE has a smaller bias than the PRSE if the opposite inequality holds. Since for
given p, n1 and n2, m is always fixed, the infinite sum on the left hand side of (32)
will always be greater than that on the right hand side. Therefore, the SE always has
a smaller bias than the PRSE under the alternative hypothesis.

4 The Quadratic Risk

Let θ̂ be an estimator of θ based on a sample of size n from a population with mean
θ and covariance matrix Ω. The quadratic risk of θ̂ in estimating θ is defined as the
expected loss of the estimator as follows:

R(θ̂; Ω) = E[n(θ̂ − θ)′Ω−1(θ̂ − θ)]. (33)

Note that the quadratic loss function of θ̂ in estimating θ is given by

L(θ̂; Ω) = n(θ̂ − θ)′Ω−1(θ̂ − θ). (34)

In this section, we derive the risks for the SE and PRSE of µ1 for the above loss
function.

Theorem 4.1. For the multivariate Student-t model defined in Section 1, the quadratic
risk of the SE of µ1 is given by

R(µ̂S
1 ;µ1) = p− CmM [2(p− 2)− C(m+ 2)]E(0)[χ−2

p (∆∗)] (35)
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where

E(0)[χ−2
p (∆∗)] =

∞∑
r=0

1

(p− 2 + 2r)

Γ
(
ν
2 + r

)
r!Γ
(
ν
2

)
(

∆∗

ν−2

)r
(
1 + ∆∗

ν−2

) ν
2
+r
. (36)

Proof. By definition, the quadratic risk of the SE of µ1 is

R(µ̂S
1 ;µ1) = Eτ

{
E

[
n1(µ̂

S
1 − µ1)

′Σ
−1

τ2
(µ̂S

1 − µ1)|τ
]}

. (37)

Now applying the representation of (µ̂S
1 −µ1) as given in (12) in the above quadratic

form, and completing the multiplication we get, for a given value of τ

R(µ̂S
1 ;µ1|τ) = n1E[(µ̃1 − µ1)

′Σ
−1

τ2
(µ̃1 − µ1)|τ ]

+n1C
2M2E

[
T−4(µ̃2 − µ1)

′Σ
−1

τ2
(µ̃2 − µ̃1)|τ

]

+2n1CME

[
T−2(µ̃1 − µ1)

′Σ
−1

τ2
(µ̃2 − µ̃1)|τ

]
. (38)

Applying the following result on the conditional expectation,

E[(µ̃1 − µ1)|(µ̃2 − µ̃1)] = −M{(µ̃2 − µ̃1)− (µ2 − µ1)} (39)

in the last term of the r.h.s. of (38), and simplifying, the quadratic risk of the SE
becomes

R(µ̂S
1 ;µ1|τ) = p+ C2M2n1E[T−4(µ̃2 − µ̃1)

′Σ
−1

τ2
(µ̃2 − µ̃1)|τ ]

−2CM2n1

{
E[T−2(µ̃2 − µ̃1)

′Σ
−1

τ2
(µ̃2 − µ̃1)|τ ]

− (µ2 − µ1)
′E[T−2Σ

−1

τ2
(µ̃2 − µ̃1)|τ ]

}
(40)

where E[n1(µ̃1−µ1)
′Σ−1

τ2
(µ̃1−µ1)|τ ] = p is the quadratic risk of the mle of µ1. Then

using the transformation in (18) and the results in the Appendix B.2 of Judge and
Bock (1978) we have, conditional on τ ,
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E[T−4(µ̃2 − µ̃1)
′Σ−1

τ2
(µ̃2 − µ̃1)|τ ]

=
1

n1M
E

[
χ4
m

Y ′Y

]
=
m(m+ 2)

n1M
E[χ−2

p (∆τ )] (41a)

E[T−2(µ̃2 − µ̃1)
′Σ−1

τ2
(µ̃2 − µ̃1)|τ ] = m

n1M
(41b)

E[T−2Σ
−1

τ2
(µ̃2 − µ̃1)|τ ] = m

Σ−1

τ2
δE[χ−2

p+2(∆τ )]. (41c)

Substituting the above results in (40) we get

R(µ̂S
1 ;µ1|τ) = p+ C2Mm(m+ 2)E[χ−2

p (∆τ )]− 2CMm

+ 2CMm∆τE[χ−2
p+2(∆τ )]. (42)

Using the identity

∆τE[χ−2
p+2(∆τ )] = 1− (p− 2)E[χ−2

p (∆τ )] (43)

in the last term of (42), and simplifying, the expression in (42) reduces to

R(µ̂S
1 ;µ1|τ) = p− CMm[2(p− 2)− C(m+ 2)]E[χ−2

p (∆τ )]. (44)

The expression for the quadratic risk of the SE of µ1, as given in (35), is then obtained
by taking expectation on R(µ̂S

1 ;µ1|τ) with respect to the distribution of τ . Hence the
proof.

Theorem 4.2. For the multivariate Student-t model defined in Section 1, the quadratic
risk of the PRSE of µ1 is given by

R(µ̂S+
1 ;µ1) = R(µ̂S

1 ;µ1)

−∆∗
{
MG

(4)
p+4,m(q4;∆

∗) + 2G
(2)
p+2,m(q2;∆

∗) + 2Cm

× E(2)[χ−2
p+2(∆

∗) I(Fp+2,m(∆∗) ≤ q2)]
}

−M
{
pG

(2)
p+2,m(q2;∆

∗)− 2CmG(0)
p,m(q0;∆

∗)
}

−C2Mm(m+ 2)E(2)[χ−2
p+2(∆

∗)I(Fp+2,m(∆∗) ≤ q2)] (45)

where R(µ̂S
1 ;µ1) is the quadratic risk of the SE of µ1 as given in (35);

G
(h)
p+h,m(qh;∆

∗)=
∞∑
r=0

Γ
(
p+h+m

2 + r
)

Γ
(
p+h
2 + r

)
Γ
(
m
2

) Γ
(
ν
2 + r

)
Buh

(
m
2 ,

p+h
2 + r

)
r!Γ
(
ν
2

)
(

∆∗

ν−2

)r
(
1 + ∆∗

ν−2

) ν
2
+r

(46)
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with uh = (m+2)(p+h)
(m+2)(p+h)+m(p−2) for h = 0, 2, 4; and

E(2)[χ−2
p+2(∆

∗)I(Fp+2,m(∆∗) ≤ q2)]

=
∞∑
r=0

Γ
(
p+2+m

2

)
Γ
(p
2 + r

)
Γ
(
m
2

) Γ (ν2 + r
)
Bu2

(
m
2 ,

p+2
2 + r

)
r!Γ
(
ν
2

)
Γ
(
p+2
2 + r

)
(

∆∗

ν−2

)r
(
1 + ∆∗

ν−2

) ν
2
+r
, (47)

in which Bu2(a, b) is the incomplete beta function with arguments ‘a’ and ‘b’, and
evaluated at u2.

Proof. By definition, the quadratic risk of the PRSE of µ1 is given by

R(µ̂S+
1 ;µ1) = Eτ

{
E[n1(µ̂

S+
1 − µ1)

′Σ
−1

τ2
(µ̂S+

1 − µ1)|τ ]
}
. (48)

Using the presentation of (µ̂S+
1 −µ1) as given in (13), expanding the resulting quadratic

forms and simplifying the terms, the above risk function, conditional on a given value
of τ , can be written as

R(µ̂S+
1 ;µ1|τ) = E[n1(µ̃1 − µ1)

′Σ
−1

τ2
(µ̃1 − µ1)|τ ]

+C2M2n1E[T−4(µ̃2 − µ̃1)
′Σ

−1

τ2
(µ̃2 − µ̃1)|τ ]

+M2n1E[(µ̃2 − µ̃1)
′Σ

−1

τ2
(µ̃2 − µ̃1)I(T

2 ≤ C)|τ ]

+C2M2n1E[T−4(µ̃2 − µ̃1)
′Σ

−1

τ2
(µ̃2 − µ̃1)I(T

2 ≤ C)|τ ]

+2CMn1E[(µ̃1 − µ1)
′Σ

−1

τ2
(µ̃2 − µ̃1)|τ ]

+2Mn1E[(µ̃1 − µ1)
′Σ

−1

τ2
(µ̃2 − µ̃1)I(T

2 ≤ C)|τ ]

−2CMn1E[T−2(µ̃1 − µ1)
′Σ

−1

τ2
(µ̃2 − µ̃1)I(T

2 ≤ C)|τ ]

+2CM2n1E[T−2(µ̃2 − µ̃1)
′Σ

−1

τ2
(µ̃2 − µ̃1)I(T

2 ≤ C)|τ ]

−2C2M2n1E[T−4(µ̃2 − µ̃1)
′Σ

−1

τ2
(µ̃2 − µ̃1)I(T

2 ≤ C)|τ ]

−2CM2n1E[T−2(µ̃2 − µ̃1)
′Σ

−1

τ2
(µ̃2 − µ̃1)I(T

2 ≤ C)|τ ], (49)
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where I2(A) = I(A) for the indicator function, I(A), of the set A, has been used.
Clearly, the first term in (49) is p, the quadratic risk of the mle of µ1. For the

evaluation of the other 9 terms, we use the transformation in (18), and apply the
results from Judge and Bock (1978), as before. Let ti denote the i-th term in (49) for
i = 1, 2, . . . , 10. Then we have that t1 = p; and

t2 = C2M2n1E

[
χ2
4

Y ′Y

1

n1M

]
= C2Mm(m+ 2)E[χ−2

p (∆τ )];

t3 = M2n1E

[
Y ′Y

n1M
I

(
Y ′Y

χ2
m

≤ C

)]
= MpGp+2(q2; ∆τ ) +M∆τGp+4,m(q4;∆τ );

t4 = C2M2n1E

[
χ4
m

Y ′Y

1

n1M
I

(
Y ′Y

χ2
m

≤ C

)]
= C2Mm(m+ 2)E

[
χ−2
p+2(∆τ )I(Fp+2,m(∆τ ) ≤ q2)

]
;

t5 = −2CM2n1E

[
χ2
m

n1M

]
+ 2C∆τE

[
χ2
m

Y ′Y

]
= −2CMm+ 2Cm∆τE[χ−2

p+2(∆τ )],

where the result on the conditional expectation of (µ̃1−µ1), given (µ̃2− µ̃1), has been
applied from (39);

t6 = −2M2n1E

[
Y ′Y

n1M
I

(
Y ′Y

χ2
m

≤ C

)]
+ 2Mn1δ

′Σ
−1

τ2
E

[
τΣ1/2

√
Mn1

Y I

(
Y ′Y

χ2
m

≤ C

)]
= −2MpGp+2,m(q2;∆τ )− 2M∆τGp+4,m(q4;∆τ ) + 2∆τGp+2,m(q2;∆τ )

in which the previous result on the conditional expectation has been used and the
expression has been simplified;

t7=2CM2n1E

[
χ2
m

Mn1
I

(
Y ′Y

χ2
m

≤ C

)]
+ 2CMn1E

[
χ2
m

Y ′Y
δ′

Σ−1

τ
√
Mn

Y I

(
Y ′Y

χ2
m

≤ C

)]
= 2CMmGp,m(q;∆τ ) + 2Cm∆τE[χ−2

p+2(∆τ )I(Fp+2,.m(∆τ ) ≤ q2)]

when simplified after using the earlier conditional expectation and results from Judge
and Bock (1978);

t8 = 2CM2n1E

[
χ2
m

Mn1
I

(
Y ′Y

χ2
m

≤ C

)]
= 2CMmGp,m(q;∆τ );

t9 = −2C2M2n1E

[
χ4
m

Mn1
I

(
Y ′Y

χ2
m

≤ C

)]
= −2C2Mm(m+ 2)E[χ−2

p+2(∆τ )I(Fp+2,m(∆τ ) ≤ q2)]; and
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t10 = −2CM2n1E

[
χ2
m

Mn1
I

(
Y ′Y

χ2
m

≤ C

)]
= −2CMmGp,m(q;∆τ ). (50)

Now collecting t1 − t10 in (49), conditional on a given value of τ , the quadratic risk of
the PRSE of µ1 becomes, on regrouping of the terms and simplification,

R(µ̂S+
1 ;µ1|τ) =

{
p+ C2Mm(m+ 2)E[χ−2

p (∆τ )]− 2CMm+ 2Cm∆τE[χ−2
p+2(∆τ )]

}
−∆τ

{
MGp+4,m(q4;∆τ )+2Gp+2,m(q2;∆τ )+2CmE[χ−2

p+2(∆τ )I(Fp+2,m(∆τ ) ≤ q2)]
}

−M {pGp+2,m(q2;∆τ )− 2CmGp,m(q; ∆τ )}

− C2Mm(m+ 2)E[χ−2
p+2(∆τ )I(Fp+2,m(∆τ ) ≤ q2)] (51)

where the terms inside the first curly brackets is R(µ̂S
1 ;µ1|τ), the quadratic risk of

the SE of µ1, for a given value of τ ; qh = m
p+h × p−2

m+2 for h = 0, 2, 4 and in which

Copt =
p−2
m+2 , as before.

The final expression in (45) is obtained by computing the expected value of the
R(µ̂S+

1 ;µ1|τ) with respect to the distribution of τ . Hence the proof.

5 Analysis of Risk

It is well known that the quadratic risk of the mle of µ1 is a constant and is equal
to the dimension of the vector Xi for i = 1, 2. Hence we have, for the model under
consideration, R(µ̃1;µ1) = p. Thus the risk function of µ̃1 does not depend on ν and
∆.

The risk of the SE, µ̂S
1 is a monotone function of ∆∗. The minimum of R(µ̂S

1 ;µ1)

is attained when ∆∗ = 0 with a value of
{
p− (p−2)2

(m+2)mM
}
, and the maximum value

of R
(
µ̂S
1 ;µ1

)
approaches to p as ∆∗ → ∞. Therefore, the quadratic risk of the SE

is always smaller than that of the mle of µ1 for all values of ∆ and ν > 2. It can

be shown that for the multivariate normal model, R
(
µ̂S
1 ;µ

)
→ p as ∆ grows larger.

However, since ∆∗ < ∆ for all ν > 2, the risk function of the SE for the multivariate
normal model approaches to that of the mle faster than (for a smaller value of ∆) that
for the multivariate Student-t model. Furthermore, as ν → ∞, the difference in the

values of ∆ and ∆∗ becomes negligible, and as a result both R(µ̃1;µ1) and R
(
µ̂S
1 ;µ1

)
approach to p in about the same pace. Nevertheless, for the smaller values of ν, the
risk of the mle grows larger and approaches to p faster than that of the SE as ∆
increases. Therefore, for the multivariate Student-t model the Stein-type shrinkage
estimator dominates the usual mle of the mean vector, and this domination is over a
wider range of values of ∆∗ than that of ∆ for the multivariate normal model. Thus
µ̃1 for µ1 is inadmissible for the two-sample Student-t problem. Khan and Hoque
(2002) provided similar results for the the independent normal models.
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The risk function of the PRSE of µ1 is also a function of ∆∗. From (45) it is clear
that the risk of the PRSE is smaller than that of the SE for all values of ∆∗. Similar
to the risk function of the SE, the risk function of PRSE, R

(
µ̂S+
1 ;µ1

)
increases as

the value of ∆∗ grows larger. It also approaches to the risk of the mle as ∆∗ → ∞.
But for any particular value of ∆∗, the amount of risk of PRSE is always at least as
low as that of the SE. Hence the PRSE always dominates over the SE uniformly over
all the values of ∆∗. Therefore, the SE is inadmissible against the PRSE for all values
of ∆ and ν > 2. This is also true for the multivariate normal model, since the normal
model is a special (limiting) case of the Student-t model.

Comparing the risk of the PRSE of the multivariate normal model with the mul-
tivariate Student-t model, it is observed that the later approaches to the risk of the
mle (p) slower than the former as ∆∗ is always smaller than ∆ for all values of ν > 2.
Hence a relatively larger departure of the value of µ1 from its value under the null
hypothesis will not increase the amount of the risk of the PRSE for the Student-t
model as much as it would do for its normal counter-part. For the same amount of
departure of µ1 from its hypothesized value will lead to a higher level of risk for the
PRSE of the normal model than the Student-t model.

Apart from removing the instability of the SE for very small values of T 2 statistic,
the PRSE overperforms the SE with respect to the quadratic risk criterion. Moreover,
the PRSE is uniformly superior to the SE for all values of ∆∗. Since the SE dominates
the mle of µ1, the performance picture of the estimators can be summarized as follows

µ̂S+
1 ≻ µ̂S

1 ≻ µ̃1 (52)

where the symbol “≻” stands for domination.

6 The Relative Efficiency

The relative efficiency of the SE with respect to the mle of µ1 is given by

η
(
µ̂S
1 : µ̃

)
=

R(µ̃1;µ1)

R(µ̂S
1 ;µ1)

=

{
1− mM(p− 2)2

(m+ 2)p
E[χ−2

p (∆∗)]

}−1

, (53)

which is a monotone decreasing function of ∆∗. The maximum relative efficiency of the

SE relative to the mle is attained at ∆∗ = 0 with the maximum value
{
1− M(p−2)m

(m+2)p

}−1
.

On the other hand η
(
µ̂S
1 : µ̃1

)
→ 1 as ∆∗ grows larger. Thus for a smaller value of

∆∗ the SE performs better than the mle of µ1. However, for a lager value of ∆∗, the
relative efficiency of the SE with respect to the mle may not be significantly different
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from 1. Nevertheless, the SE dominates over the mle of µ1 for all values of ∆∗. But
this domination is more significant for all the values of ∆∗ in the neighborhood of zero.

The relative efficiency of the PRSE with respect to the SE of µ1 is given by

η
(
µ̂S+
1 ; µ̂S

1

)
=

R
(
µ̂S
1 ;µ1

)
R
(
µ̂S+
1 ;µ1

) = {1− ψ1(∆
∗)}−1 (54)

where ψ1(∆
∗) =

{
R
(
µ̂S
1 ;µ

)}−1
{ψ2(∆

∗)} in which

ψ2(∆
∗) = ∆∗

{
MG

(4)
p+4,m(q4;∆

∗) + 2G
(2)
p+2,m(q2; ∆

∗)

+2CmE(2)[χ−2
p (∆∗)I(Fp+2,m(∆∗) ≤ q)

}
+M

{
pG

(2)
p+2,m(q2;∆

∗)− 2CmG(0)
p,mq0;∆

∗)
}

+C2Mm(m+ 2)E(2)
[
χ−2
p (∆∗)I(Fp+2,m(∆∗) ≤ q2)

]
, (55)

which is a monotone decreasing function of ∆∗. Therefore, ψ1(∆
∗) increases as ψ2(∆

∗)
increases when ∆∗ grows smaller. Thus the relative efficiency of the PRSE with respect
to the SE approaches its maximum at ∆∗ = 0. On the other extreme, the relative
efficiency of the PRSE of µ1 reduces to 1 as ∆∗ → ∞. Thus, for any value of ∆∗ the
relative efficiency of the PRSE with respect to the SE is at least 1. Hence the PRSE
uniformly performs better than the SE for all values of ∆∗, and this is more so when
the value of ∆∗ is not too far from zero.

Finally, since the relative efficiency of the SE with respect to the mle is at least
1 for all values of ∆∗, and the relative efficiency of the PRSE with respect to the SE
is at least 1 for all values of ∆∗, the PRSE performs even better than the mle with a
higher level of relative efficiency.

7 Concluding Remarks

The foregoing study reveals that the mle of µ1 for the two-sample multivariate Student-
t problem is unbiased, as it uses the information from the first sample alone. On the
other hand both the SE and PRSE of µ1 are biased. These estimators used information
from both the samples as well as the uncertain prior information about the equality
of the location vectors. The amount of bias of the later two estimators depends on
the value of ∆ which measures the extent of deviation of the actual value of µ1 from
its value specified under the null hypothesis. In general, the PRSE has a higher bias
than the SE under the alternative hypothesis. However, under the null hypothesis
∆ = 0 and all three estimators are unbiased. In real life, we are seldom sure about
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the validity of the null hypothesis, and we are seldom sure of the correctness of the
null hypothesis and hence on the value of ∆. Thus on the basis of the criterion of
unbiasedness, the mle of µ1 is a better choice over the SE or PRSE, when the null
hypothesis is in doubt.

It is evident from the analysis of the quadratic risk that the mle of µ1 has the
highest risk among the three estimators under investigation. Under the null hypothesis
the dominance picture of the estimators is clear and has been stated in (52). Similar
to the multivariate normal problem the mle is not admissible relative to the SE or
PRSE for the two-sample multivariate Student-t problem when ν > 2 when the null
hypothesis is true. Moreover, under the alternative, the SE dominates over the mle as
the SE has a higher relative efficiency than the mle. Again, the PRSE of the µ1 has
a higher relative efficiency than the SE for all ∆ and ν > 2. Therefore, in the face of
uncertainty on the value of the null hypothesis, the PRSE overperforms the other two
estimators of µ1. When the objective is to minimize the quadratic risk, the biased
estimators, both SE and PRSE, perform better than the unbiased estimator, the mle.
Finally, the PRSE uniformly dominates over the SE as well as the mle for all values
of ∆ and any number of degrees of freedom, ν.
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