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Abstract 

Gene expression quantitative trait locus (eQTL) mapping measures the 

relationship between gene expressions and genotypic variations in a certain 

chromosomal location. Most of the existing eQTL mapping algorithms are not 

suitable for the identification of important genes related to human phenotypic 

problems like a disease. However, SNP based fast eQTL mapping is suitable for 

the identification of important genes related to human phenotypic problems. But, 

the existing SNP based eQTL mapping is sensitive to outliers. In this paper, we 

robustify the SNP based Fast eQTL mapping using outlier modification rule. For 

outlier modification, we use the minimum β-divergence method. First, we detect 

the outlier by β-weight function then we replace outlier data points by its 

respective robust mean produced by the minimum β-divergence method. Then we 

investigate the performance of the proposed method in a comparison of the 

existing method using simulation study. Simulation results show that the proposed 
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method performs better than traditional method in presence of outliers; otherwise 

it keeps almost equal performance.  

Keywords: Gene Expression, SNP, eQTL, β-weight, Outlier detection and 

modification, Robustness.  

AMS Classification: Primary 62G35; Secondary 92-08. 

 

1.  Introduction 

The central biological attention is finding the casual connection of polymorphism 

with phenotypes (Korte and Farlow, 2013). The capability to calculate genetic risk 

factors for human sickness and agronomically important traits like development 

rate, yield in plants need an understanding of both the exact loci that trigger a 

phenotype and the genetic architecture of a trait (Korte and Farlow, 2013). The 

connection between phenotype and genotype has been of main attention since 

Mendel hypothesized the presence of ‘internal factors’ that are passed on to the 

following generation. An extensively use method to recognize the genomic loci 

linked with phenotypic variation in a genetically segregating population is a QTL 

mapping which has been greatly successful in determining causative loci 

underlying numerous disease phenotypes (Cervino et al. 2005; Hillebrandt et al. 

2005; Wang et al. 2004) and can be broadly partitioned into two classes namely 

linkage mapping and association mapping. Likelihood and regression approaches 

are used to map QTL for ordinary and linkage mapping to experimental crosses, 

where flanking markers used to infer genotypes in the interval between widely 

spaced markers (Haley and Knott, 1992; Lander and Botstein, 1989). Linkage 

statistics might be calculated at single marker loci with minimal loss in precision 

or power as marker density increases (Kong and Wright, 1994). On the other 



 

 

 

 

 

 

 

 

Sultana, Alamin, Alam, Fan and Mollah: SNP Based Robust …                                99 

 

 

hand, simple association mapping calculated only at the marker loci instead of 

considering the linkage disequilibrium structure between marker loci. 

QTL mapping has proved, and remains, an influential method to recognize regions 

of the genome that co-segregate with a specified trait either in F2 populations or 

Recombinant Inbred Line (RIL) families (Korte and Farlow, 2013). To overcome 

the limitations of the traditional QTL mapping methods, we can use the most 

popular and widely used eQTL analysis. eQTL mapping, an innovative 

combination of traditional quantitative trait mapping and microarray technology, 

is a genetic mapping of genome-wide gene expression or transcriptome. It aims to 

identify genomic locations to which expression traits are linked. eQTL mapping 

studies have been applied in several model organisms and humans recently (Brem 

et al. 2002; Schadt et al. 2003; Morley et al. 2004; Chesler et al. 2005; Stranger et 

al. 2005; WANG et al. 2006). These studies thus far have demonstrated several 

advantages of this line of research from identifying candidate genes (Schadt et al. 

2003) to elucidating regulatory networks (Brem et al. 2002; Schadt et al. 2003; 

Yvert et al. 2003). Some statistical methods for eQTL mapping have been 

discussed by C. M. Kendziorski et al. (2006) and Wang et al. (2011). Fast eQTL 

mapping (FastMap) in homozygous populations has been discussed by Gatti et al. 

(2009). The cost of collecting gene expression and high-density genotype data on 

the identical population have lowered due to current developments of gene 

expression and single nucleotide polymorphism (SNP) microarray machinery 

(Gatti et al. 2009).  

Gatti et al. (2009) reported that recent advances technologies were used to 

produced high-density SNP datasets with thousands of transcripts and millions of 

allele calls in both mice (Frazer et al. 2007b; Szatkiewicz et al. 2008) and humans 
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(Frazer et al. 2007a). The computational challenges for current tools are the 

calculation of the relationship between tens of thousands of transcripts and 

thousands to millions of SNPs. A large number of available SNPs and transcripts 

made these challenges more complicated. Numerous methods have been used to 

overcome these issues including a mutual way of addressing several comparisons 

among markers is a resampling method (Carlborg et al. 2005; Churchill and 

Doerge 1994; Peirce et al. 2006) which is also used by numerous existing QTL 

mapping tools (Broman et al. 2003; Manly et al. 2001; Wang et al. 2003). 

Likelihood ratio statistic (LRS) (Chesler et al. 2005) or the mixture over markers 

method (Kendziorski et al. 2006) used for transcript-specific testing of association 

with SNPs has been beforehand addressed by thresholding transcripts using q-

values (Storey and Tibshirani, 2003) for multiple comparisons among transcripts. 

The challenge of eQTL mapping lies in the fact that there are an enormous amount 

of hereditary variants and gene expression characters, and hence the exploration 

space for potential eQTLs is vast. A possible explanation to the computational 

challenges associated with the eQTL analysis is the parallel computation 

(Carlborg et al. 2005). Gatti et al. (2009) developed the FastMap algorithm and 

implemented it as a Java-based desktop software package that performs eQTL 

analysis using association mapping, where they addressed the growing need for 

eQTL mapping in high-density SNP datasets and the pitiable scalability of the 

current computational tools. They attained computational efficiency over the use 

of a data structure named as Subset Summation Tree (SST). Either single marker 

mapping (SMM) or haplotype association mapping (HAM) by sliding an m-SNP 

window across the genome was performed by FastMap (Pletcher et al. 2004). 

However, existing eQTL mapping algorithms are very much sensitive to outliers. 

Therefore, it is crucial to develop new robust methods which are not affected by 
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outliers. In this paper, we propose a robust fast eQTL mapping algorithm for the 

identification of important genes. We investigate the performance of the proposed 

method in a comparison of the existing method using simulation study. Simulation 

results show that the proposed method performs better than the traditional method 

in presence of outliers; otherwise, it keeps almost equal performance. 

 

2.  Methods and Materials 

The FastMap algorithm used association mapping for eQTL analysis. The input 

data consists of two matrices in association mapping for homozygous inbred 

strains: real-valued transcript expression measurements contained in the first and 

SNP allele calls, coded as 0 for the major allele and 1 for minor allele contain in 

the second matrix. The same number of strains contains in each matrix. SMM or 

HAM by sliding an m-SNP window across the genome was performed by 

FastMap. 

 

2.1 1-SNP sliding window 

The calculation of test statistics (correlation) for SMM in a 1-SNP sliding window 

in association mapping with homozygous inbred strains for a given transcript g 

and SNP s is given below (Gatti et al. 2009): 

cor(𝑔, 𝑠) =  
1

𝑛
∑ 𝑔𝑖 𝑠𝑖

𝑛
𝑖=1  −

1

𝑛2 ∑ 𝑔𝑖
𝑛
𝑖=1 ∑ 𝑠𝑖

𝑛
𝑖=1

√𝑉𝑎𝑟(𝑔) 𝑉𝑎𝑟(𝑠)

                                                                       (1) 

Simplifying the formula, authors assumed without loss of generality that each 

transcript expression vector 𝑔  is centered and standardized such that,    

∑ 𝑔𝑖
𝑛
𝑖=1 = 0 and  ∑ 𝑔𝑖

2𝑛
𝑖=1 = 1                                                                                  (2) 

In this case, the reduces correlation expression is  
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cor(𝑔, 𝑠) =
∑ 𝑔

𝑖 
𝑠𝑖

𝑛
𝑖=1

√𝑛√1

𝑛
∑ 𝑠𝑖

2−𝑛
𝑖=1 ( 

1

𝑛
∑ 𝑠𝑖

𝑛
𝑖=1 )

2
                                                                            (3) 

The denominator of (3) depends upon the Hamming weight of s, which can be 

calculated once for each but the numerator must be calculated for every SNP-

transcript pair. 

To speed up the calculation, the numerator of (3) is denoted by 𝑀𝑔(𝑠): 

𝑀𝑔(𝑠) = 𝑐𝑜𝑣(𝑔, 𝑠) = ∑ 𝑔𝑖

𝑛

𝑖=1

𝑠𝑖 =  ∑ 𝑔𝑖

𝑖:𝑠𝑖 =1

 

Mg(s) is simply the sum of transcript expression values over a subset of samples 

defined by the minor allele of the SNP as the SNPs are binary. To explain how the 

calculation of the Mg(s) can be simplified, consider two SNPs s and 𝑠′that vary 

only at the i-th position (thus s and 𝑠′ have Hamming distance of 1): 

s = (𝑠1,𝑠2, … , 𝑠𝑖−1,𝑠𝑖 = 0, 𝑠𝑖+1, … , 𝑠𝑛) 

𝑠′= (𝑠1,𝑠2, … , 𝑠𝑖−1, 𝑠𝑖
′ = 1, 𝑠𝑖+1,…,𝑠𝑛) 

In this case, the 𝑀𝑔(𝑠′) can be calculated quickly from 𝑀𝑔(𝑠)as follows: 

𝑀𝑔(𝑠′) = ∑ 𝑔𝑖 𝑠𝑖
′ =∑ 𝑔𝑖𝑠𝑖 + 𝑔𝑖(𝑠𝑖

′ − 𝑠𝑖) = 𝑀𝑔(𝑠) + 𝑔𝑖                                           (4) 

The association statistic is the same for SNPs with the same strain distribution 

pattern (SDP) for any given transcript. Hence, the authors calculated the 

association statistic once for each unique SDP. 

 

2.2 Permutation-based significance thresholds 

For a single transcript, the association statistic is calculated between the observed 

values of that transcript and all SNPs. The transcript data are then permuted while 

the SNP data are held fixed. Association statistics are calculated between the 
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permuted transcript values and all SNPs and the maximum association statistic is 

stored. The distribution of the maximum association statistics obtained from 1000 

permutations of the transcript’s values is used to define significance thresholds for 

individual pairs, and to assign a percentile-based p-value to the observed 

maximum association of the transcript across SNPs. Permutation-based maximum 

association test used to get p values to test the multiple comparisons across 

transcripts. 

 

2.3 SNP Based Robust Fast eQTL Mapping (Proposed) 

In this paper, we would like to apply the outlier modification rule for SNP Based 

Robust Fast eQTL mapping as follows: 

 

2.3.1 Robust 1-SNP sliding window 

From equation (3), it is obvious that cor(𝑔, 𝑠), the existing Fast-eQTL mapping 

(Gatti et al. 2009) correlation estimator is very much sensitive to outliers. 

Therefore, an attempt is made to propose a new robust FastMap approach by the 

minimum β-divergence method as follows. 

Outlier detection and modification for gene expressions: 

We used the following equation to detect the outliers  

𝑊𝛽(𝑥𝑖𝑗|𝜃𝑗) = exp {- 
𝛽

2𝜎𝑗
2

(𝑥𝑖𝑗 − 𝜇𝑖)
2},                                                          (5) 

where, 𝜃 = (𝜇𝑗,   𝜎𝑗), 𝑥𝑖𝑗 are the i-th observation (strain) of j-th SNPs  and 𝜇𝑖 is the 

mean of the i-th strains. 

The equation (5) is called the 𝛽-weight function (Mollah et al. 2010). 
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The value of the tuning parameter β plays a key role in the performance of the 

proposed method. It controls the trade-off between robustness and efficiency of 

estimators. We consider the 𝛽 -weight function with 𝛽  = 0.2 as a measure for 

outlier detection.  

where 0 ≤ 𝑊𝛽 ≤ 1. If 𝑊𝛽(𝑔𝑖𝑗) < 0.2,   then we consider 𝑔𝑖𝑗 as an outlier.   

Let us consider 𝑔𝑖𝑗
′   as follow: 

𝑔𝑖𝑗
′ =  [𝑔1𝑗, 𝑔2𝑗, 𝑔̇3𝑗 ,  𝑔̇4𝑗 ,  … ,  𝑔𝑛𝑗]                                                                 (6) 

Suppose, 𝑔̇3𝑗  and 𝑔̇4𝑗 genes are affected by outliers. To overcome this problem, 

these genes values must calculate from the robust mean. After processing by our 

proposed method, we get our desire gene data which is not affected by outliers.  

 

2.3.2 Robust Prewhitening for Gene Expressions 

After outlier detection, we proposed robust pre-processing by β–divergence 

method as follow: 

     𝑔𝛽
′ =  

𝑥−𝜇̂𝑗,𝛽

𝜎̂𝑗,𝛽
2                                                                                                                (7) 

where, 𝜇̂𝑗,𝛽 and 𝜎̂𝑗,𝛽
2
are the robust estimator of mean and variance, respectively. 

We robustify (3) by our proposed minimum β- divergence methods. The proposed 

minimum β-divergence estimators   𝜃𝑗,𝛽  = ( 𝜇̂𝑗,𝛽  , 𝜎̂𝑗,𝛽
2

) of the parameters 

𝜃𝑗  = ( 𝜇𝑗,𝜎𝑗
2) are computed iteratively as follows, 

𝜇𝑗,𝑡+1 =  
∑ 𝑊𝛽(𝑥𝑖𝑗|𝜃𝑗,𝑡)𝑛

𝑖=1 𝑥𝑖𝑗

∑ 𝑤𝛽(𝑥𝑖𝑗|𝜃𝑗,𝑡)𝑛
𝑖=1

 and 𝜎𝑗,𝑡+1
2 = 

∑ 𝑊𝛽(𝑛
𝑖=1 𝑥𝑖𝑗|𝜃𝑗,𝑡)(𝑥𝑗,𝑡−𝜇𝑗,𝑡)2

(𝛽+1)−1 ∑ 𝑤𝛽(𝑥𝑖𝑗|𝜃𝑗,𝑡)𝑛
𝑖=1

                      (8) 
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2.3.3 Flow-Chart for Robust 1-SNP sliding window 

For easily understanding our proposed methods working pathway, we proposed 

the following flowchart: 

 

 

3. Results and Discussion 

We have performed a simulation study to compare the performance of our 

proposed method with the existing FastMap method for identifying important 

genes. 

 

3.1 Single SNP association 

We have considered that gene expression is controlled by a single SNP. That is, 

particular gene expression is associated or correlated with a single SNP. To 

illustrate the performance of the proposed method in a comparison of the FastMap 

method, in our simulation study we have considered 50 individuals (or strains) 

and generate 100 SNPs where each containing 50 observations (strains). We have 

considered 5 SNPs per each of the 20 chromosomes. We have considered the gene 

expression controlled from the association between 25
th

 gene and at 21
st
 SNP. We 

have performed the simulation 100000 times. 
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We have calculated correlations between SNPs and gene expressions. Then we 

have plotted the SNPs along the X-axis and the corresponding absolute 

correlations along the Y-axis. The black color with the solid line indicated 

classical method, whereas dotted line with the red color indicated by the proposed 

method. Figure 1(a) shows that the association is detected correctly by the 

FastMap and our proposed method at 21
st
 SNP in the absence of outliers. To 

investigate the robustness of the proposed method in a comparison of the 

FastMap, we contaminated dataset by 20% outliers. Figure 1(b) shows the plot of 

SNPs along the X-axis and the corresponding correlation along the Y-axis in the 

presence of contaminated dataset. However, Figure 1(b) shows that the classical 

FastMap method fails to detect the association correctly at 21
st
 SNP in the 

presence of outliers. But our proposed method can detect the association correctly 

at the 21
st
 SNP in the presence of outliers.  

 

Figure 1: Single SNP association. (a) In absence of outliers                                                          

(b) In presence of outliers 

(a) (b)
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3.2 Two SNPs association 

To illustrate the performance of the proposed method in a comparison of FastMap 

method for gene expression dataset, we considered that a particular gene 

expression is controlled by two SNPs in absence and presence of outliers in the 

datasets. That is, a particular gene expression is associated or correlated with two 

SNPs. In our simulation study, we have considered 50 individuals (or strains) and 

generate 100 SNPs where each containing 50 observations (strains). We have 

considered 5 SNPs per each of the 20 chromosomes. We have considered the gene 

expression controlled from the association between 25
th

 gene and at 55
th

 and 95
th

 

SNP. We have performed the simulation 100000 times. 

We have calculated correlations between SNPs and gene expressions. Then we 

have plotted the SNPs along the X-axis and the corresponding correlations along 

the Y-axis. Figure 2(a) shows that the association is detected by the FastMap and 

our proposed method correctly at 55
th

 and 95
th

 SNP in the absence of outliers. To 

investigate the robustness of the proposed method in a comparison of the 

FastMap, we contaminated dataset by 20% outliers. Figure 2(b) shows that the 

FastMap method fails to detect the association correctly at 55
th

 and 95
th

 SNP in 

the presence of outliers. But our proposed method can detect the association 

correctly at the 55
th

 and 95
th

 SNP in the presence of outliers in case of two SNPs 

association. 
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Figure 2: Two SNPs association. (a) In absence of outliers 

(b) In presence of outliers 

 

3.3 Correlation plot of genes with single and multiple SNPs 

Correlogram is a graph of the correlation matrix. It is very useful to highlight the 

most correlated variables in a data table. We generated 20 genes and 20 SNPs. 

Here we considered single, two and three SNPs on different genes to see their 

respective correlation. We considered that the first gene expression depends on 

first SNP, 5
th

 gene expression depends on 3
rd

 and 10
th

 SNPs, and the 10
th

 gene 

expression depends on 6
th

, 8
th

 and 10
th

 SNPs in the absence of outliers. The color 

intensity and the size of the circle are proportional to the correlation coefficients. 

From Figure 3(a), we see that the color intensity and the size of the circle 

corresponding to the first gene and first SNP is high. So, we can say that 1
st
 gene 

expression controlled by 1
st
 SNP. From Figure 3(a), we see that gene color 

(a) (b)
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intensity and the size of the circle corresponding to the 5
th

 gene with 3
rd

 and 10
th

 

SNPs are high. Form this figure; we can say that 5
th

 gene influence by 3
rd

 and 10
th

 

SNPs. Similarly, from Figure 3(a), we see that gene color intensity and the size of 

the circle corresponding to the 10
th

 gene corresponding to 6
th

, 8
th

 and 10
th

 SNPs 

are high. Form this figure we can say that 10
th

 gene expression controlled by 6
th

, 

8
th

 and 10
th

 SNPs. So, we can conclude that in the absence of outliers, FastMap 

detects the true expression. We also generated a correlation plot in case of 

contaminated data. Here we also considered the same number of genes and SNPs 

position as mentioned above to see the genes and SNPs correlation. We 

contaminated dataset by 20% outliers. In the case of outliers, from Figure 3(b), we 

see that the color intensity and the size of the respective genes corresponding to 

SNPs reduced and some cases give misleading results. So, form Figure 3(b), we 

can conclude that the correlation between genes and SNPs are not correctly 

detected in the case of outliers by FastMap.   

 

Figure 3: Correlogram for Genes and SNPs (a) In absence of outliers  

(b) In presence of outliers 

(b) In presence of outliers (a) In absence of outliers 
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Figure 4: Correlogram for Genes and SNPs after modification of outliers. 

 

Again we generated the data after modification of outliers with the same genes 

and SNPs position as mentioned above to see the genes and SNPs correlation. We 

modified our dataset by our proposed method. After modification of dataset, we 

apply FastMap and see the result, which is given in Figure 4. In the case of 

outliers modification, we see that the correlation results between genes and 

corresponding SNPs are similar to the original dataset (Figure 4). From Figure 4, 

we see that the correlation between genes and SNPs are like as an original dataset 

correlation. So, we conclude that our proposed method performing well after 

modification dataset.  
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4. Conclusions 

In this paper, we discuss the proposed SNP based Robust Fast eQTL mapping for 

the identification of essential genes. We discuss classical SNP based FastMap 

approach and our proposed methods. For outlier modification, we use the 

minimum β-divergence method. First, we detect the outlier by β-weight function 

then we replace outlier data points by its respective robust mean produced by the 

minimum β-divergence method. The value of the tuning parameter β plays a key 

role in the performance of the proposed method. We discuss the simulation study 

of the proposed method in comparison with FastMap-eQTL mapping method. The 

parameters of this model are estimated by maximizing β-likelihood function. The 

value of the tuning parameter β plays a key role in the performance of the 

proposed method. An appropriate value for the tuning parameter β is selected by 

cross-validation. Simulation studies show that the proposed method significantly 

improves the performance over the FastMap-eQTL in the absence of outlier. 

However, in the presence of outlier, our proposed method is performing better 

than the FastMap method to detect the important gene correctly in case of single 

and two SNPs. From correlation results between genes and SNPs, we conclude 

that our proposed method performs better than the classical FastMap method. 
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