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Abstract 

 

In this paper, a comparative study of two risk functions based on Modified Linear 

Exponential (MLINEX) and Squared Error (SE) loss functions for a class of suitably 

chosen life-time distributions has been made.  
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1.  Introduction 
 

The class of life-time distributions introduced by Prakash and Singh [5] is 

important in survival analysis. Suppose a random variable X follows a distribution 

presented by a class of probability density functions in (1) with unknown 

parameter 𝜃 and two known positive constants 𝑏 and 𝑐:  
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It can be seen that for different values of 𝑏 and 𝑐 the model (1) reduces to negative 

exponential distribution, two-parameter gamma distribution, Erlang distribution, 

two-parameter Weibull distribution, Rayleigh distribution and Maxwell 

distribution.   

Properties of different life-time distributions (such as exponential distribution, 

Weibull distribution, two-parameter gamma distribution and Maxwell’s velocity 

distribution) have been studied by Abu-Talebet.et. al. [1], Ahmed et. al. [2], Son 

and Oh [6] and Tyagi and Bhattacharya [7] etc. Prakash and Singh [5] discussed 

the technique of Bayesian shrinkage estimation in a class of life testing 

distribution. 

The purpose of this paper is to study and compare the risk functions for the 

parameter of the class of life-time distributions (1) using MLINEX and SE loss 

functions.  

 

 

2.   Preliminary Theory 

Let X  be a random variable whose distribution depends on the parameter   and 

let   denotes the parameter space of possible values of  . Now consider the 

general problem of estimating the unknown parameter  , from the results of a 

random sample of n  observations. Denoting the sample observations nxxx ,,, 21 
 

by x , let ̂  be an estimate of   and also let   ,ˆL  be the loss incurred by taking 

the value of the parameter   to be ̂ . The risk function   ,ˆR  is the expected 
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value of the loss function with respect to the joint distribution of sample 

observations. 

If  xl |  is the likelihood function of   given the sample x  and    is the prior 

density of  , then combining  xl |  and   , the Bayes’ estimator ̂  of   will 

be a solution of the equation 
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where L  stands for loss function. It is assumed that necessary regularity 

conditions prevail to permit differentiation under the integral sign. 

Here, the following loss functions are considered:  
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where c and   are scale characteristics and   is a shape characteristic of  the 

above loss functions. 

The loss functions 1L  is a modified linear exponential (MLINEX) loss function 

which an asymmetric one and 2L  is the usual squared-error loss function. 

 

3.  Main Results 

Let us consider the case of estimating the single parameter   of the class of life-

time distributions in the model (1). The likelihood function of (1) is given by 
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where 
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The maximum likelihood estimator of   is 
nb

T , where T is defined above.  𝑇 is 

also a complete sufficient statistic for 𝜃. It is noted that the part of the likelihood 

function which is relevant to Bayesian inference on the unknown parameter   is 

T

nb
e 



1
1 

. 

Since the parametric range for the class of distributions (1) is 0 to  , therefore 

according to the Jeffreys’ [5] rule of thumb, the Jeffreys’ prior becomes 

    0;
1

 


 ,             (6) 

By combining (5) and (6), we obtain the posterior distribution of  as   

   
 

.0,0;
1

|

1

1








Te

nb

T
x

T

nb

nb




            (7) 

The mean and variance of the posterior distribution (7) are 
 1nb

T
 and 

   21
2

2

 nbnb

T
 respectively. 
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Substitution from (6) and (5) in (2) yields the Bayes’ estimator ̂  of   as a 

solution of  
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For the loss function given by (4), it follows from (8), 
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from which it follows that 
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Hence the Bayes’ estimator ̂  for the loss function (3) is given by  

  KTB ̂ ,              (9) 

where
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Again, for the loss function given by (4), it follows from (8) that the Bayes’ 

estimator ̂  is given by  
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from which it follows that 
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which is same as the mean of the posterior distribution (7). Since x  is generated 

from a class of life-time distributions in (1) with parameter  , then 
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distributed as a gamma distribution with parameters nb  and ,
1


 i.e., 
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The probability density function of T is 
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The mean and variance of the distribution (11) are nb  and 
2nb  respectively. 

We are interested in finding the risk functions for the estimators B̂  and Ŝ  with 

respect to MLINEX and SE loss functions considered in (3) and (4). 

The risk function of the estimator B̂  with respect to MLINEX is given by 
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Here 

   
 BE ˆ , 

and     KTEE B lnˆln   

  =  TEK lnln  . 

For simplicity, 
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Using a transformation Ty
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 , we obtain 
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1expln dyyyynb nb
 is the first differentiation of  nb  with 

respect to n . 

Thus    
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By using the above results, (12) yields 
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which is independent of the parameter   and hence B̂  is a minimax estimator of 

 ; vide Lehmann [4]. 

Similarly, the risk function of the estimator 
Ŝ  with respect to MLINEX loss 

function is  
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The risk functions   ,ˆ
BMLR  and   ,ˆ

SMLR  involving the expression of gamma

   and di-gamma    functions are complicated. 

The risk functions of the estimators B̂  and 
Ŝ  with respect to SE loss function 

are as follows:  
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Both the risk functions (15) and (16) under squared error loss function are 

quadratic in   and it is concluded that when 1 , the two estimators and hence 

their risks coincide. 

The above risk functions of the estimators B̂  and 
Ŝ  with respect to MLINEX 

and SE loss functions are free from c . For different life-time distributions, such as 

negative exponential, Weibull and Rayleigh, it has been found that when 1b , 

the Bayes’ estimators of the parameter   under MLINEX and SE loss functions 

are different but the underlying risk functions of the two estimators are identical. 

Again when 1b , 
2

3
b  and b integer value, the above risk functions are the 

Bayes’ estimators of the parameter   of gamma distribution, Erlang distribution 

and Maxwell distribution respectively. 

MLINEX and SE risk functions have been computed for different values of the 

parameter and the results are presented in the following tables. 

 

      Table 1: MLINEX and SE risks for 1 , 1b , 3  and 10n  

 

    ,ˆ
BMLR    ,ˆ

SMLR    ,ˆ
BSR    ,ˆ

SSR  

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

0.5358 

0.5358 

0.5358 

0.5358 

0.5358 

0.5358 

0.5358 

0.5358 

0.5358 

0.5358 

0.5358 

0.5358 

0.6131 

0.6131 

0.6131 

0.6131 

0.6131 

0.6131 

0.6131 

0.6131 

0.6131 

0.6131 

0.6131 

0.6131 

0.0559 

0.2237 

0.5034 

0.8949 

1.3983 

2.0136 

2.7407 

3.5797 

4.5306 

5.5933 

6.7679 

8.0543 

0.0340 

0.1358 

0.3056 

0.5432 

0.8488 

1.2222 

1.6636 

2.1728 

2.7500 

3.3951 

4.1080 

4.8889 
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       Table 2: MLINEX and SE risks for 2 ,
2

3
b , 2  and 20n  

    ,ˆ
BMLR

 

  ,ˆ
SMLR    ,ˆ

BSR    ,ˆ
SSR  

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

0.1391 

0.1391 

0.1391 

0.1391 

0.1391 

0.1391 

0.1391 

0.1391 

0.1391 

0.1391 

0.1391 

0.1391 

0.1404 

0.1404 

0.1404 

0.1404 

0.1404 

0.1404 

0.1404 

0.1404 

0.1404 

0.1404 

0.1404 

0.1404 

0.0099 

0.0397 

0.0894 

0.1589 

0.2483 

0.3576 

0.4867 

0.6357 

0.8046 

0.9933 

1.2019 

1.4304 

0.0092 

0.0369 

0.0829 

0.1474 

0.2304 

0.3317 

0.4515 

0.5898 

0.7464 

0.9215 

1.1150 

1.3270 

 

 

       Table 3: MLINEX and SE risks for 3 , 2b , 1  and 30n  

 

    ,ˆ
BMLR    ,ˆ

SMLR    ,ˆ
BSR    ,ˆ

SSR  

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0254 

0.0044 

0.0175 

0.0394 

0.0701 

0.1095 

0.1577 

0.2147 

0.2804 

0.3549 

0.4381 

0.5301 

0.6309 

0.0044 

0.0175 

0.0394 

0.0701 

0.1095 

0.1577 

0.2147 

0.2804 

0.3549 

0.4381 

0.5301 

0.6309 
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Table 4: MLINEX and SE risks for 1 , 1b , 1  and 10n  

 

    ,ˆ
BMLR    ,ˆ

SMLR    ,ˆ
BSR    ,ˆ

SSR  

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

0.0498 

0.0498 

0.0498 

0.0498 

0.0498 

0.0498 

0.0498 

0.0498 

0.0498 

0.0498 

0.0498 

0.0498 

0.0556 

0.0556 

0.0556 

0.0556 

0.0556 

0.0556 

0.0556 

0.0556 

0.0556 

0.0556 

0.0556 

0.0556 

0.0250 

0.1000 

0.2250 

0.4000 

0.6250 

0.9000 

1.2250 

1.6000 

2.0250 

2.5000 

3.0250 

3.6000 

0.0340 

0.1358 

0.3056 

0.5432 

0.8488 

1.2222 

1.6636 

2.1728 

2.7500 

3.3951 

4.1080 

4.8889 
 

       Table 5: MLINEX and SE risks for 2 ,
2

3
b , 2  and 20n  

 

    ,ˆ
BMLR    ,ˆ

SMLR    ,ˆ
BSR    ,ˆ

SSR  

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

0.1322 

0.1322 

0.1322 

0.1322 

0.1322 

0.1322 

0.1322 

0.1322 

0.1322 

0.1322 

0.1322 

0.1322 

0.1427 

0.1427 

0.1427 

0.1427 

0.1427 

0.1427 

0.1427 

0.1427 

0.1427 

0.1427 

0.1427 

0.1427 

0.0081 

0.0325 

0.0732 

0.1301 

0.2033 

0.2927 

0.3984 

0.5204 

0.6586 

0.8131 

0.9838 

1.1709 

0.0092 

0.0369 

0.0829 

0.1474 

0.2304 

0.3317 

0.4515 

0.5898 

0.7464 

0.9215 

1.1150 

1.3270 
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     Table 6: MLINEX and SE risk functions for 3 , 2b , 3  and 30n  

 

    ,ˆ
BMLR    ,ˆ

SMLR    ,ˆ
BSR    ,ˆ

SSR  

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

0.2230 

0.2230 

0.2230 

0.2230 

0.2230 

0.2230 

0.2230 

0.2230 

0.2230 

0.2230 

0.2230 

0.2230 

0.2384 

0.2384 

0.2384 

0.2384 

0.2384 

0.2384 

0.2384 

0.2384 

0.2384 

0.2384 

0.2384 

0.2384 

0.0041 

0.0164 

0.0369 

0.0656 

0.1025 

0.1475 

0.2008 

0.2623 

0.3320 

0.4098 

0.4959 

0.5902 

0.0044 

0.0175 

0.0394 

0.0701 

0.1095 

0.1577 

0.2147 

0.2804 

0.3549 

0.4381 

0.5301 

0.6309 

 

 

4. Discussion 
 

It is evident from the tables that, in every case considered, except for 1 , the 

MLINEX risk   ,ˆ
BMLR  is uniformly smaller than   ,ˆ

SMLR , when 0  and 

0b . This implies that in case of the MLINEX loss function, the MLINEX 

estimator B̂  is better compared to the SE estimator 
Ŝ . When 1 , the two 

estimators and hence their risk functions are identical. 

Again, when 1 , the risk of B̂  with respect to the SE loss function is always 

greater than that of Ŝ . 
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Therefore in this case, 
Ŝ  is better compared to the estimator B̂  when SE loss 

function is considered. When  

1 , then the two risks are equal and either estimator is admissible but when

1 , then     ,ˆ,ˆ
SSBS RR  , implying B̂  is admissible with respect to SE 

loss function. 
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