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Abstract  

Analysis of ecological data is complex because the data structure in any ecological set up 

is in itself complex. In many cases, the normality assumption is often violated and as such 

fitting the normal linear models to ecological data is not at all the usual way. There are 

variety of other methods which are conflicting in themselves and so choosing an 

appropriate one is another point of discussion. In this paper, the abundance of earthworm 

species is investigated through various soil and environmental characteristics in three 

subtropical forest ecosystems of Manipur, India. Counts of different earthworm species 

are being observed in three subtropical forest ecosystems of Manipu; viz. Mixed 

Reserved forest, it is disturbed forest and Plantation forest during the 12 months of the 

year. The count of species of a particular type of earthworm observed during the twelve 

months of the year is regressed on 9 soil characteristics. Three random effects quasi-

Poisson models consisting of continuous predictor variables are fitted separately for the 
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three different sites. The main effects models and interaction effects model are separately 

interpreted for all the three sites. Adequacy of fitted models are checked by using 

diagnostic plots. Soil temperature and soil moisture are two dominant characteristics 

which significantly influence the abundance of earthworm in all three sites. Carbon, 

nitrogen and phosphorous are also significant predictors of earthworm abundance. Some 

interaction effects also contribute to species abundance.  
 

Keywords: Quasi-Poisson model, Main effects, interaction effects, random effects, 

diagnostics. 

AMS Classification: 62J99. 

 

 

1. Introduction 

 

The field of ecological data modelling has grown amazingly complex over the 

years. One of the greatest challenges in modelling ecological data by way of 

learning statistics is to figure out how the various methods relate to each other and 

determining which method is most appropriate for any particular problem. There 

are a number of statistical methods available to ecologists which are derived and 

available in the literature as a consequence of the fact that ecological data is 

complex. However, no single method can accommodate the myriad problems we 

encounter with ecological data. Thus, we have to look for various methods 

available and derive a meaningful model to choose while seeking for an 

appropriate analysis. 
 

Any statistical model typically consists of two parts, a deterministic component 

and a stochastic component, the later usually designated as error component. Most 

of the differences among methods are due to differences in the assumptions about 
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Singh and Singh: Modelling Abundance of Earthworm …                                         63 

 

 

either the response variable, the deterministic component, or the error component, 

and most are extensions or modification to the basic general linear model that 

expresses the response Y as linear function of predictor X, where all observed 

values are assumed to be independent and normally distributed with a constant 

variance. In the present study, we consider count of species of earthworm as 

response Y variable and a set of soil characteristics as vector of predictor variables 

X and then develop a multivariable model which takes care of all possible 

modelling steps. 
 

Soil animals are of immediate concern in activities related to agriculture, forestry 

and environment monitoring, (G. Sileshi
[2]

, 2008). However, the complexity and 

diversity of soil animals and habitats in which they live pose challenges to those 

who seeks to quantify the effects of land use and management practices on the 

abundance soil animals, (Lavelle et al
[4]

., 2003; Susilo et al
[8]

., 2004). Earthworms 

are widely distributed in most ecosystems in natural and plantation forest, 

grasslands and agro-ecosystem. Earthworms represent a major portion (>80%) of 

the soil invertebrate biomass and involve in the process of soil formation and 

maintenance of soil fertility. Distribution and abundance of earthworms are 

governed by several ecological factors viz. soil temperature, soil moisture, soil pH 

value, available organic matters etc. The number of species in a given earthworm 

community, which is the simplest measure of species diversity range from 1 to 15 

species (Edwards and Bohlen
[1]

, 1996). The diversity of the earthworm 

community at a given locality is influenced by the characteristics of the soil, 

climate and organic resources of the locality as well as its history of land use and 

soil disturbance. Earthworms perform several beneficial functions which include 

decomposition of organic matter that helps in increasing soil nutrients, increase air 
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water infiltration, soil aggregation, increase the availability of plant nutrients, 

worm cast as bio-fertilizer etc. 

1.1 Research gap 

While modelling soil animals, the method described by Anderson and Ingram 

(1993) has been widely used. However, one of the problems with data collected 

using their method is the strong spatial aggregation of soil animals (Lavelle et al. 

2003). Soil animals often exhibit patchy distribution thereby causing very few or 

very large observed counts of species. We encounter in the present study the 

problem of a large no. of zero counts in some earthworm species. When the 

frequency of zeroes is very large the data do not readily fit to standard 

distributions, wherein the problem of overdispersion arises subsequently and 

consequently, the ordinary Poisson regression gives a biased estimate. If not 

properly modelled overdispersion leads to underestimation of the standard errors 

of regression parameters, thereby resulting in biased estimation of ecological 

effects and jeopardise the integrity of scientific data. We have tried to make up the 

gap while fitting overdispersed data using alternative models existed in the 

literature and further examined the adequacy of the fitted models. 

 

2  Source of Data 

In this paper, data on count of species of 12 earthworm species collected from 

three subtropical forests ecosystems of Manipur (India) are used. The three forest 

ecosystem are (1) Mix reserve sub-tropical forest ecosystem located at Koirengei 

(240 52′51.36′′  North latitude and 93054′ 49 ⋅ 75′′  East longitude and altitude 

800–917m above MSL); (2) Oak dominated Langol Hills 

24052151.6N and 93055′26.59′′E  and altitude of 797 −  848 m above MSL (3) 
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Managed oak plantation Forest (valley area) at Mantripukhri ( 24052′ 52 ⋅

9′′N, 93056′0 ⋅ 16′′E  and altitude of 786m above MSL). Data were collected in 

the twelve months of the year. We designated the three forest ecosystems as Site 

1, Site 2 and Site 3 respectively. All three sites have different types of biotic 

interference. Site 1 is located 11 km from Imphal city having an area of 25 

hectares and the collection site is protected from various biotic interference and 

Site 2 is located at Langol Hills 8 km. from Imphal city where frequent biotic 

interference takes place. Site 3 is managed oak plantation forest ecosystem at the 

valley area of Mantripukhri 4 km. north of Imphal city. Number of different 

earthworm species are collected from six different locations (replicates) at each of 

the study sites during January to December. A maximum of 12 different species 

are found in Site 1 whereas only 6 and 4 different species are found in Site 2 and 

Site 3 respectively. Each replicate has a depth of 10 cm inside the soil from the 

surface. Some of the locations shows 0 counts of a particular species in a 

particular month.  Data on the number of counts of species are thus obtained for 

the 12 months of the year during 2012 and 2013 (Sharon Haokip
[7]

, 2015). 

Altogether, there are 216 (12x6x3) sampling points. Measurements on 9 soil and 

environmental characteristics are recorded for each sampling point at the time of 

species collection. The nine soil characteristics are Soil Temperature (Temp), Soil 

Moisture (Moist), Soil bulk density (bdensity), Soil porosity (porosity), Soil 

pH(pH), soil carbon, soil nitrogen, Phosphorous (p) and Potassium (k). 

 

3. Objectives 

The primary objective of this study to investigate the abundance of earthworm 

species, its variability in these three different forest ecosystems of Manipur. 

Regression models are attempted in order to fit the count of species on soil and 
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environmental variables. Thus, the objective is to develop a suitable multivariate 

model for count of earthworm species on various soil characteristics in a 

parsimonious environment. Different sites have different levels of soil 

characteristics which affect the earthworm abundance, thereby three different 

models in three different sites are attempted. This will include various steps 

demonstrated in the model building strategies.   

 

4. Modelling Strategies 

Regression modelling of the relationship between an outcome variable and 

independent predictor variables is commonly employed in virtually all fields of 

research. The popularity of this approach is due to the fact that biologically 

plausible models may be easily fitted, evaluated and interpreted. Every model 

building strategy would include a thorough understanding of the data structure to 

choose a suitable model from a variety of models available in the literature. 

Statistically, the specification of a model requires choosing both systematic and 

error components. The choice of the systematic component involves an 

assessment of the relationship between an average of the outcome variable and the 

independent variables. The choice of an error component involves specifying 

distribution of what remains to be explained after the model is fitted (the 

residuals), (McCullagh
[5]

, P.,1983). 

A good place to start is to use a model with linear systematic component and 

normally distributed errors, the normal linear regression model. However, when 

the outcome variable is a count variable the assumption of normal error is often 

misinterpreted because the count dataset shows a skewed distribution. Thus, the 

use of normal linear regression for the count of species is not a suitable model.  
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4.1 The Poisson Regression Model 

An alternative and more appropriate model when the response variable is count 

data would be the Poisson regression which is a generalization of the general 

linear model. Poisson regression is similar to regular multiple regression except 

that the dependent (Y) variable is an observed count that follows the Poisson 

distribution. Thus, the possible values of Y are the nonnegative integers: 0, 1, 2, 3, 

and so on. It is assumed that large counts are rare. Hence, Poisson regression is 

similar to logistic regression, which also has a discrete response variable. 

However, the response is not limited to specific values as it is in logistic 

regression. The approach for developing the final model will be the same except 

for the error component which will be assumed to be distributed as Poisson with 

some non-negative parameter, (McCullagh, P. and J. Nelder
[6]

, 1989). 

The Poisson distribution models the probability of y incidences with the formula 

Pr(Y=y/µ) =  
ⅇ−𝜇𝜇𝑦

𝑦!
 (y = 0, 1, 2, 3…)         (1) 

The Poisson distribution is specified with a single parameter μ. This is the mean 

incidence rate of a rare incidence per unit of exposure. Because exposure is often 

a period of time, we use the symbol t to represent the exposure. The parameter μ 

may be interpreted as the risk of a new occurrence of the event during a specified 

exposure period, t. The probability of y incidences is then given by 

Pr(Y=y/µ,t) =  
ⅇ−𝜇𝑡(𝜇𝑡)𝑦

𝑦!
 (y = 0, 1, 2, 3…)         (2) 

In Poisson regression, we suppose that the Poisson incidence rate µ is determined 

by a set of k regressor variables (the X’s). The expression relating these quantities 

is  

µ = t exp(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘)          (3) 
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The regression coefficients 𝛽0 , β1, β2…, βk are unknown parameters that are 

estimated from a set of data. Using this notation, the fundamental Poisson 

regression model for an observation i is written as 

 P(Yi =yi/𝜇𝑖𝑡𝑖) = 
ⅇ−𝜇𝑖𝑡𝑖(𝜇𝑖𝑡𝑖)𝑦𝑖

𝑦𝑖!
                       (4) 

Where 𝜇𝑖 = ti exp(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖) 

That is, for a given set of values of the regressor variables, the outcome follows 

the Poisson distribution. 

The regression coefficients are estimated using the method of maximum 

likelihood.  

 

4.2 Developing the multivariable model 

We start with a bivariate analysis in the sense that the response variate i.e. the 

count of species is fitted in a Poisson regression with all the predictor variables (9 

soil characteristics) separately i.e. one predictor variable at one time.  

Where Y = Count of species, Xi = ith predictor variable, i = 1,… , 9 

The observed data on count of species is first checked to ascertain whether 

normality assumption can be valid. Using the Shapiro-wilks test for normality all 

three data sets corresponding to the three sites show significant p-values which 

indicates violation of normal distribution. Graphical verification reassures that the 

assumption of normality is far beyond hope. The histogram is skewed to the right 

which is typical of count data.  Possible transformations on the count of species 

such as logarithmic or square root do not show any improvement to validate 

normality assumption. Thus, we have to take recourse to Poisson regression model 

in order to suitably fit the count data on the soil and environment variables. 
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However, another difficulty arises in the present data while fitting a Poisson 

model. In the general Poisson distribution, the assumption is that mean and 

variance are equal, if not and if variance is larger than the mean, the fitting is not 

appropriate due to problem of overdispersion. Overdispersion is a problem which 

arises when the conditional variance (residual variance) is larger than the 

conditional mean, (Julian J. Faraway
[3]

, 2006).  The present data requires to 

address the problem of overdispersion. Two alternative solutions are available in 

the literature: a) fit it by using the method of quasi likelihood, call it quasi-

Poisson, b) Change the model to negative binomial distribution. We choose the 

first one and fit the model using quasipoisson. 

The influence of a particular site on earthworm abundance is of particular interest 

in this study, so that effect of site is considered fixed.  All other soil characteristics 

which are thought to be potential regressors of earthworm abundance are 

continuous random effects. Three separate models one for each site are attempted 

separately for each site in order to identify those soil characteristics which could 

significantly influence the abundance of earthworm species of type 1(Drawida 

Japanica). All other species types are not considered in this study. In each model, 

analysis is based on 72 sample points which are collected from 6 different 

locations/replication in 12 months of the year. 

First, we begin with a bivariate analysis i.e. species count is regressed on each of 

the soil variables taken one at a time. Those variables which are significant at 5-

10% is considered as a potential candidate in the multivariable model. We use R 

software package to fit the above model. The result of bivariate analysis shows 

that all of the soil variables are significant at 5% level, thereby indicating that all 

are potential candidates to include while developing the multivariable model in all 
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the three sites. The result of fitting bivariate analysis is shown in Table 1 for site 

1. The same analysis is also carried out for site 2 and site 3, but for the sake of 

space the results are not presented.  

Next to the bivariate analysis is to attempt a full main effects model which seeks 

to retain all influential variable as significant predictors. We employ a forward 

addition technique to expand the model starting from a simple one which includes 

only one variable. In this, we fit a quasipoisson model containing only the variable 

“Temp” call it fit1. Next, we add one more variable “Moist” to fit1 and call it fit2.  

The two models are then compared to see whether there is any improvement in the 

2
nd

 fit over the 1
st
 fit. A significant F-value in the “anova (fit1, fit2, test=’F’)” (R 

command) indicates that the later fit is well improved over the earlier fit. Thus, in 

fit2 with two variables shows significant improvement over fit1. We retain both 

the variables. However, in fit3 where one more variable “bdensity” is added to 

fit2, we cannot see any improvement, thereby supporting to remove “bdensity” 

and retain the earlier fit2. The process of adding a new variable in the existing fit 

and then checking if there is any improvement in the new fit over the former fit 

continues till all variables are exhausted. Finally, in site 1, the main effects model 

consists of five factors viz. Temp, Moist, pH, carbon and nitrogen.  Thus, the 

adjusted main effects model in site 1 is  

 𝜇1 = 𝑡. ⅇ𝛽0+𝛽1𝑇ⅇ𝑚𝑝+𝛽2𝑀𝑜𝑖𝑠𝑡+𝛽3𝑝𝐻+𝛽4𝑐𝑎𝑟𝑏𝑜𝑛+𝛽5𝑛𝑖𝑡𝑟𝑜𝑔ⅇ𝑛         (5) 

The same technique is applied to Site 2 and Site 3 where we get two different 

main effects model as shown in equations (6) and (7) 

𝜇2 = 𝑡. ⅇ𝛽0+𝛽1𝑇ⅇ𝑚𝑝+𝛽2𝑀𝑜𝑖𝑠𝑡+𝛽3𝑛𝑖𝑡𝑟𝑜𝑔ⅇ𝑛           (6) 

 

𝜇3 = 𝑡. ⅇ𝛽0+𝛽1𝑇ⅇ𝑚𝑝+𝛽2𝑀𝑜𝑖𝑠𝑡+𝛽3𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦+𝛽4𝑝𝐻+𝛽5𝑐𝑎𝑟𝑏𝑜𝑛+𝛽6𝑃        (7) 
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where 𝜇1  , 𝜇2  and 𝜇3  are the respective means in the three sites, 𝛽′𝑠  are the 

regression coefficients. 

The results of fitting the three models are presented in Tables 2(A), 2(B) and 2(C). 

It consists of the estimated coefficients, std. error and t- values with associated p-

values.  For Site 1 three variables viz. Temp, carbon and nitrogen are significant at 

5% level. The variable pH is nearly significant (at 6% level) and so we retain it. 

Even though the variable Moist is not significant we keep it because of its 

importance in the interaction effects. In Site 2, all three variables Temp, Moist and 

nitrogen are significant and in Site 3, Temp, carbon and P are significant. Also the 

variable Moist is nearly significant (at 9% level) and so we retain it. 

Before further expanding the model by including interaction effects we perform 

the diagnostics of the fitted models which checks for adequacy of the models. The 

diagnostic plots for the fit in equation (7) are shown in Figure 2 for Site 3. The 

residuals vs fitted plot shows that so far, the fit is good as there is no obvious 

pattern on the line and the residuals are more or less equally spread around the 

horizontal line. The normal Q-Q plot supports that the residuals are normally 

distributed. Further there are no influential observations in the fit (Cook’s 

distance). The diagnostic plots for Site 1[eqn. (5)] and Site 2 [eqn. (6)] also 

support reasonably good fits which for the sake of space, are not shown.  At this 

stage, we can well assume that the variables in the three respective models are 

good predictors of the count of species in the respective sites.  

The next step is to see whether there is any interaction effect of each of the 

predictors in the main effects models which could significantly influence the 

earthworm counts so that we can arrive at a final multivariate interaction model. 

Here, we will consider only two factor interaction. Only those variables which are 
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significant at 5% are considered for inclusion in the interaction. The reason is that 

an interaction term cannot be significant if the any of its factors is not significant. 

 

4.3 Final Interaction models 

The method of forward addition is again employed here in order to arrive at a final 

interaction model. In Site1, only one interaction is considered important i.e. 

carbon:nitrogen. Other interactions do not show any significant improvement in 

the final model, so we remove them [Table 3(A)]. In Site 2, also one interaction is 

included i.e. Temp:Moist [Table 3(B)]. And in Site 3, None of the interactions are 

significant. In other words, by adding any of the possible interactions the fit does 

not improve the model. Hence, we retain only the main effects model, [Table 

3(C)]. 

 

5. Adequacy of fitted models 

While interpreting a fitted model it is first checked for model adequacy in order to 

verify whether the data fits well into the proposed model. The steps for checking 

model adequacy is similar to the one already discussed in the main effects models. 

A graphical display of diagnostic plot is shown in Fig. 3 for Site 1, where we can, 

at this stage assume that there is no evidence of lack of an adequate fit. The 

residuals vs fitted plot shows the fit is good as there is no obvious pattern on the 

line and the residuals are more or less equally spread around the horizontal line. 

The normal Q-Q plot supports that the residuals are normally distributed. Further 

there are no influential observations in the fit (Cook’s distance). The diagnostic 

plots for Site 2[eqn. (9)] and Site 3 [eqn. (10)] also support reasonably good fits 

which for the sake of space, are not shown.  
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5.1 Model Summary  

Site 1: Mix reserve sub-tropical forest ecosystem located at Koirengei protected 

from frequent biotic interference. 

𝐸(𝑌) = 𝜇1 =

ⅇ−2.73+0.0267𝑇ⅇ𝑚𝑝+0.012𝑀𝑜𝑖𝑠𝑡−0.248𝑝𝐻+1.86𝑐𝑎𝑟𝑏𝑜𝑛+18.33𝑛𝑖𝑡𝑟𝑜𝑔ⅇ𝑛−4.96𝑐𝑎𝑟𝑏𝑜𝑛∗𝑛𝑖𝑡𝑟𝑜𝑔ⅇ𝑛                                                                                                                          

                                                                                                                               (8)                    

Site 2: Disturbed forest at Langol Hills - disturbed forest ecosystem where 

frequent biotic interference takes place. 

𝐸(𝑌) = 𝜇2 = ⅇ−2.745+0.125𝑇ⅇ𝑚𝑝+0.069𝑀𝑜𝑖𝑠𝑡+8.922𝑛𝑖𝑡𝑟𝑜𝑔ⅇ𝑛−0.002𝑇ⅇ𝑚𝑝∗𝑀𝑜𝑖𝑠𝑡           (9) 

Site 3: Managed Oak Plantation Forest ecosystem at Mantripukhri. 

 𝐸(𝑦) = 𝜇3 = ⅇ−6.2+0.04𝑇ⅇ𝑚𝑝+0.02𝑀𝑜𝑖𝑠𝑡+1.63𝑐𝑎𝑟𝑏𝑜𝑛+57.1𝑃                   (10) 

The results of fitting the final interaction models in equations (8), (9) and (10) are 

presented in Tables 3(A) through Table 3(C). In Site 3 no interaction term is 

significant. The tables consist of the estimated coefficients (β’s), the standard 

error(s.e.), t values and associated p-values. In Table 3(A), the variables Temp, 

carbon and nitrogen are significant at 5% level along with the interaction 

carbon:nitrogen, but Moist, and pH are not significant. Moist and pH are still 

retained in the model due to their importance as a predictor. In Table 3(B), all 

variables, Temp, Moist and nitrogen are significant along with the interaction 

Temp:Moist. In Table 3(C), all variables Temp, Moist carbon and P are 

significant.  

All predictor variables in these models are all continuous variables. The estimated 

coefficient for a predictor represents the change in the link function for each unit 



 

 

 

 

 

 

 

 

74                     International Journal of Statisticsl Sciences, Vol. 17, 2019 

 

change in the predictor variable while the other predictors in the model are held 

constant. Generally, positive coefficient makes the response more likely (to 

increase) while negative coefficient make it less likely. An estimated coefficient 

near 0 indicates that the effect of the predictor is small. In the models in equations 

(9), (10) and (11), the link function is the natural logarithm thereby the 

relationship between the response variable and the predictors can be done by 

exponentiation. As for example in Site 1 the coeff. for Temp is 0.026 which shows 

that a one unit change in the soil temperature results in the mean number of 

earthworms increased by exp(0.026) = 1.03 times. However, the coefficients for 

soil pH is -0.24, which indicates that a one unit increase in soil pH value will 

result in the decrease of exp(-0.24) = 0.79 times in the mean no. of earthworms. 

The interaction terms cannot be interpreted in this way as the relationship of one 

predictor to the response variable depends on the other term of the interaction. We 

can do similar interpretation of the coefficients in the other two sites.  

The effect of soil temperature plays an important role in the earthworm species 

count of type 1 in all the three sites. However, in disturbed forest ecosystem soil 

temperature affects the species count more dominantly than the other two forest 

ecosystems. Soil moisture is not significant in Site 1 and Site 3 but it is significant 

in Site 2. Soil Carbon content and nitrogen are highly significant in Site 1. The 

positive coefficients indicate that these variables contribute to the increase in 

species counts as their values increase. The interaction effect of carbon and 

nitrogen is also significant in Site 1. Soil pH value does not show significant 

contribution to the species count in Site 1. Soil nitrogen has significant 

contribution in Site 2 whereas soil carbon has significant contribution to species 

count in Site 3. In Site 2 the interaction effect of Temperature and moisture is 
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significant whereas none of the interactions is significant in Site 3. In Site 3 

P(phosphorous) also contributes significantly.  

 

6. Conclusion 

The diversity of the earthworm community at a given locality is influenced by the 

characteristics of the soil, climate and organic resources of the locality as well as 

its history of land use and soil disturbance. Earthworms perform several beneficial 

functions which include decomposition of organic matter that helps in increasing 

soil nutrients, increase air water infiltration, soil aggregation, increase the 

availability of plant nutrients, worm cast as bio-fertilizer etc. Species-specific 

morphological, physiological, and behavioural aspects basically determine the 

contribution of potential uptake pathways of nutrients and natural and 

anthropogenic contaminants. 

While ecologists are often concerned with the study of species abundance and 

diversity, the variations in abundance and diversity of species across different 

habitats is measured by the species count data. However, one of the crucial 

challenges which ecologists often encounter in dealing with species count data is 

its inherent complexity arising out of sampling procedure which is further 

complicated by the presence of excess number of zeroes in the dataset.  When the 

frequency of zeroes is very large and do not readily fit into any of standard 

distributions mainly because of skewness and over-dispersion, the dataset is 

referred to as zero inflated. The present dataset exhibits overdispersion due large 

number of zero counts which poses crucial issues while fitting the ordinary 

Poisson model. A solution to the problem is to take care of the excess variance. 

Thus, a quasi-Poisson model is being fitted here. According to the different soil 

habitat characteristics in the three different forest ecosystems which we have 
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mentioned above three different multivariate models are obtained. While 

alternative methods to tackle the excess zero problem are available in the literature 

improved models will be attempted in our next paper. 

 

7. Tables and figures 

                             Table 1(A): Bivariate Analysis -Site 1 

Variables 

(Xi) 

Estimate of Coef. S.E. p-value 

Temp 0.103 0.01 <0.001 

Moisture 0.054 0.01 <0.001 

Bulk 

density 

-5.79 2.59 0.03 

Porosity 0.15 0.07 0.03 

pH -1.36 0.01 <0.001 

Carbon 0.918 0.11 <0.001 

Nitrogen 10.10 0.86 <0.001 

P 102.88 10.8 <0.001 

K -19.74 8.70 0.03 

*All variables are significant at 5% 
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Table 2(A): Site1- Main effects models 

Variable Coeff. S.E. T p-value 

(Intercept) 2.243 1.253 1.790 0.078 

Temp 0.034 0.013 2.650 0.010* 

Moist 0.009 0.006 1.505 0.137 

pH -0.337 0.171 -1.96 0.054 

Carbon 0.327  0.103 3.161 0.002** 

Nitrogen 3.249 1.306 2.48 0.015 * 

 

 

   Table 2(B): Site 2- Main effects model 

Estimate Estimate S.E. T p-value 

(Intercept) -0.91 0.320 -2.861 0.005 ** 

Temp 0.043 0.011 3.881 <0.001 *** 

Moist 0.017 0.008 2.015 0.047 * 

nitrogen 8.490 1.463 5.801 <0.001 *** 

    
 
 

     Table 2(C): Site 3- Main effects models 
 

Variables Coeff. S.E. T p-value 

Intercept -6.20 0.91 -6.83 <0.001** 

Temp 0.04 0.014 2.93 0.004 ** 

Moist 0.018 0.01 1.16 0.085 

Carbon 1.63 0.38 4.20 <0.001** 

p 57.09 20.43 2.79 0.006** 
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Figure 1: Site-3 - Diagnostic plots
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Table 3(A): Final Interaction Model for Site-1 

Variable Coeff S.E. T p-value 

(Intercept) -2.7314 2.408 -1.134 0.261 

Temp 0.0267 0.012 2.059 0.043 * 

Moist 0.0122 0.006 1.876  0.065 

pH -0.2486 0.170 -1.456 0.150 

carbon 1.8654 0.647 2.879 0.005** 

nitrogen 18.329 6.411 2.859 0.005** 

carbon:nitrogen -4.964 2.071 -2.397 0.019 * 

 

(Dispersion parameter for quasipoisson family taken to be 2.136168) 

Null deviance: 739.74 on 71 degrees of freedom 

Residual deviance: 141.85 on 65 degrees of freedom 

AIC: NA 
 

Table 3(B): Final Interaction Model for Site-2 

Variable Coeff. S.E. t p-value 

(Intercept) -2.745 0.7116 -3.859 <0.001*** 

Temp 0.1258 0.0304 4.131 <0.001 *** 

Moist 0.0699 0.0203 3.440 0.0010 ** 

nitrogen 8.9223 1.3874 6.431 <0.001 *** 

Temp :Moist -0.002 0.0008 -2.861 0.005 ** 

 

(Dispersion parameter for quasipoisson family taken to be 1.366089) 

Null deviance: 405.139 on 71 degrees of freedom 

Residual deviance:  88.914 on 67 degrees of freedom 

AIC: NA 
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                         Table 3(C): Final main effects models for Site-3 

Variables Coeff. S.E. T p-value 

Intercept -6.20 0.91 -6.83 <0.001** 

Temp 0.04 0.014 2.93 0.004 ** 

Moist 0.018 0.01 1.16 0.085* 

Carbon 1.63 0.38 4.20 <0.001** 

P 57.09 20.43 2.79 0.006** 

 

(Dispersion parameter for quasipoisson family taken to be 2.912755) 

Null deviance: 610.08 on 71 degrees of freedom 

AIC = NA 
 

Figure 2: Diagnostic plots in Site- 1 (Final Interaction Model) 
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