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Abstract 
 

The groundwater table (GwT) volatility is important for both users and policy makers in 

developing countries. The data on monthly groundwater table was compiled from 

Bangladesh Water Development Board (BWDB) for the period January, 1991 to May, 

2016. In this paper, groundwater table (GwT) volatility modeling was done by using 

generalized autoregressive conditional heteroscedasticity (GARCH) and wavelet-GARCH 

models in northwest Bangladesh. The stationary of the groundwater table was examined 

using unit root test and to make the series stationary, it was transformed to returns. By 

using Box-Jenkins method, the appropriate ARIMA(p, d, q)(P, D, Q)m-GARCH(r, s) 

model was obtained and proposed a newly hybrid wavelet-ARIMA(p, d, q)(P, D, Q)m-

GARCH(r, s) models to capturing groundwater table volatilities. Based on the goodness 

of fit criteria such as RMSE, MAE and TIC, the best model was wavelet-ARIMA(1, 0, 

1)(0, 1, 1)12 - GARCH(1, 2). The proposed model captured volatility and its forecasting 

performance is better than any other. 
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1. Introduction 

Water shortage is a global problem. The United Nations (UN) estimates that 

approximately 1.8 billion people will live in countries or regions with absolute 

water scarcity by 2025 (http:// www.un.org/waterforlifedecade/scarcity.shtml). 

Groundwater becomes a primary source of fresh water in many parts of the world, 

and some regions are consuming groundwater faster than it is naturally 

replenished, which causes groundwater table to decline unremittingly (Rodell et 

al., 2009). The main objective of time series modeling is to study techniques and 

measures for drawing inferences from past data. This procedure was used in order 

to study the sustainability of groundwater resources (Ali, Sarkar and Rahman, 

2012). The study showed a similar output; rising trend in water table depth or 

declining trend in groundwater table in the North-Eastern region of Bangladesh. 

Also, the study revealed that if the similar trend continues, water table depth will 

increase significantly and will be double in most cases by 2060. Parametric 

regression approach has also been done in Northwest Bangladesh which displayed 

a drop in groundwater level in Barind area (Jahan et. al., 2010). 

Groundwater table volatility is important for both users and policy makers, 

particularly in the developing countries. The user is concerned about groundwater 

table volatility because it affects hydrological asset and risk, whereas the policy 

maker attempts to restraint excessive volatility to ensure hydrological and 

environmental stability. In the both cases, an efficient quantitative tool for 

modeling groundwater table volatility is needed to minimize the risk of inaccurate 

measurement. In this regard, researchers continue to search for the best volatility 

model that is able to capture various stylized facts associated with well volatilities. 

A lot of research is being done in order to decrease the forecasting error but there 

is still scope to develop methods for both short and long term forecasting. 

Over the last decades, ARIMA model has been widely used in predicting of 

geophysical as well as hydrological time series (Momani, 2009; Ye et al., 2013). 

However, it assumes that data are stationary and has a limited ability to capture 
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non-stationarities and non-linearities in hydro-climatic data (Nourani et al., 2008). 

Recently, wavelet transformation has shown excellent performance in 

hydrological modeling (Okkan, 2012; Nourani et al., 2008) as well as in multiple 

atmospheric and environmental applications (Pal and Devara, 2012; Pal et al., 

2014). Wavelet transformation decomposes the main time series into 

subcomponents such that the decomposed data improve the performance of 

geophysical and hydrological prediction models by capturing useful information 

at various resolution levels (Karim, 2013 and Nourani et al., 2011). 

Wavelets are a mathematical expression which decomposes the original time 

series into various components. The wavelet components thus obtained are very 

helpful for improving the forecasting capability of a model by capturing useful 

information at various levels. Wavelet transforms proved to perform better 

compared to the traditional Fourier transforms (Khalek & Ali, 2016; Adamowski 

& Chan, 2011 and Daliakopoulos et al., 2005). The hybrid model which combines 

an ARIMA model with GARCH error components is applied to analyze the 

univariate series and to forecast the values of approximation series (Sang et al., 

2013; Chen at al., 2011; Adamowski & Sun, 2010; Zhou et al., 2008 and 

Bollerslev, 1986). This study has been conducted by comparing the forecasting 

results using the Wavelet-GARCH (w-GARCH) with the ARIMA hybrid 

technique to verify the effectiveness of the proposed hybrid method. Results of the 

proposed hybrid model show significant improvements in the forecasting error. A 

hybrid w-GARCH model for monthly groundwater table forecasting has been 

proposed. Theoretical as well as empirical findings suggest that hybrid methods 

can be effective and efficient to improving forecasts (Kisi & Cimen, 2011).  

In the present work, w-GARCH method coupled with the wavelet techniques is 

used to increase the efficiency of the model. Wavelet techniques were used to 

translate the groundwater table into various components. The decomposed 

components are thus used as inputs for the w-GARCH model. The purpose of the 

study was to examine the performance of the w-GARCH model in forecasting the 

groundwater table and to compare this with the performance of other existing 
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models like Autoregressive Integrated Moving Average (ARIMA) and 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH).  

 

2. Materials and Methodology 

2.1. Data Source 

We used secondary data as per requirements of modeling and forecasting of 

groundwater table for northwest (NW) Bangladesh. The data involved monthly 

groundwater table time series was collected from Bangladesh Water Development 

Board (BWDB) for the period January, 19991 to May, 2016. The first subset 

(January 1991 to December 2012) is called in-sample data set used to build up a 

model for underlying data and the second subset (January, 2013 to May, 2016) is 

called out-sample data set used to investigate the performance of volatility 

forecasting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 1: Study area with locations of groundwater observation wells 
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2.2. Modeling Groundwater Table 
 

In this section, we briefly present the models specification, conditional 

distributions and forecasting criteria to model the volatility of groundwater table 

of NW Bangladesh. This article analyses the process and volatility of the 

groundwater table by using various models such as: SARIMA, SARIMA-GARCH 

and wavelet-SARIMA-GARCH. In this study, three different criteria, Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE) and Theil Inequality 

Coefficient (TIC) are used to evaluate the forecasting performance of the various 

models. 
 

2.3. The Box-Jenkins for ARIMA Model 
 

Autoregressive Integrated Moving Average (ARIMA) model is one of the time 

series forecasting methods which says that the existing value of a variable can be 

explained in terms of two factors; a combination of lagged values of the same 

variable and a combination of a constant term plus a moving average of past error 

terms. To build an ARIMA model one essentially use Box-Jenkins methodology 

(1976), which is an iterative process and involves four stages; Identification, 

Estimation, Diagnostic Checking and forecasting. As the Box-Jenkins models are 

based on the time series stationary, if underlying series is non-stationary, then first 

it is converted into a stationary series either by using differencing approach 

against time and taking the error terms of this regression (Tambi, 2005). The 

series stationary was tested by applying the Augmented Dickey-Fuller (ADF) 

(Dickey & Fuller, 1979) and Phillips-Perron (PP) unit root tests (Phillips, 1988). If 

it is needed for the time series to have one differential operation to achieve 

stationarity, it is a I(1) series. Time series is I(n) in case it is to be differentiated 

for n times to achieve stationarity.  
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Box-Jenkins ARIMA is known as ARIMA(p, d, q) model where p is the number 

of autoregressive (AR) terms, d is the number of difference taken and q is the 

number of moving average (MA) terms. ARIMA models always assume the 

variance of data to be constant. The ARIMA (p, d, q) model can be represented by 

the following equation: 

 𝑑𝑦𝑡 =∑𝜑𝑖
𝑑𝑦𝑡−𝑖

𝑝

𝑖=1

+∑𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

        (1) 

where εt ~ N(0, 𝜎𝑡
2), p and q are the number of autoregressive terms and the 

number of lagged forecast errors, respectively. 

The identification of modeling the conditional mean value is based on the analysis 

of estimated autocorrelation function (ACF) and partial autocorrelation function 

(PACF). These estimations may be strongly inter-correlated, it is therefore 

recommended not to insist on unambiguous determination of the model order, but 

to try more models. Validation of ARMA (p, q) models is based on minimizing 

the Akaik’s information criterion (AIC) and Bayesian information criterion (BIC). 

Given that hydrological data are very often characterized by high volatility, it is 

necessary to test the model for ARCH effect, i.e. presence of conditional 

heteroscedasticity (Tambi, 2005). Regarding heteroscedasticity it is therefore a 

situation where the condition of finite and constant variance of random 

components is violated. If ARCH test indicates that the variance of residuals is 

non-constant, we can use ARCH family models for capturing volatilities of model. 

 

2.4. The ARCH family models 
 

The major assumption behind the least square regression is homoscedasticity i.e. 

constancy of variance. If this condition is violated, the estimates will still be 

unbiased but they will not be minimum variance estimates. The standard error and 
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confidence intervals calculated in this case become too narrow, giving a false 

sense of precision. ARCH and related models handle this by modeling volatility 

itself in the model and thereby correcting the deficiencies of least squares model 

(Dhamija and Bhalla, 2010). 

 

2.4.1. The GARCH Model 
 

Bollerslev (1986) developed the work of Engle in way that the conditional 

variance be a process of ARMA. Suppose the errors process to be as the 

following: 

𝜀𝑡 = 𝜗𝑡√ℎ𝑡 

In a way that 𝜎𝜗
2 = 1 and 

 ℎ𝑡 = 𝛼0 +∑𝛼𝑖𝜀𝑡̂−𝑖
2

𝑞

𝑖=1

+∑𝛽𝑗ℎ𝑡−𝑗

𝑝

𝑗=1

        (2) 

In this condition, one needs to make sure that 0 > 0, i ≥ 0, j ≥ 0 and 1 −

{∑ 𝛼𝑖 + ∑ 𝛽𝑗
𝑝
𝑗=1

𝑞
𝑖= } > 0  to see the conditional variance positive. Since 𝜗𝑡  is a 

white noise, the key point here is that the conditional variance of 𝜀𝑡 is as the 

following: 

𝐸𝑡−1𝜀𝑡 = ℎ𝑡 

So, the εt conditional variance complies with an ARMA process like the process 

(1). Such models are called GARCH(p, q) where q is the number of moving 

average (MA) terms and p is the number of autoregressive (AR) terms. GARCH 

model is known as a model of heteroscedasticity which means not constant in 

variance. This model has been used widely in hydrological area since the data of 

these areas tend to have variability or highly volatile throughout the time. 
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2.5. Wavelet Analysis 
 

Wavelet means a small wave or a pulse of short duration with finite energy that 

integrates to zero. The WT breaks the original signal into projections of translated 

and scaled versions of the original mother wavelet. The basis function of the 

wavelet analysis is the mother wavelet function () (Sang, 2012 and Li et al., 

2008). 

2.5.1. Continuous Wavelet Transform (CWT) 
 

The continuous time wavelet transform of (t) with respect to a wavelet (t) is 

given by 

 𝑊(𝑚, 𝑛) = ∫ 𝑓(𝑡)
1

√|𝑚|
∗ [

𝑡 − 𝑚

𝑛
]𝑑𝑡

∞

−∞

       (3) 

where, m is the scale variable, n is the translation variable and * denotes complex 

conjugate. The CWT maps the one dimensional function (t) to a function W(m, 

n) having continuous real variables m and n. The coefficients of W(m, n) at a 

particular scale and translation, measure how well the original function or signal 

(t) matches with the scaled or translated mother wavelet. However, to recover the 

function, all the coefficients of W(m, n) are not required. As a result CWT gives a 

redundant way to represent the signal (Khan & Shahidehpour, 2009). 

 

2.5.2. Discrete Wavelet Transform (DWT) 
 

DWT is used to decompose a signal into different resolution levels. Compared 

with CWT, DWT is sufficient in decomposing and reconstructing most 

groundwater level disturbances. It provides enough information and offers high 

reduction in the computational time. Multi-resolution analysis is to break a 

continuous real valued finite energy function into a hierarchy of approximations. 
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It is a technique that represents a function on many different scales, which are 

formed by scaled and translated mother wavelet. 

In order to obtain a matrix W of wavelet coefficients for Discrete Wavelet 

Transform, x being a time series is defined as x = [x1, x2,…, xN]
T
 with N an integer 

multiple of 2
j
 where j is the level of resolution. It is possible to define w, in order 

to obtain a matrix W of wavelet coefficients, which results in the discrete wavelet 

transform. 

 W = w. x        (4) 

This matrix w in (4) can be represented as  w = [w1, w2, … wJ, vJ]
T
. Similarly, W can 

be defined as W = [W1, W2, …WJ, VJ]. For the DWT the first J sub vectors contain 

all the wavelet coefficients for scale J. Each Wj column vector has N/2τj coefficients 

associated with changes on a scale of length τj = 2
j-1

, for j = 1, 2, 3, … , J. The final 

sub-vector J contains just the scaling coefficients associated with averages on a 

scale of length 2
J
. 

The Multi Resolution Analysis (MRA) equation resulting from the reconstruction 

of the wavelet coefficients is 

 𝑥 = 𝑤𝑇 .𝑊 =∑(𝑤𝑗
𝑇 .𝑊𝑗)

𝐽

𝑗=1

+ 𝜗𝐽
𝑇 . 𝑉𝐽 =∑(𝐷𝑗) + 𝐴𝐽

𝐽

𝑗=1

       (5) 

In (5), the time series x is stated as the sum of a constant vector AJ and J other 

vectors, Dj (j=1,2,3...J), each of which contains a time series related to variations 

in x at a certain scale. The Dj refers to the j
th

 wavelet detail and the AJ as the 

approximation. MRA is intended to give good time resolution and poor frequency 

resolution at high frequencies and good frequency resolution and poor time 

resolution at low frequencies. This methodology has proved to give good results 

especially when the signal has high frequency components for short durations and 

low frequency components for long durations (Faria et al., 2009). 
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2.6. Forecasting Performance Measures 
 

This article uses three different criteria, namely Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Theil Inequality Coefficient (TIC) to 

compare the performance efficiency of the ARMA and ARMA-GARCH family 

models in the forecasting behavior of groundwater table. That model with a 

smaller amount would be the considered as a better and more appropriate model. 

1. Root Mean Squared Error (RMSE): Root Mean Square Error (RMSE) 

measures the difference between the true values and estimated values, and 

accumulates all these difference together as a standard for the predictive ability of 

a model. The criterion is the smaller value of the RMSE, the better the predicting 

ability of the model.  

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡 − 𝑦̂𝑡)

2𝑇+𝑘
𝑡=𝑇+1

𝑛
       (6) 

2. Mean Absolute Error (MAE): It takes into consideration the average of the 

absolute value of the residuals.  

 𝑀𝐴𝐸 = ∑ |
𝑦𝑡 − 𝑦̂𝑡

𝑛
|

𝑇+𝑘

𝑡=𝑇+1

       (7) 

3. Theil Inequality Coefficient (TIC): The Theil inequality coefficient always 

lies between zero and one, where zero indicates a perfect fit. 

 𝑇𝐼𝐶 =
√∑ (𝑦𝑡 − 𝑦̂𝑡)2

𝑇+𝑘
𝑡=𝑇+1

√∑ 𝑦̂𝑡
2𝑇+𝑘

𝑡=𝑇+1 +√∑ 𝑦𝑡
2𝑇+𝑘

𝑡=𝑇+1

       (8) 

Where 𝑦𝑡 is observed values, 𝑦̂𝑡 is the forecasted values at time 𝑡 and 𝑛 is the 

number of forecasts. 
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3. Result and Discussions 

3.1. Data and Stationary Examination of Variable 
 

Monthly groundwater table of NW Bangladesh for period of January, 1991 to 

May, 2016 have been derived from Bangladesh Water Development Board 

(BWDB). Figure 1 shows the changes of actual and wavelet denoised water table 

for study period. 

 

 

Figure 2. Actual and wavelet denoised monthly groundwater table for the period 

of January, 1991 to May, 2016 in the NW Bangladesh. 

 

Since the basis of Box-Jenkins models’ forecasting is the stationary of the 

groundwater table in question, so we use of ADF test and PP test on groundwater 

table. Table 1 summarized the unit root tests for groundwater table. The ADF and 

PP tests were used to test the null hypothesis of a unit root against the alternative 

hypothesis of stationarity.  
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Table 1. Results of ADF and PP test of actual groundwater table. 

Groundwater 

Table 

Test Actual  First Differenced 

t-Statistic    p-value t-Statistic    p-value 

Actual ADF -0.098 0.947 -11.815 0.000 

PP -2.494 0.086 -19.159 0.000 

Wavelet-

denoised 
ADF -0.396 0.907 -11.818 0.000 

PP -2.014 0.063 -18.003 0.000 
 

According to the Table 1 the results of ADF and PP tests show that the actual 

water table is non-stationary, because the p-value for both ADF and PP tests are 

greater than 5% level of significance and their corresponding critical values. The 

p-value = 0.000 < 0.001 indicates the ADF t-statistic is significant, means the first 

differenced transformed series is stationary. The graph plotting of the first 

differenced transformed series illustrates the stationarity of the first order 

differenced transformed groundwater level series since most of the data are 

located around mean of zero. The stationarity of the first differenced series then 

supported by the correlogram patterns of ACF and PACF for the series, where the 

values are reduced drastically to zero.  

 

(a) groundwater table return (rt) series 
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(b) groundwater table squared return (𝑟𝑡
2) series 

Figure 3. Time series plot for monthly groundwater table returns (rt) and 

squared returns (𝑟𝑡
2)  

 

To transform the non-stationary to stationary groundwater table, we calculate the 

returns as: 

 𝑟𝑡 = 𝑙𝑜𝑔(𝑦𝑡) − 𝑙𝑜𝑔(𝑦𝑡−1) = 𝑙𝑜𝑔 (
𝑦𝑡
𝑦𝑡−1

) (9) 

The time series plot of the transformed data that is named water table returns is 

shown in Figure 3(a). This plot shows that the mean of the series is now about 

constant. Hence, we can assume that the series is stationary. In the estimation 

stage, the values of Akaike information criterion (AIC) and Schwarz information 

criterion (SIC) are considered. In this context, the model with smaller AIC and 

SIC values are concluded to be the better estimation model. The variance is high 

that clearly exhibit volatility clustering in Figure 3(b), which allows us to carry on 

further to apply the ARCH family models. 

In Table 2, the results of ADF and PP test show that the both actual and wavelet-

denoised groundwater table returns series is stationary. 
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Table 2. Results of ADF and PP test of groundwater table return series. 

Groundwater 

Table 

Test Actual  First Differenced 

t-Statistic    p-value t-Statistic    p-value 

Actual ADF -12.406 0.000 -14.108 0.000 

PP -18.191 0.000 -57.791 0.000 

Wavelet-

denoised 

ADF -12.565 0.000 -14.330 0.000 

PP -15.457 0.000 -63.518 0.000 

Based on the assumption of 1% significance level, all of the p-values are smaller 

than 0.001, which means the returns have ARCH effect. To assess the 

distributional properties of the actual and wavelet-denoised groundwater table 

return data, various descriptive statistics are reported in Table 3. 
 

Table 3. Summary statistics of groundwater table monthly returns series 

Groundwater 

Table 

Mean SD Skewness Kurtosis Jarque-

Bera 

p-value 

Actual -0.0012 0.0534 -0.1285 12.7665 1209.0470 0.000 

Wavelet-

denoised 

-0.0011 -0.0012 -0.1579 12.3662 1112.4052 0.000 

 

Table 3 shows that the mean of actual and wavelet-denoised groundwater table 

returns is close to zero and the sample kurtosis for it is well above the normal 

value of 3. There is also evidence of negative skewness, with long left tail 

indicating that groundwater table has non symmetric returns. Jarque-Bera value 

shows that actual and wavelet-denoised groundwater table monthly returns 

distribution is leptokurtic and departs significantly from Gaussian distribution. 

Therefore, for capturing of volatilities in time series of returns, we will use the 

autoregressive conditional heteroscedasticity (ARCH) family models. 
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3.2. Model Estimation and Forecasting using the Box-Jenkins Method 

In this section, we tried to build univariate model to forecast groundwater table 

using Box-Jenkins methodology of building ARIMA model. In order to find the 

most optimal lags, different AR and MA lags were tested. Autocorrelation and 

partial autocorrelation functions of residuals are also used. Information criteria of 

Akaike and Schwarz were also employed for identifying the best model. The most 

appropriate obtained model is ARIMA(1,0,1)(0,1,1)12 that is an adequate choice 

for both cases actual and wavelet-denoised groundwater table time series:  

Mean equation: 

 Actual groundwater table:  

 𝑦𝑡 = 0.056 + 0.611yt-1 + 0.293t-1 - 0.818t-12 + t (10) 

 Wavelet-denoised groundwater table:  

 𝑦𝑡
∗ = 0.044 + 0.605yt-1 + 0.362t-1 - 0.822t-12 + t  

where 𝑦𝑡  represents the estimated groundwater table. The p-values of the t-

statistic of the estimated coefficients showed that all of them are highly significant 

for both cases. No evidence autocorrelation was found in this model’s residuals 

(using the LM test) and DW for this model is 2.343 and 1.865, Akaike info 

criterion (AIC) is 4.416 and 3.742 and Schwarz criterion (SC) are 4.501 and 

3.828, respectively. This ARIMA model is used to forecast the groundwater table 

monthly returns. The RMSE is 2.994 & 0.857, MAE is 1.528 & 1.046 and TIC 

values are 0.062 & 0.006, respectively. 

 

Table 4. LM (Breusch-Godfrey) test on SARIMA residuals. 

Groundwater table F-statistic p-value 

Actual 6.581 0.0016 

Wavelet-denoised 7.143 0.0009 
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The next step is to test whether the estimated errors are heteroscedastic or not. For 

this purpose, we test the presence of ‘ARCH effect’ in the residuals by using the 

Lagrange Multiplier (LM) test for returns series as suggested by Engle. The 

results of Lagrange Multiplier test are presented in Table 4. The p-value indicates 

that there is evidence of remaining ARCH effect. So, we reject the null hypothesis 

of absence of ARCH effect even at 1% level of significance. Hence, in next 

section for capturing volatilities in returns series we will use GARCH family of 

models. 

Table 5. Results of SARIMA-GARCH model for actual and wavelet-denoised 

series 

Variable 

Actual Wavelet-denoised 

Coefficient SE z-Stat p-value Coefficient SE z-Stat p-value 

Drift 0.056 0.009 6.22 0.0000 0.044 0.009 4.89 0.0000 

AR(1) 0.611 0.058 10.53 0.0000 0.605 0.057 10.61 0.0000 

MA(1) 0.293 0.061 4.8 0.0000 0.362 0.058 6.24 0.0000 

SMA(1) -0.818 0.05 -16.36 0.0000 -0.822 0.0508 -16.18 0.0000 

Variance Equation 

C 0.306 0.063 4.874 0.0000 15.216 0.38 40.049 0.0000 

RESID(-1)^2 0.558 0.066 8.487 0.0000 -0.006 0.001 -6.441 0.0000 

GARCH(-1) 0.539 0.127 4.235 0.0000 -0.234 0.001 -184.049 0.0000 

GARCH(-2) 0.037 0.088 0.426 0.6704 -1.005 0.001 -785.421 0.0000 

 AIC = 4.416, SC = 4.501, HQC = 4.450 AIC = 3.742, SC = 3.828, HQC = 4.773 

(AIC = Akaike info criterion, SC = Schwarz criterion and HQC = Hannan-Quinn 

criterion) 
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3.3. Estimation and forecasting Based on the GARCH model 
 

Groundwater table time series is taken from January, 1991 to May, 2016 and 

GARCH models are fitted to the returns series. The joint estimation of mean and 

variance equations using “R version 3.6.1” software is shown below for GARCH 

models. 

 

SARIMA - GARCH Model 
 

A joint estimation of the SARIMA-GARCH model gives:  
 

Variance equation: 
 

 Actual groundwater table:  

 ℎ𝑡 = 0.306 + 0.558𝜀𝑡−1
2 + 0.539ℎ𝑡−1 + 0.037ℎ𝑡−2 (11) 

 Wavelet-denoised groundwater table:  

 ℎ𝑡 = 15.216 − 0.006𝜀𝑡−1
2 − 0.234ℎ𝑡−1 − 1.005ℎ𝑡−2  

In Equation (10) ht is the conditional variance. The amount of p-value for 

parameters of mean equation and variance equation are 0.0000. So, all of the 

coefficients are highly significant. Akaike info criterion (AIC) is 4.416 and 3.742 

and Schwarz criterion (SC) are 4.501 and 3.828 respectively.  

 

3.4. Comparative Analysis 
 

In order to assess the validity of forecasting the water table monthly returns 

through the models presented in this paper, the RMSE, MAE and TIC criteria of 

these models are compared with each other.  
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Table 6. Comparison of test statistics for hybrid SARMA - GARCH models 

Criteria Actual Wavelet-denoised 

RMSE 2.994 0.857 

MAE 1.528 1.046 

MAPE 6.928 4.294 

TIC 0.062 0.006 

 

According to the achieved results of Table 6, the hybrid SARIMA-GARCH model 

has the best value for RMSE is 2.994 & 0.857, MAE is 1.528 & 1.046 and TIC 

values are 0.062 & 0.006, respectively. So, the comparison of the forecasting 

performance through the RMSE, MAE and TIC criteria indicate that the best 

model is ARIMA(1,0,1)(0,1,1)12 - GARCH(1,2). Therefore, SARIMA-GARCH 

model captures the volatility in the water table monthly returns and its forecast 

performance is more than any other models and this selected model has the lowest 

AIC and SC values of diagnostic checking. 

 

4. Conclusion 
 

This paper focuses on building a volatility model for the groundwater table using 

time series methodology. Monthly groundwater table for the period ranging from 

January, 1991 to May, 2016 are used for this purpose. Firstly, the stationary of the 

groundwater table is examined using unit root test such as ADF and PP tests 

which showed the series is non-stationary. Hence, to make the series stationary, 

the groundwater table is transformed to return series. In order to find the most 

optimal lags, different AR and MA lags were tested using the Box-Jenkins 

Method. The most appropriate obtained model among different models using AIC 

and BIC is the ARIMA(1,0,1)(0,1,1)12. As the hydrological time series like return 
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series may possess volatility, an attempt is made to model this volatility using 

GARCH family models. To capture the volatility, hybrid ARIMA(1,0,1)(0,1,1)12 - 

GARCH(1,2) model is used. The wavelet-ARIMA(1,0,1)(0,1,1)12 - GARCH(1,2) 

is found to be the best model with the lowest RMSE, MAE, and TIC. This model 

captures the volatility in the return series and provides a model with fairly good 

forecasting performance. 
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