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[Abstract 

Nowadays, modelling and forecasting volatility of groundwater table have become 

significant interest to the practice of risk management. This paper used different volatility 

models; GARCH, GJR-GARCH, PGARCH, EGARCH and IGARCH to forecast 

groundwater table volatility of Northwest Bangladesh and find out the best model for 

forecast. This study uses weekly groundwater table data, collected from Bangladesh 

Water Development Board (BWDB) for the period January, 19991 to December, 2018. 

The period of January, 1991 to December, 2013 was used to build the model while 

remaining data were used to do out-sample forecasting and check the forecasting ability 

of the model. We find that the asymmetric model IGARCH following a normal error 

distribution yields the best forecasting performance. Our proposed model could be useful 

for forecasting groundwater table fluctuation of northwest Bangladesh, as well as leading 

to a better understanding of the groundwater table volatility, especially mitigating the 

problem of previous performance. 

Keyword: Groundwater Table; Volatility modelling; Volatility foresting; GARCH family 

model; Northwest Bangladesh. 

AMS Classification: 62M10. 
 

1.  Introduction 

Forecasting volatility has attracted the interest of many academicians; hence 

various models ranging from simplest models such as random walk to the more 

complex conditional heteroscedastic models of the GARCH family have been 

used to forecast volatility. GARCH was used to forecast volatility for the first time 
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by Akgiray (1989). Over the years different variations of the GARCH model has 

been used to forecast volatility. 

Earlier, groundwater was considered to be a limitless or at least fully renewable 

natural resource, but in the recent past, there has been a tremendous pressure on 

this valuable natural resource mainly due to rapid industrialization and population 

growth. For an effective management of groundwater, it is important to forecast 

groundwater table fluctuations. Groundwater organisms possess features such as 

complexity, nonlinearity, being multi-scale and random, all governed by natural 

factors, which complicate the dynamic forecasts. Therefore, many mathematical 

models have been developed to simulate this complex process (Khalek& Ali, 2016 

and Alvisi et al., 2006). Keeping in mind the scarcity of existing water resources 

in the near future and it impending threats, it has develop imperative on the part of 

water scientists as well as planners to quantify the available water resources for its 

judicial use.  

Today, volatility is a vital feature of contemporary environmental time series 

studies, and its uses are broad and diversified. It is an essential component in the 

process of value at risk, portfolio management, valuation of options and financial 

assets, among many other uses. In this regard, the relationship between 

autocorrelation and variability, and predicting an inverse relationship between 

variability and autocorrelation in the analysis of climatic series is essential (Kim et 

al., 2005 and Sentana et al., 1991). According to the multivariate ARCH models, 

the asymmetric modeling of the conditional variance as a forecast method is 

important. Therefore, the modeling of the conditional variance as a univariate GJR 

model is also used. The moment structure of the EGARCH model was 

investigated (Karanasos et al., 2003).  

The Box-Jenkins modeling is one of the most powerful forecasting techniques 

available and it can be used to analyze almost any set of data (Christodoulos et al., 

2010). In hydrology, Box-Jenkins modeling is well used in groundwater table 

forecasting, a basis model in groundwater table forecasting, and as a benchmark 

forecast model for groundwater table. In many practical applications, the 

autoregressive integrated moving average (ARIMA) model is the most widely 

used Box-Jenkins models since it can handle non-stationary data. According to 

Shafiee and Topal (2010), the groundwater table followed a random walk and 

non-stationary characteristics. Therefore, ARIMA has been good potential to be a 

forecasting model for groundwater table. ARIMA is one of the most important 

time series models used in hydrological forecasting over the past three decades 

due to its statistical properties, accurate forecasting over a short period of time and 

ease of implementation (Khashei et al., 2009). 
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The models of the ARCH family have been extensively studied and, in particular, 

we can cite the works of Bollerslev et al. (1992) and Bollerslev et al. (1994). 

GARCH models were an extension of ARCH family models and were proposed 

by Bollerslev (1986) and Taylor (1986). The forecasting of volatility, as well as 

the comparison of the out-of-sample forecast performance of the different models, 

is a booming subject and several researchers have begun to work on this subject. 

Akgiray (1989) found that the GARCH model is superior to the EWMA 

(exponentially weighted moving averages) model, the ARCH model and the 

historical average model, predicting the monthly volatility of the US stock index. 

Given the great success of these models, several extensions have been developed 

to try to perfect this type of models and make it more and more efficient. Among 

these extensions, we can find the exponential GARCH or EGARCH (Nelson, 

1991). For this model, conditional volatility is specified in logarithmic form, 

which means that there is no need to impose estimation constraints to avoid the 

problem of negative variance. 

This property allows us to take into account the stylized fact that negative shocks 

imply a greater variation of volatility than positive ones. Another non-symmetric 

model with characteristics close to EGARCH is TGARCH, also called GJR-

GARCH and developed by Zakoian (1994) and Glosten et al. (1993), respectively. 

The main difference between TGARCH and EGARCH is the following: 

TGARCH models the conditional standard deviation Instead of the conditional 

variance. While shocks in the volatility series tend to have long memories and, as 

a result, tend to impact future volatility for a long horizon, the IGARCH model (or 

Integrated GARCH) was proposed by Engle and Bollerslev (1986) to capture this 

stylized fact, as well as to make conditional volatility infinite and shocks 

permanent. Similarly, Ding et al. (1993) proposed the PGARCH (Power GARCH) 

model, which came to provide another method for modeling the long memory 

property in volatility. An excellent review of volatility prediction models can be 

found in Poon and Granger (2003). 

To the best of our knowledge, this article is the first attempt to compare and study 

several models in order to capture and model the features of the conditional 

volatility of the groundwater table, producing consequently high-quality forecasts 

that are necessary for effective and sustainable management of groundwater table. 
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2.  Methods and Materials 

2.1  Study Area  

We used secondary data as per requirements of modeling and forecasting of 

groundwater table for northwest (NW) Bangladesh. Rajshahi, Bogra, Pabna, 

Naogaon, Joypurhat, Natore, Sirajgonj and ChapaiNawabgonj is the northwest 

eight administrative district of Bangladesh, is located at 24.163
0
N latitude and 

88.40
0
E longitude. The northwest part of Bangladesh is an interesting study area 

for its natural beauties of Barind track.  

 

 

Figure 1: Map of Northwest Bangladesh with monitoring wells 

(Source: Author) 

 

2.2  Data Source 

The study used monthly groundwater table for the period January, 1991 to May, 

2016 of northwest Bangladesh and collected from Bangladesh Water 

Development Board (BWDB). Since the groundwater table time series is usually 

non-stationary, and hence is not appropriate for analysis, we converted the series 

into the rate of return on groundwater table by following logarithmic 
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transformation. The analysis presented on this exercise involves monthly volatility 

forecast. Monthly return is calculated as follows: 

𝑟𝑡 = 𝑙𝑜𝑔 (
𝑦𝑡

𝑦𝑡−1
) 

where yt is the groundwater level (in meter) at time t and rt is the continuously 

compounded return at t. Within- standard deviation of monthly return is used as 

monthly realized volatility: 

𝜎𝑎,𝑡 = √
∑ (𝑟𝑡 − )2𝑛

𝑡=1

𝑛 − 1
 

Where µ is the mean of groundwater table and n is the number of observation 

employed sample groundwater table in meter. There are 305 months groundwater 

table volatility observations in our data sample. The first one was covering the 

period from January, 1991 to December, 2014 (264 months) groundwater table 

was used to estimate our model, as well as to compute the descriptive statistics. 

However, the second series was covering January, 2013 and May, 2016 (41 

months) and was used to evaluate the out-of-sample forecast performance of each 

of our models. The statistical software R 3.6.0 was used to perform the 

quantitative exercise.  

 

2.3  GARCH (Generalized Autoregressive Conditional  

       Heteroscedasticity) 

Bollerslev (1986) and Taylor (1986) developed the GARCH(p, q) model, allowing 

the conditional variance of the variable to be dependent on previous delays and 

capturing information and news contained in historical values of the variance. 

This model is presented as follows: 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2 + ∑ 𝛽𝑗ℎ𝑡−𝑗

𝑞

𝑗=1

𝑝

𝑖=1

 …    (1) 

As the notation shows, the GARCH(p, q) model contains, in addition to the term 

GARCH(ht-1) or delays in the conditional variance, an squared ARCH(𝑡−1
2 ). In 

the literature, the GARCH(1, 1) model remains by far the most used model and 
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hence, our choice to use this type of models. The notation of the GARCH(1, 1) 

model is presented below: 

ℎ𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝛽1ℎ𝑡−1 

This model has a non-negativity constraint for the coefficients α and β so that the 

variance is always positive and the coefficient α0 must be greater than 1. 
 

2.4  GJR GARCH (Glosten-Jagannathan-Runkle GARCH) 

Glosten et al. (1993) have developed this model to allow conditional volatility to 

have different reactions to past innovations based on their signs. This model is 

presented as follows: 
 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2 + 𝛾𝑖𝜀𝑡−𝑖

2 𝑑𝑡−1 + ∑ 𝛽𝑗ℎ𝑡−𝑗

𝑞

𝑗=1

𝑝

𝑖=1

 …    (2) 

 

where dt-1 is a dummy variable: 

𝑑𝑡−1 = {
1 ,   𝑖𝑓 𝜀𝑡−1

2 < 0 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠ℎ𝑜𝑐𝑘𝑠)

0 ,     𝑖𝑓 𝜀𝑡−1
2 ≥ 0 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠ℎ𝑜𝑐𝑘𝑠)

 

and  is the coefficient that measures the impact of news arrival. The rest of the 

parameters in the equation remain the same as those of the GARCH model. 

In this model, the effect of good news shows its effect through i, whereas the 

effect of negative shocks is shown by + . Moreover, if  ≠ 0, the impact of the 

arrival of news is said to be asymmetric; and when > 0, then volatility is marked 

by a leverage effect.  
 

In order to be in line with the condition of non-negativity of the coefficients, it is 

necessary that 0> 0, i> 0,  ≥ 0 and i + i ≥ 0. The model could be still 

acceptable if < 0 and i +  ≥ 0. 

2.5 EGARCH (Exponential GARCH) 

For the Exponential GARCH or EGARCH model proposed by Nelson (1991), the 

conditional volatility specification is given by the following formula: 

𝑙𝑜𝑔(ℎ𝑡) = 𝛼0 + ∑ 𝛼𝑖 |
𝜀𝑡−𝑖

√ℎ𝑡−𝑖

| + ∑ 𝛽𝑗𝑙𝑜𝑔(ℎ𝑡−𝑗) + ∑ 𝛾𝑘

𝜀𝑡−𝑘

√ℎ𝑡−𝑘

𝑟

𝑘=1

𝑞

𝑗=1

𝑝

𝑖=1

     (3) 
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where log(ht) represents the logarithm of conditional volatility, log(ht-1) represents 

the logarithm of the first lag in conditional volatility, and t-i is the term of the 

error at time i. 

The use of the EGARCH model has the advantage to authorize the effects of 

information asymmetries to happen. In the EGARCH equation, k represents the 

leverage parameter used to capture the asymmetry, which is not the case for the 

basic GARCH model (Thomas and Mitchell, 2005). 

The main contribution of this model is that it takes into account the fact that 

negative shocks have a greater impact on volatility than that of positive shocks. 
 

2.6  Power GARCH(p, d, q) 

This model was proposed by Ding et al. (1993), and has the advantage of being 

able to capture and model the long memory property often observed in the series 

of volatility. It is presented as follows: 

ℎ𝑡
𝑑 = 𝛼0 + 𝛼(|𝑡−1| + 𝛾𝑡−1)𝑑 + 𝛽ℎ𝑡−1

𝑑  …    (4) 

where d is a power term, t-1 represents the first lag of the error term (ARCH 

term), and ht-1 is the first lag of the conditional volatility. The power term, denoted 

d, captures the standard deviation when d = 1 and captures the conditional 

variance when d = 2. The asymmetry is counted by the term γ (Carroll and 

Kearney, 2009). 

 

2.7  IGARCH (Integrated GARCH) 

The IGARCH models, introduced by Engle and Bollerslev (1986), have the 

advantage of providing a statistical response to the problem of the presence of a 

unit root in the time series of volatility, which makes volatility shocks permanent. 

It is an integrated model of volatility. The formulation of this model is presented 

below: 

ℎ𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑗ℎ𝑡−𝑗
2

𝑞

𝑗=1

 …    (5) 

IGARCH models are said to be volatile models, because current information 

remains valid for forecasting volatility across all horizons. If α0 = 0, we can say 

that the series is integrated in variance to the order d. And when α0>0, then the 
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series is integrated in the order d with trend; where d is the number of first 

differences needed in order to render it stationary. As far as error distributions are 

concerned, GARCH model theory suggests three assumptions about the 

distribution of residuals. These three assumptions imply that the residuals of the 

GARCH may follow a normal law, a Student law or a generalized error 

distribution (GED). 

 

2.8  Forecasting Evaluation 

The approach followed in this empirical study, is to start by first estimating the 

conditional volatility of the groundwater table, according to the different GARCH 

models and according to different error distributions; and then selecting the best 

models in function of the significant parameters as well as Akaike (AIC) and 

Schwarz (BIC) information criteria and that of the maximum likelihood 

estimation. Once we have obtained the best GARCH models, which allow us to 

better express the volatility of groundwater table, we will compare the forecasting 

performance of these models with that of the GARCH model, using the following 

statistics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and 

Theil Inequality Coefficient (TIC). 

𝑅𝑀𝑆𝐸 = √∑ (𝜎𝑎,𝑡 − 𝜎𝑓,𝑡)
2𝑛

𝑡=1

𝑛
 

𝑀𝐴𝐸 =
∑ |𝜎𝑎,𝑡 − 𝜎𝑓,𝑡|𝑛

𝑡=1

𝑛
 

𝑇𝐼𝐶 =
√

1

𝑛
∑ (𝜎𝑎,𝑡 − 𝜎𝑓,𝑡)

2𝑛
𝑡=1

√
1

𝑛
∑ 𝜎𝑎,𝑡

2𝑛
𝑡=1 + √

1

𝑛
∑ 𝜎𝑓,𝑡

2𝑛
𝑡=1

 

Where σa,t is the actual volatility and σf,t is the forecasted volatility. 

If we look at MAE and MAPE, Exponential smoothing model clearly creates the 

best forecast, and it is followed by EGARCH. Historical mean model, once again, 

is the worst forecasting model. According to these two criteria’s, ARCH-type 

models provide better forecasting than non-ARCH models. 

The Theil Inequality Coefficient (TIC) is a scale invariant measure that always 

lies between zero and one, where zero indicates a perfect fit. Observing at this 
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coefficient we can approximately that Random walk is the preeminent forecasting 

model. It is interesting to note that Exponential smoothing is no longer the best 

model; on the contrary, it yields the worst forecasting according to TIC. It is not 

easy to make a judgment if ARCH models are better than non-ARCH models; 

however, if we calculate the mean of the ranks of ARCH models, we can see that 

this mean is smaller than non-ARCH models’ mean which indicates that ARCH 

models gives better forecasting results. 
 

3.  Empirical Results  

To test the stationarity of the return series we used the Augmented Dickey Fuller 

(ADF) unit root test (Table 1).  

 

Table 1: Results of the ADF test 

Variable ADF value t-stat at 1% 

Returns of groundwater table (rt) -15.425 -3.96 

 

Table 2: Results of the White’s heteroscedasticity test 

 
 

 

 

 

 

 

 

Figure 2: Plot for groundwater table of northwest Bangladesh with simple linear 

regression line (a) actual series, (b) log return series 
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Similarly, we applied the White test for the purpose of testing the ARCH effect or 

the heteroskedasticity property of the errors (Table 2); this test was conducted on 

the residuals series taken from the following mean model regression: 

𝑟𝑡 = 𝑐 + 𝛼𝑟𝑡−1 + 𝜀𝑡 

From the results presented in Tables 1 and 2, we conclude that the newly created 

return series is a stationary series. Similarly, the statistical significance of the 

White test led us to reject the null hypothesis of the heteroscedasticity of errors 

and to accept the alternative hypothesis of the heteroscedasticity of errors. So, at 

this stage, we can safely proceed to the estimation of our models, as the conditions 

for ARCH and GARCH modeling hold. 
 

Table 3: Summary statistics of actual and returns series 

Descriptive statistics Actual Series Return Series 

Mean 23.1 0.0005 

Median 23.1 0.0007 

Maximum 50.6 0.241 

Minimum 10.8 -0.2584 

Standard deviation 6.85 0.0401 

Asymmetry 0.21 -0.443 

Kurtosis 2.44 14.461 

Jarque-Bera 29.84 8038.439 

Probability 0.000 0.000 
 

Table 3, including the descriptive statistics for the groundwater table returns 

series, shows a significant difference between the maximum and minimum values, 

which is synonymous with high volatility in the series; in addition, the existence 

of a significant difference between the value of the standard deviation and the 

mean could only reinforce this finding. The kurtosis value, being very large 

compared with the value of 3, suggests the presence of a fat tail on the right side 

with respect to the mean and hence, the non-normality of the series. This non-

normality is confirmed by the Jarque-Bera test which is significantly different 

from zero; so the normality hypothesis of the series cannot be accepted. 

For the empirical results, they will be presented hereafter in function of the error 

distributions. The AIC, BIC and maximum likelihood criteria are used to find the 
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optimal model, so that AIC and BIC are minimized and the maximum likelihood 

is maximized independently of the error distributions. 

The first observation to be drawn from Table 4 is that the majority of the 

parameters are significantly different from zero, which underlines the high 

validity of our models. The sum of the terms α and β for the models GARCH, 

PGARCH and IGARCH is very close to 1, which is explained by a rather 

significant presence of persistence in the volatility of the groundwater table. 

However, the value of α is rather less than that of β, which means that the negative 

shocks on the conditional volatility of groundwater table do not have a greater 

impact on volatility than those of positive shocks. 

For the asymmetric GARCH models, half of the parameters γ are statistically 

different from zero, which implies that the volatility of the groundwater table is 

asymmetric and, hence, the existence of leverage effects. The parameter γ of the 

PGARCH(1, 1, 1) model, being statistically significant and having a positive 

value, suggests that the impact of positive shocks on the volatility of the 

groundwater table is greater than that of negative shocks. 

Table 4: Results of GARCH family model with Gaussian error distribution 

Conditional 

volatility model 

c ARCH(1) GARCH(1) Leverage AIC BIC Maximum 

likelihood 0      

GARCH(1, 1) 3.66E-06 0.281 0.682 - -7.289 -7.285 20316.01 

 (0.000) (0.000) (0.000)     

GJR-GARCH 3.61E-06 0.033 0.685 0.262 -7.289 -7.284 20317.13 

 (0.000) (0.000) (0.000) (0.047)    

EGARCH -1.148 0.410 0.915 -0.019 -7.495 -7.489 20733.50 

 (0.000) (0.000) (0.000) (0.005)    

PGARCH(1,1,1) 0.0006 0.245 0.737 0.037 -7.295 -7.289 20333.39 

 (0.000) (0.000) (0.000) (0.029)    

PGARCH(1,2,1) 0.0004 0.261 0.751 0.057 -7.432 -7.424 20714.06 

 (0.045) (0.000) (0.000) (0.027)    

IGARCH - 0.073 0.927 - -7.229 -7.227 20146.54 

  (0.000) (0.000)     

Note: Values in parentheses represent p-values. 
 

For the Gaussian distribution, the best model of the conditional volatility of the 

groundwater table is EGARCH, which presents significant parameters and has the 
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smallest AIC and BIC values while having the greater maximum-likelihood value. 

This model is closely followed by GARCH (1, 1), IGARCH and PGARCH(1, 1, 

1). So, these are the models that will be evaluated later to test and compare their 

predictive performance. The other models are eliminated due to having non-

significant parameters. 

Results obtained when following a Student-t error distribution, are closely related 

to those of the normal distribution. For this error distribution, we can clearly see 

that the model GARCH(1, 1) is the best to capture and model conditional 

volatility of our data (Table 5). The parameters γ, being entirely not statistically 

significant, imply the non-existence of leverage effects in conditional volatility of 

groundwater table. 

For the case of this distribution, the only models that will be kept for the final 

study are GARCH(1, 1) and IGARCH. The EGARCH model represents the best 

way to model the conditional volatility of groundwater table in the case of the 

generalized error is distribution (Table 6). With the exception of the EGARCH 

model, all the parameters γ are not statistically significant, which implies the non-

existence of leverage effects and the asymmetry of the volatility of groundwater 

table return series. 

Table 5: Results of GARCH family model with Student’s-t error distribution 

Conditional 

volatility model 

c ARCH(1) GARCH(1) Leverage AIC BIC Maximum 

likelihood 0      

GARCH(1, 1) 3.05E-06 0.377 0.661 - -7.817 -7.811 20672.48 

 (0.000) (0.000) (0.000)     

GJR-GARCH 3.01E-06 0.346 0.664 0.059 -7.417 -7.410 20673.13 

 (0.000) (0.000) (0.000) (0.082)    

EGARCH -0.999 0.471 0.933 -0.022 -7.425 -7.418 20696.51 

 (0.000) (0.000) (0.000) (0.007)    

PGARCH(1,1,1) 0.0004 0.287 0.748 0.040 -7.427 -7.421 20703.41 

 (0.000) (0.000) (0.000) (0.084)    

PGARCH(1,2,1) 3.01E-06 0.375 0.664 0.040 -7.712 -7.705 21714.21 

 (0.045) (0.000) (0.000) (0.042)    

IGARCH - 0.116 0.884 - -7.377 -7.374 20564.14 

  (0.000) (0.000)     

Note: Values in parentheses represent p values. 
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Table 6: Results of GARCH family model with Generalized Error Distribution 

(GED) 

Conditional 

volatility model 

c ARCH(-1) GARCH(-1) Leverage AIC BIC Maximum 

likelihood 0      

GARCH(1, 1) 2.94E-06 0.321 0.675 - -7.423 -7.417 20683.90 

 (0.000) (0.000) (0.000)     

GJR-GARCH 2.90E-06 0.290 0.678 0.062 -7.423 -7.416 20689.32 

 (0.000) (0.000) (0.000) (0.073)    

EGARCH -0.996 0.423 0.931 -0.027 -7.430 -7.423 20709.42 

 (0.000) (0.000) (0.000) (0.027)    

PGARCH(1,1,1) 0.0004 0.261 0.751 0.058 -7.432 -7.424 20713.07 

 (0.000) (0.000) (0.000) (0.048)    

PGARCH(1,2,1) 2.90E-06 0.320 0.678 0.048 -7.423 -7.416 20687.73 

 (0.000) (0.000) (0.000) (0.047)    

IGARCH - 0.094 0.906 - -7.390 -7.386 20594.24 

  (0.000) (0.000)     

 

In addition to the EGARCH model, the GARCH(1, 1) and IGARCH model will 

also be kept in order to compare their predictive performance in final test. At this 

stage and after studying and comparing the models of the GARCH family with the 

hope to find the best adjustments of these models, we will proceed to the last step 

which represents the aim and the object of this paper. In this second step, we will 

present a comparison of the forecasting performances for the following models: 

GARCH(1, 1), GJR-GARCH, EGARCH, PGARCH(1, 1, 1), PGARCH(1, 2, 1) 

and IGARCH. 
 

Table 7: Evaluation table for forecasting performances 

Volatility model RMSE MAE TIC 

Gaussian Distribution 

GARCH(1, 1) 0.005872 0.004327 0.954 

GJR-GARCH 0.005288 0.003893 0.845 

EGARCH 0.005875 0.004326 0.941 

PGARCH(1, 1, 1) 0.005873 0.004327 0.951 

IGARCH 0.005876 0.004326 0.939 
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Student’s Distribution 

GARCH(1, 1) 0.005871 0.004329 0.961 

GJR-GARCH 0.005577 0.004113 0.913 

EGARCH 0.005523 0.004066 0.883 

PGARCH(1, 1, 1) 0.005636 0.004156 0.923 

IGARCH 0.005872 0.004328 0.955 

Generalized Error Distribution 

GARCH(1, 1) 0.005870 0.004335 0.981 

GJR-GARCH 0.005518 0.004075 0.922 

EGARCH 0.005870 0.004336 0.983 

PGARCH(1, 1, 1) 0.005577 0.004119 0.934 

IGARCH 0.005870 0.004334 0.979 
 

From Table 7, we observe that the ten presented models are very close to each 

other, but the analysis of the RMSE, MAE and TIC statistics makes possible to 

conclude that the IGARCH with a normal error distribution is the best model to 

forecast the volatility of the groundwater table. This model, compared with the 

others, presents the best results, by presenting the best values of the forecasting 

error statistics adopted in this study. Therefore, we can say that the models of 

conditional volatility are better than those of the IGARCH volatility for the case 

of the groundwater table. 
 

4.  Conclusion 

Forecasting fluctuations of groundwater table volatility has fascinated the 

attention of hydrology researchers. Throughout this paper, we have tried to look 

for the best model to predict and forecast the volatility of the groundwater table. 

In order to achieve this, we have used GARCH family models, which are widely 

studied and analyzed, and whose performances are largely documented in the 

environmental and financial literature. 

The IGARCH model was added to our sample models thanks to the interesting 

number of studies that have proved its superiority to the GARCH models, and to 

its main property of non-return to average. Among the results obtained at the end 

of this study, we found that the IGARCH models succeed in modeling and 

explaining, in a rather satisfactory manner, the volatility of the groundwater table 

fluctuation compared with the mean model, which has nevertheless succeeded in 

producing estimates being very close to those of the GARCH family models. The 
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best model to forecast the volatility of groundwater table for the measurement of 

forecasting errors have declared the IGARCH model with Gaussian distribution of 

errors as a rightful winner and hence, the superiority of GARCH models in 

comparison to the mean model.  
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