ISSN 1683-5603

Impact of Climate Change on Agricultural Productivity in India's North-Eastern Region: A Panel Data Analysis

Utpal Kumar De¹ and Manoranjan Pal²

¹Department of Economics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India

²Economic Research Unit, Indian Statistical Institute, 203 BT Road, Kolkata 700108, India

Email: ¹utpalkde@gmail.com, ²Manoranjan.pal@gmail.com

[Received March 10, 2018; Revised August 30, 2018; Accepted April 03, 2019]

Abstract

Performance of agriculture largely varies across different agro-climatic situation and thereby the prospects of food security, employment, income of various developing countries. During 2nd half of the last century, significant changes in agricultural productivity, diversity and agro-technology have been observed with varied climatic conditions. This paper examines the growth of agricultural productivity, crop diversity and their regional convergence pattern across the districts of Assam, the largest agricultural state in North East India. Also, impacts of changing climatic factors on crop diversity and agricultural productivity have been examined through a longitudinal data analysis.

Despite the growth of productivity and changing cropping pattern, a significant regional divergence is observed. Also, temperature, both in Khariff & Rabi seasons and the level of precipitation throughout the year, is found to positively affect the crop diversity along with the use of chemical fertiliser. However, in case of composite productivity index;

rainfall and temperature in the Khariff season have positive impact on diversity along with chemical fertiliser. But the temperature in the Rabi season is found to have negative impact on the growth of productivity in the region. In both the cases of diversity and composite productivity, regional differences in agro-climatic conditions and soil characteristics make significant differences in the growth of agricultural productivity over time.

Keywords: Crop Diversification, Herfindahl Index, Modified Diversity Index, Composite Productivity, Regional Convergence, Climate Change, Impact of Climate Change

AMS Classification: 62-07.

1. Introduction

Productivity growth, trend of diversity and regional convergence are closely linked with agricultural prosperity and hence economic development of a country (Kasem & Thapa 2010, Hutagaol 2006, Pingali 2004, FAO/RAP 2000, Rahman 2009 and Van den Berg et al. 2007). Besides existing production conditions, application of modern technology (Rogers, 1995; De, 2003) and infrastructure of the respective areas (De & Chattopadhyay, 2010); changes in productivity, pattern of diversity across the region have been subject to the changing agro-climatic conditions of the respective region (IPCC, 1995; Peng, et al., 2004; Aufhammer, Ramanathan, and Vincent, 2006, 2011; Kar et al. 2004; Wejnert, 2002; Deschenes and Greenstone 2007; Feng, Krueger and Oppenheimer, 2010; De & Bodosa, 2014). As changing production condition leads to the variation in productivity of crops, it also affects the farmer's option for diversification of land use in an optimum manner. However, uncertainty arising out of lack in the market information may not allow farmers to diversify crops in full swing (Ellis, 1989;

De and Pal: Impact of Climate Change on Agricultural ...

Anderson, 2003) and adopt new technology (Rasul et al., 2004; Knowler and Bradshaw, 2007; Teklewold et al., 2006).

Crop diversification is an important instrument for ensuring food and nutrition security, growth of income and employment, poverty alleviation, judicious use of land, water and other resources, sustainable agricultural progress as well as sustainable environmental management (Singh 2001, De 2003). More is the crop diversity, better is the agricultural performance in terms of return from limited land, spread of risk and thus reduction in chance of failure (Minhas & Vaidynathan, 1965; Sagar, 1980). Allocation of land towards various crops for cultivation is an important factor through which higher overall agricultural productivity can be achieved. Land use pattern in turn depends on relative productivity, suitability of cultivation and demand for agro-poducts. Agricultural production can be increased either through the expansion of area under cultivation or through raising yields of crops. In either case, total returns from agriculture can be increased further through diversification of area under cultivation from lower to higher remunerative crops (De, 2003; De and Chattopadhyay, 2010). Since, there is a limit of diversification of areas under different crops across regions; it calls for looking at the regional convergence of all these factors.

In order to examine the benefit accrued to the farmers due to diversification of crops, one needs to compute a diversity index and examine its trend over time. It is generally observed that with the growth of agriculture, the initially developed areas experience a deceleration in growth of productivity and in scope of diversification without further jump in technology. While, the late starter zones are expected to continuously grow so far as the productivity and diversity are concerned, to catch up the erstwhile developed zones. But, a significant difference

may still exist due to the spatial variation in agro-climatic condition and changes in its regional pattern over time.

This paper tries to analyse the regional pattern of growth in agricultural productivity and crop diversity in Assam, India. Thereafter, regional convergence is examined for both the diversification index and productivity of agriculture. Finally, impacts of various factors (climatic and technological) on the spatio-temporal variation in productivity as well as diversity are analysed by using a longitudinal data.

2. Materials and Methods

Productivities of different crops are non-comparable in quantitative terms for their heterogeneity. It is possible only if they are converted into value terms. But data on prices of crops for all the years are not available. Here the term agricultural productivity is used to denote a composite unit, which is based upon the yields of different crops as well as allocation of land for the cultivation of various crops. The index is constituted to describe the overall productivity of the districts vis-avis the state average. First, a yield relative has been calculated for each crop across districts as $R_{ij} = (Y_{ij}/Y_{i0}) \times 100$, where Y_{ij} is the average yield of ith (i = 1, 2, 3 ... N) crop in the jth (j =1, 2, 3, ...,10) district and Y_{io} is the average yield of ith crop in the state. R_{ij} is the yield relative for ith crop in jth district. In order to have inter-district comparison, a Composite Productivity Index (CPI) is computed for each district separately by taking into account the relative importance of various crops in different districts in terms of the proportion of area under each crop to total cropped area in the district and then added up over the crops. CPI for jth district is written as $CPI_j = \sum_i (Y_{ij}/Y_{i0}) \times (A_{ij}/A_{i0}) * 100$, where $A_{0j} = \sum A_{ij}$ and A_{ii}/A_{0i} = proportion of area under ith crop to total cropped area in jth district. A_{ii} is

the area under ith crop in jth district. Inter-district disparity in CPI has been examined by coefficient of variation.

There are several methods of examining crop diversification. The very crude measure of diversity is the number of crops cultivated and proportion of area under various crops. The simple measure of number of crops however does not speak about the evenness of the distribution of the cultivated area. Measures of crop diversification are usually proposed by modifying the indices of concentration in industry or indices of inequality in income, which are already available in the literature. Prominent measures of diversification are the Herfindahl index, Simpson or Shannon index, Entropy & Modified Entropy indices, etc. The most simple and widely used method is the Herfindahl index (HI) of diversification, which is defined as

$$HI = 1 - \sum_{i=1}^{N} P_i^2$$
 (1)

where N is the total numbers of crops, P_i is the proportion of area under ith crop to total cropped area (Theil, 1967; Hou and Robinson, 2006). This value of HI ranges from 0 (for perfect specialization) to 1 (for perfect diversification). This index however cannot assume theoretical maximum value especially in case of smaller number of crops. Also, it gives more weight to the larger shared crops.

The Simpson Index is defined as $E = \frac{1}{N} \times \frac{1}{\sum_{i=1}^{N} W_i^2}$ (Simpson, 1949), which is almost identical to the Hirschman-Herfindahl Index (Herfindahl, 1950; Hirschman, 1964). W_i is the population weight of each species, firm, industry, or other unit of measurement. Here, E refers to the evenness of distribution in the population, sample, or portfolio. E can have a maximum value of one in a situation where species, or industries, are equally weighted. Values decreasing

6

below one indicate increasing dominance of a relatively few species, or industries. N is the number of species, or industries, in the population.

Entropy Index (EI) and Modified Entropy Index (MEI) have also been widely used in agricultural diversification literature (Shannon, 1948; Hackbart and Anderson, 1975; Singh et al 1985; Shiyani and Pandya, 1998).

EI is defined as
$$EI = -\sum_{i=1}^{N} P_i \log P_i$$
 (2)

Its value varies from 0 (perfect concentration) to Log N (perfect diversity). Thus the value of EI is not restricted by the upper bound 1, which is assumed to be desirable criterion for a good index. In case of MEI, number of crops N is considered as the base of logarithm. Symbolically,

$$MEI = -\sum_{i=1}^{N} (P_i \cdot \log_N P_i)$$
(3)

Lower and upper values of MEI are zero (when only one crop is cultivated in the whole area) and one (perfect diversification) respectively. Though it has desirable bounds, it does not properly capture changes in number of crop activities.

Notwithstanding these measures satisfy the general characteristics of a concentration or diversification measure, it is necessary to improve upon such indices in order to capture the interdependencies among the variables. Here, following our suggested method, an alternative measure of diversification is used by taking into account the bivariate correlation coefficients of the shares of crops or crop groups in terms of total area under cultivation (Bharati, De and Pal, 2014). The Modified Diversity Index (MDI) is defined as

$$MDI = 1 - \sum_{i=1}^{n} \sum_{j=1}^{n} s_i \rho_{ij} s_j = 1 - s' Rs$$
(4)

De and Pal: Impact of Climate Change on Agricultural ...

Where R is the matrix of ρ_{ij} values and s is the column vector of shares of area under each crop to total cropped area for the current period. The symbol ρ_{ij} stands for the correlation between shares of areas under ith and jth production over time. Correlations between agricultural variables should reduce the diversity index. It should be noted that s'Rs is a concentration index, and thus is subtracted from one to arrive at the index of diversification.

The salient feature of this index is that it is bounded by 0 and 1, i.e., $0 \le MDI \le 1$. It is 0 when $\rho_{ij} = 1$ for all i and j, i.e., when any two variable move in the same direction without any error. In this case s'Rs becomes $(\Sigma s_i)^2 = 1$. It is HI when the variables are completely independent of each other, $\rho_{ij} = 0$ for all i and j. To prove that $MDI \ge 0$, we use the fact that s'Rs $\le s' \underline{1}s = (\sum s_i)^2 = 1$, where $\underline{1}$ is the matrix consisting of 1's only. On the other hand, since R is a symmetric non-negative definite matrix, we have s'Rs ≥ 0 . This gives $MDI \le 1$.

There are several methods of examining convergence of the series. *Beta* (β) and *Sigma* (σ) convergence have been popularly used by the researchers (Barro and Sala-i-Martin, 1992; Mankiw, Romer and Weil, 1992). *Beta*-convergence comes from the Baumol's (1986) work on real convergence between economies. It is basically a conventional approach to convergence, where it is examined whether the initial values across the zones are correlated with the rate of growth during the period of study. For this purpose, the following equation can be used:

$$(1/T) \operatorname{Ln} (Y_{iT}/Y_{i0}) = \alpha + \beta \operatorname{Ln} Y_{i0} + \varepsilon_{i}$$
(5)

Here T is the end of time period, Y_{iT} is the value of the variable (CPI or MDI in this case) in ith zone at the end of the period of study, Y_{io} is the value of the same variable at the beginning of the period and ε is statistical error term.

The sign of slope coefficient, β indicates the pattern of convergence. If the sign is positive and significant, it means that the regions are experiencing divergence in the growth of the variable Y. Conversely, a negative sign of β is an indication of the convergence of the regions in terms of growth of Y. The problem of this measure is that it depends only on the two end values and ignores the pattern of changes in all other intervening years. Just the extreme values at the end of the period can reverse the true result. Quah (1993), Bernard and Durlauf (1996), Evans (1997), Sala-i-Martin's (1994, 1995) thus criticized this method on the ground of methodological flaw and its reliability and suggested the time series methods of unit root and co-integration techniques for examining convergence in case of the time series data (Quah 1992, Bernard and Durlauf 1995, Li and Papell 1999). Also, panel unit root test is suggested by Levin and Lin (1992, 1993), Quah (1994), Im *et al.* (1997), Taylor and Sarno (1998), Choi and Ahn (1999). Im *et al.* (1997) proposed a Lagrange multiplier (LM) statistic to test for the presence of unit roots in the panel framework.

In this respect, sigma-convergence can reveal a much better picture of the interzonal variations over the years. Thus, here the convergence of growth is examined by using σ -convergence. The concept of σ -convergence also comes from the neoclassical growth theory. It is defined as decline of variance (in logarithm) of composite productivity across the districts with time (Dalgaard and Vastrup, 2001; Lucke, 2008; Miller and Upadhyay, 2002; De, 2014). Sigma convergence is then described as the catching up effect. The same is also applied in case of Modified Diversity index (MDI).

De and Pal: Impact of Climate Change on Agricultural ...

Also, the convergence is examined by unit root test of coefficient of variation (Dickey and Fuller 1979). The test is done on the basis of the following regression equation.

$$\Delta \mathbf{Y}_{it} = \alpha_i + \beta_i \cdot \mathbf{t} + \gamma_{i0} \mathbf{Y}_{i, t-1} + \sum_{j=1}^{p_i} \delta_{i,j} \Delta \mathbf{Y}_{i, t-j} + \varepsilon_{it}$$
(6)

where $t = 1 \dots T$

Here, Y_{it} is the value of ith (Where i= 1, 2 10) variable at time t. The inference is based on the usual *Mackinnon* τ -statistic of γ_{i0} , which has a non-standard distribution. If the value of the coefficient γ_{i0} is found to be less than zero and is statistically significant then the series is stationary. The Akaike information criterion has been used to determine the lag length parameter p_i . This equation has been estimated without taking the time trend into consideration. Also co-integration among the CPI and MDI across the districts is examined by Johansen's method (1988) to understand convergence.

Choice of regressors to explain index of diversity and CPI was made in a prudent manner. We first computed bivariate correlations of index of diversity and CPI with various potential explanatory variables (Appendix-1). Looking at the correlation structure, we chose some of the most important variables. At the same time we examined multicollinearity. We then eliminated some of the less important variables (with non-significant coefficient, i.e., with p-value close to 1 or very high) and variables responsible for multicollinearity (having VIF > 10). However, we tried to maintain uniformity of choice of variables so that comparison becomes easy. The procedure was not very troublesome, since the behaviour of the variables was similar for each regression.

Both the multivariate regression model and Fixed Effect Models (FEM) are used to compare the effects of various climatic factors on diversification and productivity. At first, we estimated the equation

$$\mathbf{Y}_{it} = \mathbf{a}_t + \sum \mathbf{b}_i^{\mathsf{J}} \mathbf{X}_{it}^{\mathsf{J}} + \boldsymbol{\epsilon}_{it} \tag{7}$$

where Y_{it} represents the value of the dependent variable (CPI, MDI) of ith zone at time t, X_{it}^{j} represents value of jth explanatory variables of region i at time t. ε_{it} is the value of random disturbance term of zone i at time t and b_i^{j} is the effect of jth explanatory variable in zone i.

The time variable, year, was used as an explanatory variable to capture the trend component in all cases of diversity index and composite productivity index. This is to incorporate the learning effect. Also, regional dummies are included to capture the effect of specific regional characteristics (geographical location, climatic condition, land quality etc). \in_{it} has two components. A part of $\in_{it} (= \alpha_i)$ depends on the variation in zonal characteristics (unit) and that remains more or less same over time in Assam; while the other part is purely random. As the interzonal variation remained more or less same over time and after Hausman test the FEM is considered to be more suitable and used to know the impact of inter-zonal variation (η_{it}) on the observed variation in diversity. One time specific dummy variable, γ is introduced (Green, 2003). The FEM model considered for estimation is $Y_{it} = \sum b_i^j X_{it}^{j} + \alpha_i + \eta_{it}$ (8)

Here α_i represents zone specific fixed effects and related to inter-zonal variations in weather factors.

Also, separate regression is conducted for all the zones to examine the temporal impact of climate related variables in each zone. Looking at the pattern of variation in CPI and MDI over time and in order to make a comparison between pre and post Green Revolution period, the whole period is divided into two subperiods, 1951-52 to 1976-77 and 1977-78 to 2010-11 and multivariate regressions are conducted for all the ten zones. Though the Green Revolution started in developed agricultural areas of India in the mid-1960s, this technology came to the state of Assam after mid-1970s.

3. Description of Data and Calculations

The analysis is based on the secondary data on area under various crops since 1951 to 2011 collected from various issues of *Statistical Hand Book* of Assam, *Economic Survey of Assam* and Reports from Directorate of Agriculture, Government of Assam. Though several studies used earnings from the production of crops in order to compute the diversity index, here we use area under crops for the purpose. This is because the farmers try to maximise the returns from their limited land keeping in view the sustainable income possibilities. The land allocation to different crops reflects the intention of the farmers which may not be realized in the same way through production. Moreover, the area of crop cultivation is more robust than the actual production, which is subject to technology available at the time of production and to the climatic behaviour of nature.

The analysis is done for the 10 composite districts of Assam, which were in existence before 1990. Since several times, the erstwhile districts were divided to create smaller districts, data on all aspects are not available for all the present 27 districts of the state. Data were regrouped and computed for those erstwhile 10 districts of the state.

4. Results and Discussion

Composite Productivity and Modified Diversity Index and their Relations:

The *Composite Productivity Index* (CPI) calculated for different districts are displayed in Table 1. Here, significant inter-district variation in composite agricultural productivity per hectare is revealed. The range of variation in index in percentage term for all crops when taken together was 82.22 to 124.96, in 1951-52, 79.79 to 148.87 in 1971-72, 87.0 to 116.93 in 1991-92 and 83.38 to 106.0 in 2010-11 respectively. The range of index first increased from 1951-52 to 1971-72 and thereafter it declined and stabilized (Table 1).

From the table, it is also noticed that Lakhimpur, Karbi Anglang and N.C. Hills were at the top three positions in respect of CPI during 1951-52, to 1981.82. Kamrup was at the bottom position in the relative ranking. Remarkable achievement in composite productivity index has been found in case of Cachar, which has jumped over many other districts in respect of CPI during 2001-02. Also, Kamrup progressed a lot in this respect. Lakhimpur and N.C. Hills were lagging behind in their relative ranking in this case. Fig.1 shows the stable interdistrict variation in CPI except an increase in variability in the middle of the period.

Table	Table 1: Growth of Composite Productivity Index of Various Districts of Assam during										
1951-52 to 2010-11											
Year	Dibrugarh	Sibsagar	Lakhimpur	Darrang	Kamrup	Goalpara	Cachar	Nagaon	KarbiAnglong	NC Hills	
1951-52	NA	102.79	124.96	104.53	82.22	97.85	105.38	99.91	101.89	NA	
1952-53	NA	114.97	107.47	108.12	82.85	98.82	92.32	108.70	100.97	NA	
1953-54	NA	100.43	121.86	116.07	84.39	103.75	80.93	101.02	100.18	NA	
1954-55	NA	104.24	113.02	124.69	84.80	95.85	103.22	85.29	99.42	NA	
1955-56	NA	109.56	101.10	114.81	85.88	96.48	95.43	104.59	100.91	NA	
1956-57	NA	92.96	121.27	104.10	87.37	96.04	106.51	106.18	99.88	NA	
1957-58	NA	112.07	116.29	107.10	83.17	105.48	107.38	82.52	99.56	NA	
1958-59	NA	108.84	112.70	104.17	88.98	98.38	98.96	96.86	100.87	NA	
1959-60	NA	106.69	113.05	112.71	74.27	98.98	102.73	109.82	98.89	NA	
1960-61	NA	102.04	112.19	103.68	81.58	100.22	114.36	102.99	99.45	NA	
1961-62	NA	114.44	117.06	105.49	78.11	91.99	116.12	97.60	99.59	NA	

De and Pal: Impact of Climate Change on Agricultural ...

1962-63	NA	115.94	119.52	111.07	82.60	93.89	95.66	92.55	116.46	NA
1963-64	NA	107.58	113.40	107.58	88.01	95.01	102.26	94.06	117.96	NA
1964-65	NA	106.76	112.93	117.04	85.70	88.44	113.60	90.99	104.52	NA
1965-66	NA	109.67	112.90	113.52	76.42	101.35	119.78	86.95	102.73	NA
1966-67	NA	103.45	115.69	108.35	81.30	95.76	113.39	92.06	139.73	NA
1967-68	NA	118.60	113.19	111.43	81.25	86.93	117.88	86.98	123.67	NA
1968-69	NA	105.51	117.41	109.90	82.45	91.43	98.68	102.36	134.02	NA
1969-70	NA	107.91	124.06	103.44	83.68	98.64	96.63	86.42	140.51	NA
1970-71	NA	109.33	108.55	105.91	86.11	92.52	106.93	91.65	144.80	169.86
1971-72	109.34	119.12	117.51	99.54	79.79	89.63	123.77	92.99	123.63	148.87
1972-73	107.62	97.98	121.55	112.44	86.91	90.62	101.04	98.46	124.97	129.10
1973-74	117.52	107.88	115.71	110.92	84.96	82.82	113.28	97.94	115.85	144.03
1974-75	111.22	103.82	123.32	107.69	87.34	89.06	106.61	91.32	117.95	139.59
1975-76	107.06	109.14	120.00	101.92	83.80	88.75	105.85	107.29	107.69	134.70
1976-77	120.47	102.95	118.87	94.52	80.06	94.59	98.71	99.27	107.30	143.46
1977-78	120.12	104.71	110.61	89.29	84.69	91.14	111.32	90.47	115.54	120.34
1978-79	120.15	112.75	111.61	96.24	86.86	78.63	100.80	91.26	125.07	116.91
1979-80	109.15	113.78	110.46	93.25	90.16	81.85	94.70	95.55	119.68	117.42
1980-81	114.37	110.25	118.42	89.49	80.06	82.11	122.13	85.14	133.66	120.85
1981-82	127.20	121.27	104.53	91.66	81.96	86.74	89.57	88.16	110.39	128.20
1982-83	108.76	112.32	111.01	94.84	89.43	86.11	105.36	81.24	115.62	120.30
1983-84	110.26	116.51	99.15	94.20	85.46	91.35	99.72	87.18	108.04	110.56
1984-85	112.61	117.30	106.21	99.31	82.69	81.23	95.39	94.63	106.50	107.50
1985-86	107.34	107.23	100.76	102.81	86.18	80.66	96.85	107.43	104.48	91.93
1986-87	112.27	112.15	108.59	102.01	79.30	86.89	99.39	93.29	99.17	99.92
1987-88	109.23	109.77	93.93	96.69	79.70	82.52	116.13	107.24	101.07	90.62
1988-89	120.44	108.83	101.07	95.12	79.95	85.39	114.38	88.38	111.46	114.35
1989-90	122.07	111.02	95.69	94.01	86.31	87.69	101.28	89.65	98.79	113.97
1990-91	107.93	120.29	81.92	92.91	84.38	83.14	108.86	97.85	105.33	97.56
1991-92	112.08	116.93	89.17	88.32	78.16	87.00	112.30	102.05	100.25	94.44
1992-93	117.16	103.50	83.90	90.79	85.87	82.33	114.07	102.56	101.45	97.17
1993-94	108.55	105.18	104.79	99.40	84.07	86.83	88.38	100.53	98.67	97.05
1994-95	104.62	104.20	88.55	95.55	82.36	88.43	108.02	96.98	112.77	108.78
1995-96	110.65	111.86	99.16	91.96	79.85	82.60	108.10	101.13	101.03	116.19
1996-97	115.86	106.05	80.08	88.70	86.16	85.22	119.68	96.37	97.56	114.13
1997-98	109.10	101.50	83.56	94.19	91.71	79.62	104.89	103.35	102.63	106.35
1998-99	108.05	107.67	81.33	92.90	83.21	84.86	112.35	103.21	97.67	107.16
1999-00	101.24	109.33	80.69	91.50	87.82	86.47	103.04	106.74	99.65	99.07
2000-01	101.38	109.17	76.04	90.29	85.10	87.37	120.94	105.04	96.34	90.97
2001-02	101.34	108.74	71.60	94.91	82.68	88.24	123.26	100.72	95.58	97.71
2002-03	94.23	108.54	66.11	91.60	83.48	95.18	124.82	98.78	99.50	99.34
2003-04	103.18	108.35	65.54	95.77	87.82	88.73	119.89	98.77	87.88	87.34
2004-05	107.31	109.11	71.56	95.88	87.66	88.45	108.31	96.56	92.18	99.77
2005-06	102.39	103.15	74.74	93.33	90.71	90.55	111.88	96.58	95.78	101.23
2006-07	94.84	119.12	76.17	93.29	97.08	86.09	104.81	86.34	90.09	103.70
2007-08	104.34	106.89	70.03	89.93	95.61	88.11	108.00	99.84	93.31	89.89
2008-09	99.88	107.42	77.22	86.85	94.67	89.15	115.49	105.05	74.99	91.98
2009-10	103.03	102.87	76.37	86.18	91.32	88.04	115.19	102.89	106.87	94.92
2010-11	106.00	88.61	86.68	98.75	101.19	95.25	94.80	88.63	93.84	83.38

The modified diversity index however at all Assam level declined from .672 in 1951-52 to .605 in 2010-11 (Table 2). It increased for a few intervening years during 1980s. The range was 0.512 to 0.728 in 1951-52 and increased to 0.511 to 0.831 in 2010-11. Fig. 2 reveals that variation in modified diversity index across the districts is found to have a more or less similar pattern as that of CPI.

Table 2: Modified Diversity Index of Various Districts of Assam during 1951-52 to 2010-11											
Year	Dibrugarh	Sibsagar	Lakhimpur	Darrang	Kamrup	Goalpara	Cachar	Nagaon	KarbiAnglong	NC Hills	Assam
1951-52	NA	0.726	0.468	0.709	0.605	0.728	0.612	0.667	0.512	NA	0.672
1952-53	NA	0.718	0.533	0.706	0.591	0.709	0.606	0.619	0.598	NA	0.663
1953-54	NA	0.729	0.530	0.697	0.587	0.685	0.603	0.583	0.654	NA	0.659
1954-55	NA	0.694	0.539	0.710	0.607	0.691	0.579	0.597	0.657	NA	0.660
1955-56	NA	0.688	0.542	0.691	0.595	0.713	0.571	0.642	0.664	NA	0.656
1956-57	NA	0.703	0.560	0.702	0.598	0.690	0.570	0.613	0.659	NA	0.658
1957-58	NA	0.691	0.566	0.696	0.607	0.700	0.566	0.640	0.656	NA	0.657
1958-59	NA	0.683	0.568	0.670	0.585	0.687	0.573	0.643	0.637	NA	0.644
1959-60	NA	0.668	0.548	0.699	0.593	0.678	0.553	0.645	0.637	NA	0.640
1960-61	NA	0.647	0.560	0.685	0.580	0.678	0.548	0.621	0.623	NA	0.629
1961-62	NA	0.643	0.560	0.703	0.578	0.668	0.539	0.635	0.640	NA	0.627
1962-63	NA	0.645	0.580	0.686	0.579	0.639	0.539	0.648	0.636	NA	0.624
1963-64	NA	0.644	0.594	0.690	0.574	0.666	0.540	0.660	0.646	NA	0.630
1964-65	NA	0.640	0.603	0.681	0.570	0.660	0.536	0.657	0.652	NA	0.625
1965-66	NA	0.643	0.610	0.681	0.553	0.648	0.538	0.679	0.654	NA	0.622
1966-67	NA	0.642	0.605	0.686	0.547	0.630	0.544	0.648	0.594	NA	0.612
1967-68	NA	0.644	0.610	0.672	0.538	0.625	0.535	0.672	0.578	NA	0.607
1968-69	NA	0.648	0.620	0.666	0.511	0.591	0.528	0.613	0.567	NA	0.595
1969-70	NA	0.651	0.600	0.662	0.518	0.600	0.534	0.639	0.537	NA	0.592
1970-71	NA	0.631	0.608	0.678	0.518	0.596	0.532	0.618	0.530	0.835	0.585
1971-72	0.834	0.660	0.808	0.666	0.518	0.611	0.539	0.671	0.520	0.810	0.597
1972-73	0.824	0.646	0.818	0.681	0.502	0.570	0.526	0.638	0.512	0.681	0.579
1973-74	0.776	0.623	0.848	0.698	0.515	0.572	0.521	0.607	0.530	0.757	0.579
1974-75	0.750	0.664	0.811	0.637	0.464	0.572	0.524	0.590	0.511	0.737	0.565
1975-76	0.725	0.637	0.832	0.623	0.436	0.506	0.499	0.534	0.533	0.722	0.544
1976-77	0.757	0.672	0.840	0.657	0.494	0.532	0.535	0.602	0.581	0.720	0.583
1977-78	0.943	0.680	0.390	0.638	0.501	0.564	0.534	0.620	0.584	0.733	0.591
1978-79	0.941	0.688	0.414	0.640	0.506	0.564	0.542	0.618	0.586	0.716	0.594
1979-80	0.949	0.709	0.481	0.659	0.518	0.590	0.543	0.661	0.545	0.708	0.617
1980-81	0.950	0.699	0.448	0.692	0.517	0.568	0.548	0.655	0.566	0.688	0.614
1981-82	0.954	0.674	0.515	0.733	0.570	0.574	0.563	0.628	0.535	0.687	0.631
1982-83	0.959	0.721	0.554	0.725	0.581	0.641	0.567	0.662	0.520	0.675	0.657
1983-84	0.954	0.729	0.564	0.724	0.591	0.612	0.606	0.678	0.532	0.670	0.666
1984-85	0.940	0.733	0.553	0.728	0.605	0.689	0.600	0.696	0.506	0.633	0.680
1985-86	0.944	0.714	0.570	0.711	0.573	0.692	0.570	0.679	0.500	0.597	0.660
1986-87	0.958	0.740	0.571	0.762	0.640	0.663	0.594	0.682	0.494	0.600	0.688

De and Pal: Impact of Climate Change on Agricultural ...

1987-88	0.937	0.764	0.582	0.771	0.637	0.687	0.560	0.667	0.517	0.607	0.690
1988-89	0.929	0.743	0.578	0.745	0.640	0.726	0.581	0.636	0.513	0.645	0.684
1989-90	0.925	0.724	0.523	0.697	0.615	0.672	0.595	0.602	0.524	0.656	0.651
1990-91	0.911	0.691	0.552	0.695	0.614	0.689	0.554	0.586	0.533	0.644	0.642
1991-92	0.901	0.707	0.537	0.694	0.627	0.694	0.570	0.601	0.586	0.834	0.649
1992-93	0.912	0.715	0.525	0.650	0.625	0.676	0.560	0.611	0.588	0.816	0.642
1993-94	0.902	0.686	0.545	0.626	0.597	0.672	0.565	0.598	0.574	0.802	0.630
1994-95	0.918	0.702	0.546	0.671	0.612	0.706	0.541	0.631	0.578	0.794	0.647
1995-96	0.927	0.714	0.534	0.669	0.595	0.685	0.546	0.611	0.581	0.790	0.639
1996-97	0.929	0.747	0.578	0.679	0.592	0.684	0.555	0.643	0.591	0.805	0.654
1997-98	0.932	0.710	0.597	0.672	0.588	0.694	0.580	0.655	0.598	0.793	0.652
1998-99	0.927	0.721	0.632	0.722	0.607	0.673	0.570	0.629	0.637	0.830	0.663
1999-00	0.929	0.663	0.550	0.687	0.575	0.643	0.550	0.592	0.632	0.804	0.628
2000-01	0.928	0.661	0.544	0.659	0.567	0.656	0.568	0.588	0.611	0.783	0.622
2001-02	0.934	0.669	0.558	0.694	0.587	0.645	0.574	0.629	0.613	0.750	0.638
2002-03	0.925	0.674	0.559	0.657	0.572	0.631	0.562	0.618	0.598	0.731	0.623
2003-04	0.926	0.634	0.585	0.689	0.593	0.617	0.562	0.604	0.590	0.758	0.627
2004-05	0.931	0.628	0.578	0.691	0.545	0.642	0.567	0.627	0.589	0.705	0.624
2005-06	0.875	0.614	0.569	0.688	0.519	0.610	0.554	0.605	0.590	0.680	0.593
2006-07	0.870	0.708	0.610	0.773	0.583	0.642	0.567	0.708	0.674	0.703	0.654
2007-08	0.860	0.691	0.620	0.704	0.529	0.658	0.558	0.685	0.683	0.686	0.631
2008-09	0.853	0.620	0.623	0.680	0.496	0.660	0.549	0.666	0.680	0.692	0.608
2009-10	0.838	0.604	0.634	0.654	0.468	0.672	0.535	0.653	0.693	0.673	0.596
2010-11	0.831	0.591	0.643	0.661	0.511	0.671	0.535	0.662	0.690	0.662	0.605
	Source:	Economi	c Survey o	f Assam. I	Director	te of Eco	nomics a	and Stat	istics. Govt. of	Assam.	

Figure 1: Over Time Variation in Composite Productivity Index

Figure 2: Over Time Variation in Modified Diversity Index

5. Convergence of CPI and MDI in Assam

Except for a few cases the correlations between CPI growths of various districts are significant. It means, even if the yield of crops increased in majority of the districts, there is dissimilarity in the changes of proportional allocation of area under crops and that may be due to the inter-crop variation in relative profitability owing to differences in rate of growth of yield and prices of crops. Thus it is observed that the diversification of crops has not taken place uniformly amongst the districts and the productivity and growth of area also not uniformly correlated across various districts in Assam.

Figure 3: Over Time Changes in Coefficient of Variation across the Districts of Modified Diversity Index (MDI) and Composite Productivity Index (CPI)

Fig. 3 reveals a close relation between the inter-district variation in CPI and MDI. Here the proportions of area under crops are considered in the computation of CPI along with yield relative. The farmers are expected to diversify more towards the crops having high relative yield. Hence the diversity is expected to be low with high CPI. All the farmers across the zones are expected to follow the same provided the production conditions prevail. From Fig. 3, it is clear that the coefficient of variation in CPI across the districts declined till mid-1970 but with high fluctuation. It then remained more or less stable. On the other hand, the coefficient of variation in MDI across the districts first increased till the middle of 1970s and then declined for a few years and again increased from the mid 1980s consistently.

As the variation is observed fluctuating (from Fig. 3) Sigma convergence is examined for two sub-periods (1951-52 to 1976-77 and 1977-78 to 2010-11) and presented in Table 3. During first sub-period from 1951-52 to 1976-77 significant convergence of CPI across the districts (significant negative slope) is observed,

18

while during 1977-78 to 2010-11 negative trend of CV is insignificant. But, in case of MDI we observe significant regional divergence (positive slope) during both the sub-period though it declined in some intervening years.

Table 3: Estimated value of Sigma Convergence of CPI and MDI in Assam									
Period		Intercept	t-value	Slope Coef	t-value	AdjR ² , F			
1951-52 to 1976-77	CDI	2.966***	63.40	-0.0075**	-2.48	0.171, 6.148**			
1977-78 to 2010-11	CFI	2.598***	39.95	-0.0049	-1.497	0.040, 2.24**			
1951-52 to 1976-77	MDI	3.403***	136.87	0.0043***	2.69	0.199, 7.22***			
1977-78 to 2010-11 MD1 3.298*** 173.82 0.0071*** 7.51 0.63, 56.40***									
Note: *** & ** indicate the coefficient is significant at 1% & 5% level respectively									

The unit root test of CV for both the CPI and MDI is presented in Table 4. The result shows an overall convergence for CPI during 1951-52 to 2010-11. But the coefficient of MDI is found to be insignificant. It means, virtually there is no convergence of MDI during the whole period, which goes against the result sigma convergence.

Table 4: Unit Root Test of CV of CPI and MDI in Assam by ADF Test for the									
whole Period (1 st Difference)									
Coef. t-value Trend t-value									
CDI	Without Trend	-0.2772**	-2.99						
CPI	With Trend	-0.6119***	-4.94	0877***	-3.67				
MDI	Without Trend	-0.2153	-2.812						
MDI With Trend -0.229 -2.972 0.0144 1.25									
Note: *** & ** indicate the coefficient is significant at 1% & 5% level respectively									

Because of differences in result in regard to the convergence, it is further checked by cointegration of CPI and MDI across the districts by using both the Cointegration Rank Test of Trace Statistic and Maximum eigen-value. The test results are presented in Tables 5a and 6a. It shows that both the CPI and MDI across the districts are cointegrated to a certain extent. We obtain at least one cointegrated equation in both cases (Tables-5b and 6b). The cointegration result thus shows some sort of convergence despite significant inter-district variation in growth of composite agricultural productivity and modified diversity index.

De and Pal: Impact of Climate Change on Agricultural ...

Table 5a: Test of Cointegration of CPI across the Districts of Assam using											
Unrestricted Coint	tegration Rank T	est (Trace) and	including Linear	Deterministic							
	-	Trend	-								
Hypothesized		Trace	0.05								
No. of CE(s)	No. of CE(s) Eigen-value Statistic Critical Value										
None *	None * 0.663927 281.9222 273.1889 0.0201										
At most 1	0.574306	218.6774	228.2979	0.1275							
At most 2	0.533695	169.1435	187.4701	0.2877							
At most 3	0.476328	124.8944	150.5585	0.5390							
At most 4	0.363412	87.37485	117.7082	0.7789							
At most 5	0.297895	61.18015	88.80380	0.8240							
At most 6	0.254088	40.66714	63.87610	0.8263							
At most 7	0.164812	23.66459	42.91525	0.8514							
At most 8	0.151831	13.21886	25.87211	0.7210							
At most 9	At most 9 0.061279 3.667718 12.51798 0.7895										
Notes: Trace test indicates 1 cointegrating eqn(s) at the 0.05 level											
* denotes rejection of	the hypothesis at the	0.05 level									

* denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Ta	Table 5b: Estimated 1 Cointegrating Equation(s) for CPI: Log likelihood = -1762.080										
Cachar	Darrang	Dibrugarh	Goalpara	Kamrup	KarbiAng	Lakhimpur	N.C. Hills	Nagaon	Sibsagar	@Trend(2)	
1.00	5.3731	17.987	7.651	8.616	-0.153	-2.1791	-2.388	2.204	-5.339	-0.53386	
	(1.780) (2.326) (2.735) (2.728) (0.914) (1.3611) (0.926) (1.940) (2.561) (1.93857)										
Note	Note: Normalized cointegrating coefficients (standard error in parentheses)										

Table 6a: Test of Cointegration of MDI across the Districts of Assam using										
Unrestricted Co	integration Ran	k Test (Trace) a	nd including Line	ear Deterministic						
		Trend								
Hypothesized		Trace	0.05							
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**						
None * 0.719794 316.9799 273.1889 0.0002										
At most 1 * 0.621377 243.1906 228.2979 0.0082										
At most 2	At most 2 0.521643 186.8601 187.4701 0.0537									
At most 3	At most 3 0.431619 144.0911 150.5585 0.1092									
At most 4	0.415140	111.3232	117.7082	0.1183						
At most 5	0.397529	80.21300	88.80380	0.1775						
At most 6	0.266526	50.82348	63.87610	0.3780						
At most 7	0.206302	32.84564	42.91525	0.3442						
At most 8	0.183610	19.44460	25.87211	0.2553						
At most 9	0.124000	7.678560	12.51798	0.2791						
Notes: Trace test indicates 2 cointegrating eqn(s) at the 0.05 level										
* denotes rejection of the hypothesis at the 0.05 level										
**MacKinnon-I	**MacKinnon-Haug-Michelis (1999) p-values									

Table 6b: Estimated 1 Cointegrating Equation(s) for MDI: Log likelihood = 1527.117											
	Normalized cointegrating coefficients (standard error in parentheses)										
Cachar	Darrang	Dibrugarh	Goalpara	Kamrup	KarbiAng	Lakhimpur	Nagaon	N.C.Hills	Sibsagar	@Trend(2)	
1.00	0.0833	-0.8859	0.589	-0.7607	-0.0821	0.0345	-0.5239	0.0413	-0.4402	-0.0033	
	(0.195) (0.2869) (0.144) (0.174) (0.045) (0.0367) (0.110) (0.092) (0.107) (0.0012)										
Estimated 2 Cointegrating Equation(s) for MDI: Log likelihood = 1555.282											
Normalized cointegrating coefficients (standard error in parentheses)											
		Norr	nalized co	integratin	g coefficier	its (standard	error in p	parentheses	.)		
Cachar	Darrang	Norr Dibrugarh	Goalpara	Kamrup	g coefficier KarbiAng	ts (standard Lakhimpur	error in j Nagaon	oarentheses N.C.Hills) Sibsagar	@Trend(2)	
Cachar 1.00	Darrang 0.0000	Norr Dibrugarh -0.8673	Goalpara 0.51245	Kamrup -0.6696	g coefficier KarbiAng -0.0557	Lakhimpur 0.0332	Nagaon -0.473	N.C.Hills 0.0237) Sibsagar -0.3797	@Trend(2) -0.00275	
Cachar 1.00	Darrang 0.0000	Norr Dibrugarh -0.8673 (0.260)	Goalpara 0.51245 (0.1327)	Kamrup -0.6696 (0.118)	g coefficier KarbiAng -0.0557 (0.038)	Lakhimpur 0.0332 (0.033)	error in p Nagaon -0.473 (0.103)	N.C.Hills 0.0237 (0.062)) Sibsagar -0.3797 (0.087)	@Trend(2) -0.00275 (0.0008)	
Cachar 1.00 0.00	Darrang 0.0000 1.0000	Norr Dibrugarh -0.8673 (0.260) -0.2239	Goalpara 0.51245 (0.1327) 0.9192	Kamrup -0.6696 (0.118) -1.093	g coefficier KarbiAng -0.0557 (0.038) -0.3173	tts (standard Lakhimpur 0.0332 (0.033) 0.0152	error in j Nagaon -0.473 (0.103) -0.609	N.C.Hills 0.0237 (0.062) 0.2114) Sibsagar -0.3797 (0.087) -0.727	@Trend(2) -0.00275 (0.0008) -0.00685	

6. Impact of Climate Change:

Results of multivariate Regression CPI on annual rainfall, maximum temperature in Kharif (April-Sept.) and Rabi season (Oct.-March), intensity of chemical fertilizer use across regions are shown in Table 7. Because of high multicollinearity (Appendix-1) between chemical fertiliser and irrigation, and lack of information on irrigation for all the years, irrigation despite being an important variable is not included here. Like temperature, rainfall during Khariff and Rabi are not considered as two separate variables. This is because major rainfall, that occurs during Khariff season also control to certain extent irrigation during Rabi season (through preservation in bills, lakes, ponds and groundwater recharge). However untimely and more winter rainfall sometimes adversely affects the productivity of Rabi crops. Moreover, we see significantly high correlation between the Khariff and Rabi season rainfall.

The results reveal that chemical fertilizer has significant positive impact on the composite productivity. Annual average rainfall and maximum temperature in the Khariff (April-June, main paddy cultivating season) have significant positive impacts on the composite productivity. On the other hand, maximum temperature

De and Pal: Impact of Climate Change on Agricultural ...

of winter season and time adversely affect the composite productivity through the loss in yield in winter crops in particular. All the zonal dummies in case of CPI have negative coefficients due to specific regional adversities of weather and other associated factors (Table 7).

Table 7: Results of Multivariate Regression of CPI, SI & MDI on Various										
	E	xplanatory	Variables							
Dep. Var., $\overline{\overline{R}{}^2}$, F	CPI, 0	.566, 56.79	***	MDI,	0.53, 48.8	34				
Expl. Var	Coeff.	t	Sig.	Coeff.	t	Sig.				
(Constant)	980.244	14.543	.000	-2.483	-3.001	.003				
Rain_Annual	.002	1.956	.051	000044	-3.256	.001				
MaxT_Khariff	2.490	3.198	.001	.002	.175	.861				
MaxT_Rabi	-1.949	-2.652	.008	.026	2.838	.005				
Fert_Intensity	.223	8.042	.000	001	-1.532	.126				
Year	448	-13.150	.000	.001	3.051	.002				
D_Zone1	-18.767	-8.255	.000	.301	10.769	.000				
D_Zone2	-17.304	-7.286	.000	.122	4.184	.000				
D_Zone3	-24.011	-9.552	.000	170	-5.509	.000				
D_Zone4	-25.536	-10.009	.000	.028	.906	.365				
D_Zone5	-41.918	-15.954	.000	181	-5.607	.000				
D_Zone6	-38.666	-14.603	.000	104	-3.198	.001				
D_Zone7	-20.186	-8.171	.000	149	-4.916	.000				
D_Zone8	-28.431	-9.203	.000	002	053	.957				
D_Zone9	-16.294	-7.857	.000	053	-2.082	.038				
Notes: D_Zone i represe	ents dummy for th	ie i th Zone.								

Zone1-Dibrugarh, Zone2-Sibsagar, Zone3-Lakhimpur, Zone4-Darrang, Zone5-Kamrup, Zone6-Goalpara, Zone7-Cachar, Zone8-Nagaon, Zone9-KarbiAnglong, Zone10-NC Hills.

Table 7 also reveals that rainfall has significantly negative impact on MDI, but maximum temperature in rabi season and time have significant positive effects on it. Also, fertiliser intensity has some negative impact on MDI. The coefficients of dummy of tea dominated valleys of Dibrugarh and Sibsagar are found to positive while in case of other areas except Darrang and Nagaon it is significantly negative. Those regions due to the lack of opportunities, access to capital and technology gone for specialisation more than the farmers of other region.

It is natural that if some factors positively affect productivity of some crops, farmers will allocate proportionately more land towards those crops and thus overall composite productivity will be positively impacted. It means a the diversity index is expected to be affected negatively (more specification of crops) by those factors or may be indifferent due to other constraints including farmers attitude, farmers' need in a subsistence structure, lack of access to capital or other institutional bottlenecks.

In case of panel regression Fixed Effect model is found to be appropriate since the Hausman test result gives Chi² values 13.35 and 216.57 for the CPI and MDI respectively and both are significant at 5 per cent level of significance. The FE regression results obtained (as presented in Table 8) reveal the same as is in Table 7. Thus the important effects of changes in climatic variables on CPI and MDI are revealed. Also, technological and regional variations in agro-climatic characteristics are found to play important role in the determination of productivity and diversity pattern, as explained above.

Table 8:]	Table 8: Results of FE Regression of CPI & MDI on Various Explanatory Variables										
	Dep. Var.	= CPI, R ²	2 (Within = 0.268,	Dep. Var. = MDI, R^2 (Within = 0.091,							
	Between =	= 0.209, O [•]	verall = 0.093),	Between $= 0.008$, Overall $= 0.013$),							
		F(5, 585) =	= 42.91***	1	F(5, 585) = 11	.67***					
Exp. Var.	Coef.	t	Prob	Coef.	t	Prob					
Rain_Ann	.00214	1.96	0.050	000044	-3.26	0.001					
MaxT_KH	2.490	3.20	0.001	.00166	0.17	0.862					
MaxT_RAB	-1.949	-2.65	0.008	.02562	2.84	0.005					
Fert_Int.	.2230	8.04	0.000	00052	-1.53	0.125					
YEAR	4475	-13.15	0.000	.001276	3.05	0.002					
Cons	957.13	14.29	0.000	-2.505 -3.00 0.002							

District level regression reveals that in the low lying flood prone areas of Lakhimpur, Dhemaji, Darrang etc rainfall in khariff season adversely affected the CPI while the positive impact is found in Kamrup valley during 1951 to 1976

De and Pal: Impact of Climate Change on Agricultural ...

(App. 2a). Impact of Khariff season rainfall on CPI became significantly positive during 1977-2010 in Lakhimpur, Dhemaji, Darrang. On the other hand, rainfall in the rabi season has adverse impact on CPI in both the sub-periods in Kamrup and in the latter period in Lakhimpur. Maximum temperature in the rabi season has significant positive effect on the same in Kamrup and Karbi Anglong during 1950-76. Intensity of fertiliser use has positive impacts on CPI in Kamrup, Lakhimpur, Goalpara in the post 1977 period while it is negative in case of Nagaon.

Insignificant impacts of fertiliser use on productivity in most areas have been due to poor growth of fertiliser use, which has been due to the lack of irrigation expansion and prevalence of monsoon dependence of agriculture in Assam. In winter season, instead of helping much, the erratic rainfall rather adversely affected productivity of Rabi crops, including potato, mustard, summer rice etc. Only, because of some control over Khariff rainfall in the management and diversifying crops to short period varieties or cultivation practices in Kamrup and Lakhimpur its impact became positive in the later periods.

App. - 2c reveals that rainfall in Khariff season adversely affected MDI in Dibrugarh, Nagaon during 1951 to 1976 and positively in Dibrugarh, North-Cachar Hills during 1977 to 2010. Rabi season rainfall however had positive impacts on MDI in Dibrugarh, Lakhimpur and negatively in Karbi Anglong during 1951 to 1976. It has positive impact on MDI in North-Cachar Hills during 1977-2010. Similarly, Khariff season maximum temperature had negative impacts on MDI in Goalpara, Nagaon during 1951 to 1976 and in Kamrup during 1977 to 2010. Maximum temperature in Rabi season also adversely affected MDI in Kamrup but positively in Dibrugarh, Sibsagar and Karbi Anglong during 1951 to 1976. Fertiliser, an important component of agricultural development, affected MDI positively in Cachar valley and negatively in Lakhimpur during 1951 to

1976. But it affected negatively in North-Cachar Hills, Cachar, Goalpara, kamrup, Sibsagar and positively Nagaon, Lakhimpur and Dibrugarh during 1977 to 2010. Thus the impacts of climatic variables are different in various zones and at different times. Still now the agriculture is mostly weather dependent and now in the relatively progressive areas, rainfall helps in promoting specialisation and backward areas it causes diversification to avoid risk. Chemical fertiliser also reflects mixed result. It helps in specialisation in the valley zones, but diversification in the flood affected areas and tea dominated areas in the previous three decades.

7. Concluding Remarks:

The state of Assam has been undergoing significant climate changes during last few decades (De, Pal and Bodosa, 2013). Short term extreme changes in weather significantly affect the output of crops and force farmers to think of alternative crops that are more weather resistant. Hence, their actions are supposed to be reflected in crop diversity over time. Notwithstanding yield of individual crops, composite productivity index (CPI), which is composed of yield relatives, and proportions of areas under crops is expected to be affected by both the changes in weather variables and technological factors across the region. Experiences across regions of India reveal that because of changing rainfall patterns and depletion of water resources, the existing cropping pattern is becoming less productive (Venkateswarlu, 2009; Pachauri, 2009; Guiteras 2007). Thus intensification of crops through mixed cropping and integration of high-value crops such as horticultural production is gaining prominence as a climate change adaptation strategy, especially in the hill regions, as well as for future growth of agriculture (Joshi et al, 2007; Adger, 2007; IPCC, 2007).

De and Pal: Impact of Climate Change on Agricultural ...

This paper shows dwindling agricultural productivity in Assam over time, which has been associated with high regional variation. In some cases also changes in CPI is inconsistent with the diversity of crops. Overall, there is regional divergence in the early part in terms of composite productivity growth though in the later part of the study period there is regional convergence in terms of both composite productivity index and modified diversity index. However, there is cointegration among temporal variation in CPI as well as MDI across the districts of Assam. Thus some sort of convergence is revealed. The contradictory and inconsistent relation of Simpson Index with various climatic variables reveals the superiority of MDI over it.

between climatic variables Relation and composite productivity and diversification index reveal a mixed result. Above analysis also reveals specialization towards some fertilizer intensive commercial crops in some parts of Assam, while diversification is observed in some regions with some irrigation improvement towards traditional crops, which may be explained in terms of crop risk, scarcity of credit, and lack of infrastructure in the hilly backward NC Hills and Karbi Anglang (De and Bodosa, 2015). The current unusual result is supported by the growing uncertainty in seasonal rainfall, growth of fertilizer use, across the region and rising temperature particularly in monsoon period, which is shown in regression results. The Khariff season rainfall affects composite productivity in a positive direction through the specialisation towards flood resistant crops in the flood prone areas. Untimely erratic rainfall in the Rabi season also adversely affects the productivity of crops and force farmers to diversify in order to avoid risk. Khariff season maximum temperature due to natural reason affects the productivity by enhancing the productivity of major rice crop of the region. Assam is still subject to significant weather dependence and lack of technological involvement in the agriculture.

References

- Adger, W.N., S., Agrawala, M., Mirza, C., Conde, K., O'Brien, J., Pulhin, R., Pulwarty, B., Smit and K., Takahashi (2007). Assessment of Adaptation practices, options, constraints and capacity, in: M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson, (eds.) Climate Change 2007: Impacts, Adaptation and Vulnerability (contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on climate change). Cambridge. (UK): pp. 717-743.
- [2] Aufhammer, M. V., Ramanathan, and J., Vincent (2006). Integrated models show that atmospheric brown clouds and greenhouse gases have reduced rice yields in India, Proceedings of National Academy of Science, USA, 103(52):19668-19672.

(available at) http://www.pnas.org_cgi_doi_10.1073_pnas.0609584104.

- [3] Aufhammer, M. V., Ramanathan and J., Vincent (2011). Climate change, the monsoon, and rice yield in India, Climate Change, September, DOI: 10.1007/s10584-011-0208-4.
- [4] Anderson J. R. (2003). Risk in Rural Development: Challenges for Mangers and Policy Makers, Agricultural Systems 75: 161–197.
- [5] Baumol, W. J. (1986). Productivity growth, convergence, and welfare: what the long-run data show, American Economic Review 76 (5): 1072-1085.
- [6] Barro, R. J. and X. Sala-i-Martin (1992). Convergence, Journal of Political Economy 100 (2): 223-251.
- [7] Bernard, A. and S., Durlauf (1995). Convergence in international output, Journal of Applied Econometrics 10: 97–108.
- [8] Bernard, A. and S., Durlauf (1996). Interpreting tests of the convergence hypotheses, Journal of Econometrics 71: 161–74.
- [9] Choi, I. and B.C., Ahn (1998). Testing the null of stationarity for multiple time series, Journal of Econometrics 88: 41–77.
- [10] De, U.K. (2003). Economics of Crop Diversification, New Delhi: Akansha Publishing House.

- [11] De, U. K. and M., Chattopadhyay (2003). Crop diversification by poor peasants and role of infrastructure: evidence from West Bengal, Journal of Development and Agricultural Economics 2(9): 340-350.
- [12] De, U.K. (2014). Globalisation and cointegration among the states and convergence across the continents: a panel data analysis, Economic Analysis and Policy 44(1): 107-121.
- [13] De, U.K. and K., Bodosa (2014). Crop diversification in Assam and use of modern inputs under changing climatic condition, Journal of Climatology & Weather Forecasting 2(2): 1-14.
- [14] De, U. K., M., Pal and K., Bodosa (2013). Global warming and the pattern of overall climate changes in Sub-Himalayan Assam region of North-East India, presented in the 7th Biennial Conference of INSEE on Global Change, Ecosystems, Sustainability organized by the Indian Society for Ecological Economics at Tezpur University, Assam during 5-7 December, 2013.
- [15] Dalgaard, C.J. and J., Vastrup (2001). On the measurement of [Sigma]convergence, Economics Letters 70 (2): 283-287.
- [16] Deschenes, O. and M., Greenstone (2007). The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather', American Economic Review 97(1): 354-385.
- [17] Dickey, D. and W., Fuller (1979). Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association 74: 427–31.
- [18] Ellis, F. (1989). Peasant Economics: Farm Households and Agrarian Development, New York: Cambridge University Press, USA.
- [19] Evans, P. (1997). How fast do economies converge?, Review of Economics and Statistics. 79: 219–25.
- [20] FAO/RAP, (2000). Report of the expert consultation on crop diversification in the Asia-Pacific region, 4–6 July 2000, Food and Agriculture Organization of the United Nations, Bangkok: Regional Office for Asia and the Pacific, Thailand.
- [21] Feng, S., A.B., Krueger and M., Oppenheimer (2010). Linkages among climate change, crop yields and Mexico-US cross-border migration, (Available at) http://www.pnas.org/cgi/doi/10.1073/pnas.1002632107.

[22] Green, W. (2003). Econometric Analysis, Pearson Education Inc.

28

- [23] Guiteras, R. (2007). The impact of climate change on Indian agriculture, Mimeo, MIT: Department of Economics.
- [24] Hutagaol, P. (2006). Agricultural Diversification and Self-Sufficiency, UNESCAPCAPSA, Indonesia, in: CGPRT Flash, 4(4): 1.
- [25] Im, K.S., M.H., Pesaran and Y., Shin (1997). Testing for unit roots in heterogeneous panels, mimeo, Department of Applied Economics, University of Cambridge.
- [26] IPCC (2007). Climate Change (2007): Impacts, adaptation and vulnerability in M.L. Parry, O.F., Canziani, J. P., Palutikof, P. J., van der Linden and C. E., Hanson (Eds.), Contribution of working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge (UK): Cambridge University Press.
- [27] IPCC (1995). Second Assessment Report (1995), Intergovernmental panel on climate change, (available at) http://www.ipcc.ch/pdf/climate-changes-1995/ipcc-2nd-assessment/2nd-assessment-en.pdf
- [28] Johansen, S. (1988). Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control 12: 231-254
- [29] Kar, G., R., Singh, and H.N., Verma (2004). Alternative cropping strategies for assured and efficient crop production in upland rain-fed rice areas of Eastern India based on rainfall analysis, Agricultural Water Management 67: 47–62.
- [30] Kasem, S. and G. B., Thapa (2011). Crop diversification in Thailand: status, determinants, and effects on income and use of inputs, Land Use Policy 28: 618-628.
- [31] Knowler, D. and B., Bradshaw (2007). Farmer's adoption of conservation agriculture: a review and synthesis of recent research, Food Policy 32: 25–48.
- [32] Levin, A. and C.F., Lin (1992). Unit root in panel data: asymptotic and finite sample properties, Working Paper 92–63, Department of Economics, University of California, San Diego.
- [33] Levin, A. and C.F., Lin (1993). Unit root tests in panel data: new results, Working Paper 93–56, Department of Economics, University of California, San Diego.

- [34] Li, Q. and D., Papell (1999). Convergence of international output: time series evidence for 16 OECD countries, International Review of Economics and Finance 8: 267–80.
- [35] Lucke, B. (2008). Sigma-convergence, Economics Letters 99(3): 439-442.
- [36] Mankiw, N.G., D., Romer and D.N., Weil (1992). A contribution to the empirics of economic growth, Quantitative Journal of Economics May, 407-437.
- [37] Miller, S. M. and M. P., Upadhyay (2002). Total factor productivity and the convergence Hypothesis, Journal of Macroeconomics 24(2): 267-286.
- [38] Minhas, B.S. and A., Vaidyanathan (1965). Growth of crop output in India 1951-54 to 1958-61: an analysis by component elements, Journal of the Indian Society of Agricultural Statistics 17(2): 230-252.
- [39] Pachauri, R.K. (2009). Climate Change and Its Implications for India's Fragile Ecosystems, The Human Impact of Climate Change, Policy Notes for Parliamentarians, CLRA: New Delhi.
- [40] Peng, S.B., J.L., Huang, J.E., Sheehy, R.C., Laza, R.M., Visperas, X.H., Zhong, G.S., Centeno, G. S., Khush and K.G., Cassman (2004). Rice yields decline with higher night temperature from global warming, (available at) http://www.pnas.org/content/101/27/9971.short
- [41] Pingali, P. (2004). Agricultural diversification: opportunities and constraints, FAO rice conference, 12–13 February 2004, Agricultural and Development Economics Division, Food and Agriculture Organization of the United Nations, Rome, Italy.
- [42] Quah, D. (1992). International patterns of growth: I. Persistence in crosscountry disparities, Working Paper, London School of Economics, October.
- [43] Quah, D. (1993). Galton's fallacy and tests of the convergence hypotheses, The Scandinavian Journal of Economics 95: 427–43.
- [44] Quah, D. (1994). Exploiting cross-section variations for unit root inference in dynamic data, Economic Letters 44: 9–19.
- [45] Rahman, S. (2009). Whether crop diversification is a desired strategy for agricultural growth in Bangladesh?, Food Policy 34: 340–349.

30

- [46] Rasul, G., G.B., Thapa and M.A., Zoebisch (2004). Determinants of land-use changes in the Chittagong hill tracts of Bangladesh, Applied Geography: 217–240.
- [47] Rogers, M.E. (1995). Diffusion of Innovations, (fourth edition), New York: The Free Press.
- [48] Sagar, Vidya (1980). Decomposition of growth trends and certain related issues, Indian Journal of Agricultural Economics 35(2): 42-59.
- [49] Shannon, C.E. (1948). A mathematical theory of communication, Bell System Technical Journal 27(3): 379-423.
- [50] Shiyani, R. L. and H. R., Pandya (1998). Diversification of agriculture in Gujarat: a spatio-temporal analysis, Indian Journal of Agricultural Economics 53(4): 627-639.
- [51] Simpson, E.H. (1949). Measurement of diversity, Nature 163(13): 688.
- [52] Singh, R.B. (2001). Crop diversification in the Asia-Pacific Region, Address at FAO-RAP Seminar, Bangkok.
- [53] Taylor, M. and L., Sarno (1998). The behavior of real exchange rates during the post- Brettonwoods period, Journal of International Economics 46: 281–312.
- [54] Teklewold, H., D., Legesse, Y.A., Alemu and D., Negusse (2006). Adopting poultry breeds in the highlands of Ethiopia, Research Report, Ethiopian Institute of Agriculture Research.
- [55] Venkateswarlu, B. (2009). Climate change and sustainable agriculture: securing the small and marginal farmer in India, the human impact of climate change, Policy Notes for Parliamentarians, CLRA: New Delhi.
- [56] Van den Berg, M.M., H., Hengsdijk, J., Wolf, M.K.V., Ittersum, W., Guanghuo and R.P., Roetter (2007). The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China, Agricultural Systems 94: 841–850.
- [57] Wejnert, B. (2002). Integrating models of diffusion of innovations: a conceptual framework, Annual Review of Sociology 28, 297–326.

Appendix-1

 App.1A: Correlations of SI across Ten Zones of Assam with Various Explanatory Variables (1951-1976)

 one
 Year
 MinT
 MaxT
 MaxT
 R_Rab
 Fert
 R_KH
 Irrig
 Avg_Kh
 Avg_

 one
 Year
 MinT
 MaxT
 MaxT
 R_Rab
 Fert
 R_KH
 Irrig
 Avg_Kh
 Avg_

 KH
 RAB
 KH
 RAB
 Int
 Int
 Temp
 Rabi
 Temp

Zone	Year	MinT	MinT	MaxT	MaxT	R_Rab	Fert	R_KH	Irrig	Avg_Kh	Avg_
		_KH	_RAB	_KH	_RAB		_Int		_Int	_Temp	Rabi_Temp
Dibrugarh	.782**	.228	215	270	211	044	.178	.245	.825**	047	243
Sibsagar	.534**	.016	.287	021	.026	126	.574**	.175	.551**	005	.151
Lakhimpur	.774**	214	.057	390*	446*	134	.504**	125	.736**	336	311
Darrang	.868**	.290	.314	.598**	.493*	235	.509**	521**	.889**	.607**	.447*
Kamrup	.949**	.840**	.635**	.813**	.785**	578**	.889**	605**	.942**	.829**	.796**
Goalpara	.900**	218	.237	217	376	.176	.770***	.278	.769**	237	112
Cachar	.883**	.318	.679**	.151	.230	123	.812**	130	.884**	.364	.656**
Nagaon	.694**	227	.292	.616***	.367	046	.526**	150	.807**	.394*	.391*
Karbi											
Anglong	695**	.238	209	.329	.280	174	268	.305	787**	.306	.110
NC Hills	514**	.653**	252	.647**	.597**	.157	425*	.135	547**	.706**	.544**

Notes: * and ** indicates that the correlation is significant at 5 and 1 per cent level by two tail test. MinT_Kh- Minimum Temperature of Khariff Season, MinT_RAB- Minimum Temperature of Khariff Season, MaxT_KH- Maximum Temperature of Khariff Season, MaxT_RAB- Maximum Temperature of Khariff Season, R_Rab- Average Monthly Rainfall in Khariff Season, R_Rab- Average Monthly Rainfall in Rabi Season, Fert_Int.- Fertiliser Intensity, Irrig_Int- Irrigation Intensity, Avg_Kh_Temp- Average Temp. in Khariff season, Avg_Rabi_Temp- Average Temp. in Rabi Season.

App.1B: Correlations of SI across Ten Zones of Assam with Various Explanatory Variables (1977-2010)

Zone	Year	MinT _KH	MinT _RAB	MaxT _KH	MaxT _RAB	R_Rab	Fert _Int	R_KH	Irrig _Int	Avg_Kh _Temp	Avg_Rabi _Temp
Dibrugarh	910**	749**	770**	175	479**	.034	926**	.094	918**	467**	722**
Sibsagar	703**	.110	.226	257	146	.032	756**	282	749**	085	.055
Lakhimpur	.270	.608**	.587**	.385*	.373*	053	.046	222	.310	.533**	.564**
Darrang	.662**	124	.177	.446**	.430*	272	.696**	240	.711***	.201	$.418^{*}$
Kamrup	.761**	$.678^{**}$.671**	.209	.153	037	.777***	125	.781**	.556**	.635**
Goalpara	.941**	.527**	.223	.275	.443**	.032	.793**	049	.241	.453**	.359*
Cachar	786***	733***	641**	489**	250	.183	571**	.373*	.092	729**	584**
Nagaon	.706***	.458**	.466**	.278	.177	.153	.418*	132	.595***	.394*	.364*
Karbi Anglong	.235	.384*	.304	.325	.281	221	.290	337	.329	.365*	.310
NC Hills	742**	381*	345*	265	203	.259	003	.471**	658**	346*	328
Notes: Sa	ame as A	App.1A									

		MinT_	MinT_R	MaxT	MaxT					Avg_Kh	Avg_Rab
Zone	Year	KH	AB	_KH	_RAB	R_Rab	Fert_Int	R_KH	Irrig_Int	_Temp	i_Temp
Dibrugarh	.510**	.359	.076	.027	211	310	.163	.027	.410*	.201	093
Sibsagar	.081	.104	366	.121	306	.384	.085	069	.077	.120	391*
Lakhimpur	.262	058	031	061	.012	127	123	386	.328	064	006
Darrang	382	254	125	414*	283	.195	216	.164	385	446*	227
Kamrup	012	.092	.172	.032	.194	143	.031	.266	.020	.058	.201
Goalpara	657**	.227	150	.295	.359	361	421*	426*	625**	.287	.155
Cachar	.342	140	.005	.099	.035	149	.266	209	.274	021	.027
Nagaon	183	183	.100	.058	.023	.442*	221	.255	054	043	.058
KarbiAnglong	.603**	202	.058	363	305	167	.823**	214	.561**	312	208
NC Hills	583**	.282	230	.162	.214	.270	562**	.258	585**	.234	.148
	Notes: Same as App.1A										

App.1C: Correlations of CPI across Ten Zones of Assam with Various Explanatory Variables (1951-1976)

App.1D: Correlations of CPI across Ten Zones of Assam with Various Explanatory Variables (1977-2010)

					```````````````````````````````````````						
Zone	Year	MinT_ KH	MinT_ RAB	MaxT _KH	MaxT _RAB	R_Rab	Fert_Int	R_KH	Irrig_Int	Avg_Kh _Temp	Avg_ Rabi_ Temp
Dibrugarh	711***	669**	615***	158	438**	.310	732***	.205	710***	418*	604**
Sibsagar	469**	030	.070	276	152	.121	518**	222	375*	174	041
Lakhimpur	876**	375*	342*	332	392*	265	683**	269	883**	381*	417*
Darrang	237	021	106	194	170	070	229	.435*	230	133	181
Kamrup	.558**	.442**	.467**	.313	.032	137	.708**	229	.677**	.460**	.404*
Goalpara	.481**	.048	.013	.082	.271	.067	.562**	.028	.411*	.074	.139
Cachar	.341*	.279	.349*	.129	011	137	.253	027	287	.249	.227
Nagaon	.392*	.370*	.424*	.150	.336	.032	.218	042	.306	.280	.417*
Karbi Anglong	777**	427*	532**	304	366*	.159	605**	.324	651**	376*	474**
NC Hills	673**	.085	139	.266	.040	.234	435*	.515**	587**	.191	062
Notes: S	Same as A	.pp.1A									

					(		/				
Zone	Year	MinT_K	MinT_R	MaxT_K	MaxT_R	R_Rab	Fert_Int	R_KH	Irrig_Int	Avg_Kh	Avg_Ra
		Н	AB	Н	AB				-	_Temp	bi_Temp
Dibrugarh	077	.013	089	110	507**	234	044	283	345	060	364
Sibsagar	749**	309	024	.174	.689**	.175	614**	131	738**	037	.487*
Lakhimpur	.877**	.045	.295	256	334	254	135	143	.910**	136	114
Darrang	762**	012	425*	512**	388	.386	468*	.426*	769**	404*	446*
Kamrup	925**	837**	619**	811**	861**	.546**	785**	.602**	936**	827**	851**
Goalpara	955**	.385	204	.282	.254	156	632**	509**	945***	.359	.047
Cachar	899**	285	326	010	.122	.398*	728**	.397*	835**	221	158
Nagaon	203	.242	263	409*	233	051	.002	399*	392*	216	280
KarbiAnglo	631**	.257	170	.256	.220	115	463*	.270	705**	.268	.083
ng											
NC Hills	212	.235	237	.031	.162	.488*	360	.136	166	.132	.092
Notes: S	ame as	App.1A						•	•		•

App.1E: Correlations of MDI across Ten Zones of Assam with Various Explanatory Variables (1951-1976)

**App.1F:** Correlations of MDI across Ten Zones of Assam with Various Explanatory Variables (1977-2010)

Zone	Year	MinT_K	MinT_R	MaxT_KH	MaxT_R	R_Rab	Fert_Int	R_KH	Irrig_Int	Avg_Kh	Avg_Rabi
		Н	AB		AB				_	_Temp	_Temp
Dibrugarh	774**	586**	656**	148	385*	008	736**	087	785**	374*	604**
Sibsagar	619**	.158	.099	211	312	007	741**	369*	610**	033	111
Lakhimpur	.749**	.130	.233	.127	.339	.019	.656**	.354*	.701**	.139	.320
Darrang	129	138	024	042	.057	.150	156	.014	140	111	.035
Kamrup	209	378*	282	273	132	.114	497**	.123	315	397*	300
Goalpara	.320	.312	.198	.056	.062	.099	063	.114	426*	.207	.160
Cachar	190	321	330	313	009	073	303	.176	.037	369*	226
Nagaon	048	030	157	.022	081	136	.152	070	.025	005	134
KarbiAngl											
ong	.786**	.777**	.679**	.687**	.645**	394*	.769**	647**	.855**	.754**	.702**
NC Hills	.227	.365*	.255	.292	.140	.134	374*	.099	.113	.353*	.237
Notes: S	ame as	App.1A									

	App. 2	2a: Resu	lts of F	CPI on Expla	natory V	Variab	les			
		1951-52	to 1970	5-77		1	977-78	to 201	0-11	
Zone	Regressor	В	t	Sig.	Adj.R ² , F	Regressor	В	t	Sig.	Adj.R ² , F
	(Constant)	-697.359	-2.028	.057		(Constant)	860.018	1.794	.084	
rh	R_KH	006	280	.782		R_KH	.016	.645	.524	
ıga	R_Rab	076	-1.418	.172	0.212	R_Rab	.129	1.681	.104	0.526
brı	MaxT_KH	2.260	1.470	.158	0.313,	MaxT_KH	-1.008	381	.706	0.526, 7.10**
Di	MaxT_RAB	-1.408	756	.459	2.90***	MaxT_RAB	.051	.026	.979	7.10***
	Fert_Int	150	284	.780		Fert_Int	079	702	.489	
	Year	.399	2.479	.023		Year	368	-1.534	.137	
	(Constant)	-75.758	081	.936		(Constant)	-149.496	277	.784	
	R_KH	.009	.193	.849		R_KH	021	865	.395	
H	R_Rab	.104	1.526	.143		R_Rab	.035	.503	.619	
aga	MaxT_KH	2.775	1.156	.262	0.02 1.120	MaxT_KH	-4.390	-1.652	.110	0.209,
Sibs	MaxT_RAB	-3.613	-1.230	.234	0.03, 1.129	MaxT_RA B	2.214	1.051	.302	2.453**
	Fert_Int	864	307	.762		Fert_Int	351	-1.653	.110	
	Year	.094	.208	.837		Year	.172	.623	.538	
	(Constant)	-380.151	893	.383		(Constant)	4028.746	7.372	.000	
H	R_KH	078	-1.806	.087		R_KH	.068	1.765	.089	
ıdu	R_Rab	.003	.034	.973		R_Rab	125	-1.503	.145	0.803
hin	MaxT_KH	805	363	.721	$\frac{1}{0.02}$ , 1.080	MaxT_KH	5.770	1.682	.104	0.803, 23.44***
,ak	MaxT_RAB	1.993	.806	.430		MaxT_RAB	701	260	.797	23.44
Lal	Fert_Int	545	532	.601		Fert_Int	1.902	1.922	.065	
	YEAR	.251	1.310	.206		YEAR	-2.069	-6.937	.000	
	(Constant)	893.054	1.718	.102		(Constant)	349.293	1.023	.315	
ng	R_KH	046	787	.441	0.000	R_KH	.044	2.246	.033	0.057
rra	R_Rab	.020	.253	.803	0.022,	R_Rab	014	226	.823	0.057,
Da	MaxT_KH	-2.906	-1.378	.184	1.095	MaxT_KH	.281	.176	.862	1.555
	MaxT_RAB	.424	.204	.841		MaxT_RAB	916	725	.475	
	Fert_Int	1.790	.914	.372		Fert_Int	.053	.562	.579	
	YEAR	356	-1.338	.197		YEAR	127	767	.450	
	(Constant)	437.334	1.171	.256		(Constant)	577.635	1.967	.060	
•	R_KH	.061	2.177	.042		R_KH	017	982	.335	
Ini	R_Rab	068	-1.801	.088	0.28	R_Rab	103	-2.088	.046	0 579
m	MaxT_KH	-2.622	-2.064	.053	0.20, 2.622**	MaxT_KH	1.835	1.273	.214	0. <i>379</i> , 8 575***
Кŝ	MaxT_RAB	3.785	2.867	.010	2.022	MaxT_RAB	-1.505	-1.188	.245	0.575
	Fert_Int	1.900	.762	.455		Fert_Int	.180	4.090	.000	
	YEAR	198	-1.023	.319		YEAR	254	-1.672	.106	
	(Constant)	884.170	2.149	.045		(Constant)	116.242	.460	.649	
ıra	R_KH	015	455	.655		R_KH	.009	.889	.382	
lpε	R_Rab	052	951	.353	0.361	R_Rab	.008	.344	.733	0.204
<b>1</b> 0a	MaxT_KH	.295	.141	.890	3.352**	MaxT_KH	.115	.071	.944	2.411**
0	MaxT_RAB	1.602	.675	.508		MaxT_RAB	.706	.426	.674	
	Fert_Int	1.962	.360	.723		Fert_Int	.072	1.938	.063	
	YEAR	427	-2.019	.058		YEAR	030	223	.825	

# Appendix-2

De and Pal: Impact of Climate Change on Agricultural ...

	(Constant)	-1175.79	920	.369		(Constant)	-1321.00	-1.457	.157	
5	R_KH	021	505	.620		R_KH	.012	.422	.676	
cha	R_Rab	.003	.029	.977	0.012	R_Rab	035	545	.590	0.021
Cac	MaxT_KH	.170	.033	.974	-0.015,	MaxT_KH	1.770	.522	.606	-0.051,
•	MaxT_RAB	.018	.005	.996	0.510	MaxT_RAB	886	334	.741	0.855
	Fert_Int	-1.543	467	.646		Fert_Int	270	979	.336	
	YEAR	.657	.982	.338		YEAR	.703	1.590	.124	
	(Constant)	-446.705	567	.577		(Constant)	- 1782.431	-3.101	.004	
a	R_KH	001	014	.989		R_KH	.014	.448	.658	
300	R_Rab	.327	2.090	.050	0.115,	R_Rab	104	-1.202	.240	0.239,
Vag	MaxT_KH	1.571	.695	.496	1.540	MaxT_KH	-1.315	448	.658	2.728**
~	MaxT_RAB	1.571	.570	.575		MaxT_RAB	4.326	1.915	.066	
	Fert_Int	-5.185	-1.297	.210		Fert_Int	170	-2.459	.021	
	YEAR	.234	.579	.569		YEAR	.915	3.161	.004	
-	(Constant)	-1166.913	-1.549	.138		(Constant)	2021.036	4.867	.000.	
Buc	R_KH	.002	.067	.947		R_KH	030	-1.361	.185	
lgl(	R_Rab	012	134	.895	0 725	R_Rab	039	666	.511	0.634,
Ār	MaxT_KH	-5.104	-1.280	.216	0.723,	MaxT_KH	4.654	1.495	.146	10.531**
rbi	MaxT_RAB	13.280	2.676	.015	11.705	MaxT_RAB	022	009	.993	*
Ka	Fert_Int	30.101	5.822	.000		Fert_Int	927	-1.069	.294	
	YEAR	.550	1.636	.118		YEAR	-1.019	-4.739	.000	
	(Constant)	1836.851	1.472	.157		(Constant)	1357.519	3.093	.005	
S	R_KH	031	806	.430		R_KH	.010	.476	.638	
Hil	R_Rab	.094	1.103	.284	0.243	R_Rab	040	602	.552	0 465
<u> </u>	MaxT_KH	-2.010	523	.607	0.243, 2 34*	MaxT_KH	7.755	2.160	.040	0.403, 5 777***
ž	MaxT_RAB	878	323	.750	2.34	MaxT_RAB	888	272	.788	
	Fert_Int	-8.397	626	.539		Fert_Int	315	290	.774	
	YEAR	811	-1.308	.207		YEAR	731	-3.390	.002	

App. 2b: Results of Regression of SI on Explanatory Variables										
		1	951-52	to 197	6-77		1977-78	to 2010	-11	
Zone	Regressor	В	t	Sig.	Adj.R ² , F	Regressor	В	t	Sig.	Adj.R ² , F
	(Constant)	-12.066	-6.151	.000		(Constant)	4.090	2.369	.025	
	R_KH	.000	973	.343		R_KH	-5.130E-005	592	.559	
rh	R_Rab	.001	1.678	.110	0 672	R_Rab	.000	-1.465	.154	0 077
lga	MaxT_KH	007	806	.430	0.072,	MaxT_KH	005	550	.587	0.877,
pro	MaxT_RAB	.022	2.084	.051	9.555	MaxT_RAB	.000	021	.983	40.04
Dil	Fert_Int	006	-2.115	.048		Fert_Int	002	-4.115	.000	
	YEAR	.006	6.729	.000		YEAR	002	-1.941	.063	
	(Constant)	-2.884	976	.342		(Constant)	.306	.195	.847	
	R_KH	.000	-1.099	.286		R_KH	.000	-1.450	.158	
	R_Rab	1.748E-005	.081	.936	0.200	R_Rab	-7.393E-005	367	.717	0 572
ar	MaxT_KH	002	309	.761	0.390,	MaxT_KH	014	-1.836	.077	0.372, 8 35***
90 90	MaxT_RAB	.025	2.649	.016	5.008	MaxT_RAB	.012	1.952	.061	0.55
ibs	Fert_Int	.011	1.275	.218		Fert_Int	002	-2.537	.017	
	YEAR	.001	1.012	.324		YEAR	.000	.236	.815	
La	(Constant)	-4.407	-4.433	.000	0.687,	(Constant)	-3.669	-2.034	.052	0.253,
khi	R_KH	-6.877E-005	681	.504	10.141***	R_KH	.000	-1.499	.145	2.87**

	R_Rab	.000	2.047	.055		R_Rab	.000	773	.446	
	MaxT_KH	008	-1.477	.156		MaxT_KH	.000	.043	.966	
	MaxT_RAB	.010	1.714	.103		MaxT_RAB	.016	1.818	.080	
	Fert_Int	.007	2.905	.009		Fert_Int	004	-1.229	.230	
	YEAR	.002	5.538	.000		YEAR	.002	1.981	.058	
	(Constant)	-6.377	-6.621	.000		(Constant)	.038	.041	.968	
	R_KH	2.237E-005	.205	.840		R_KH	-2.076E-005	390	.700	
	R Rab	.000	1.734	.099		R Rab	.000	-1.410	.170	
	MaxT_KH	.003	.884	.388	0.799,	MaxT_KH	.003	.698	.491	0.440,
rrang	MaxT_RA B	.004	1.060	.303	17.56***	MaxT_RAB	001	342	.735	5.321***
Da	Fert Int	007	-2.049	.055		Fert Int	.000	1.231	.229	
_	YEAR	.003	6.999	.000		YEAR	.000	.643	.526	
	(Constant)	-3.133	-4.148	.001		(Constant)	431	516	.610	
	R KH	6.680E-005	1.172	.256		R KH	2.511E-006	.051	.960	
	R Rab	2.390E-005	.314	.757		R Rab	.000	-1.124	.271	
	MaxT KH	.002	.832	.416	0.897.	MaxT KH	003	625	.537	0.605.
dn	MaxT_RA B	001	487	.632	37.43***	 MaxT_RAB	.004	1.186	.246	9.417***
mr	Fert_Int	.009	1.727	.100		Fert Int	.000	1.957	.061	
Kai	YEAR	.002	4.839	.000		YEAR	.001	1.268	.216	
	(Constant)	-6.427	-4.487	.000	-	(Constant)	-4.379	-7.664	.000	
	R KH	.000	973	.343		R KH	3.502E-005	1.502	.145	
	R_Rab	-9.882E-005	523	.607		R_Rab	1.819E-005	.352	.728	
e	MaxT_KH	.001	.113	.911	0.809,	MaxT_K H	001	148	.883	0.893,
alpara	MaxT_RA B	011	-1.347	.194	18.65***	MaxT_R AB	.007	1.822	.080	46./2***
ß	Fert_Int	.015	.803	.432		Fert_Int	-6.841E-005	816	.422	
	YEAR	.004	5.115	.000		YEAR	.002	8.168	.000	
	(Constant)	-4.493	-2.938	.008		(Constant)	8.759	9.932	.000	
	R_KH	7.641E-005	1.555	.136		R_KH	1.869E-005	.657	.516	
	R_Rab	1.453E-005	.126	.901		R_Rab	4.170E-005	.671	.508	
	MaxT_KH	001	213	.834	0.801,	MaxT_K H	011	-3.471	.002	0.837,
char	MaxT_RA B	.007	1.399	.178	17.754	MaxT_R AB	003	-1.259	.219	29.50
Ca	Fert_Int	.005	1.219	.238		Fert_Int	.002	5.834	.000	
	YEAR	.002	3.077	.006		YEAR	004	-9.109	.000	
	(Constant)	-2.523	-1.524	.144		(Constant)	-11.271	-8.858	.000	
	R_KH	.000	.969	.345		R_KH	1.503E-005	.224	.825	
	R_Rab	.000	.843	.410		R_Rab	.000	-1.046	.305	
	MaxT_KH	.011	2.245	.037	0.498,	MaxT_KH	.003	.416	.681	0.782,
gaon	MaxT_RA B	007	-1.226	.235	5.141***	MaxT_RAB	.000	038	.970	20.771***
Na	Fert_Int	.003	.326	.748		Fert_Int	001	-6.703	.000	
1	YEAR	.001	1.762	.094		YEAR	.006	9.365	.000	
rb n	(Constant)	19.932	5.324	.000	0.652	(Constant)	.527	.349	.730	0.057
Ka	R_KH	.000	1.116	.278	0.652,	R_KH	-5.343E-005	672	.507	-0.057,
. I	R_Rab	001	-3.304	.004	ð./98 ^{~~*}	R_Rab	-6.391E-005	299	.768	0.705

36

De and Pal: Impact of Climate Change on Agricultural ...

	MaxT KH	008	395	697		MaxT KH	006	502	620	
		.000	.575	.077			.000	.502	.020	
	MaxT_RAB	063	-2.542	.020		MaxT_RAB	.002	.173	.864	
	Fert_Int	.028	1.083	.293		Fert_Int	.000	050	.960	
	YEAR	009	-5.493	.000		YEAR	-8.415E-005	107	.915	
	(Constant)	2.795	.811	.427		(Constant)	5.994	6.862	.000	
	R_KH	7.607E-005	.717	.482		R_KH	2.138E-005	.502	.620	
	R_Rab	-9.533E-006	041	.968		R_Rab	.000	-1.174	.250	
	MaxT_KH	.018	1.663	.113	0.339,	MaxT_KH	007	-1.042	.306	0.648,
ills	MaxT_RAB	-7.648E-005	010	.992	3.14**	MaxT_RAB	.001	.106	.917	11.143***
NC H	Fert_Int	.025	.673	.509		Fert_Int	.006	2.93 0	.007	
	YEAR	001	798	.435		YEAR	003	-6.012	.000	

	App. 2c: R	esults of Re	gressic	on of	MDI on H	Explanatory	Variables	for 195	51 to	1976
		19	951-52 to	1976-	.77		1977-78 to	o 2010-1	1	
Zone	Regressor	В	t	Sig.	Adj.R ² , F	Regressor	В	t	Sig.	Adj.R ² , F
	(Constant)	-4.461	-10.430	.000		(Constant)	-1.454	-1.543	.134	
	R_KH	-9.497E-006	345	.734		R_KH	-9.253E-005	-1.958	.061	
rh	R_Rab	.000	2.890	.009	0.016	R_Rab	9.555E-005	.635	.531	0.014
gal	MaxT_KH	001	755	.460	0.916,	MaxT_KH	005	-1.029	.313	0.814,
Dru	MaxT_RAB	.010	4.514	.000	40.03****	MaxT_RAB	.004	1.135	.266	25.02****
Dil	Fert_Int	001	-1.077	.295		Fert_Int	.000	1.767	.088	
	Year	.003	13.128	.000		Year	.001	2.628	.014	
	(Constant)	-3.513	931	.363		(Constant)	-8.119	-3.730	.001	
	R_KH	.000	986	.337		R_KH	.000	-1.689	.103	
	R_Rab	.000	1.265	.221		R_Rab	6.915E-005	.247	.807	0.401
gar	MaxT_KH	010	-1.048	.308	0.192, 2.0*	MaxT_KH	007	654	.519	0.401,
osa	MaxT_RAB	.035	2.969	.008		MaxT_RAB	001	175	.863	4.070***
Sil	Fert_Int	.006	.544	.593		Fert_Int	003	-3.048	.005	
	Year	.002	1.024	.319		Year	.005	4.160	.000	
	(Constant)	-17.052	-8.714	.000		(Constant)	8.192	3.978	.000	
<u>د</u>	R_KH	1.990E-005	.100	.921		R_KH	.000	840	.408	
Ind	R_Rab	.001	1.702	.105	0 888	R_Rab	.000	-1.406	.171	0.400
im	MaxT_KH	011	-1.035	.314	0.000, 34 18***	MaxT_KH	006	431	.670	6 29***
kh	MaxT_RAB	.011	.944	.357	54.10	MaxT_RAB	001	071	.944	0.27
La	Fert_Int	043	-9.180	.000		Fert_Int	.007	1.759	.090	
	Year	.009	10.325	.000		Year	004	-3.393	.002	
	(Constant)	-1.276	952	.353		(Constant)	-6.948	-2.331	.027	
	R_KH	5.561E-006	.037	.971		R_KH	-4.348E-005	257	.799	
	R_Rab	.000	.832	.416		R_Rab	.001	1.077	.291	0.293
-	MaxT_KH	003	605	.552	0.107,1.50	MaxT_KH	005	394	.97	3 275**
ang	MaxT_RAB	.001	.118	.907		MaxT_RAB	.017	1.545	.134	5.275
inr:	Fert_Int	.005	1.075	.296		Fert_Int	001	-1.242	.225	
Da	Year	.001	1.472	.158		Year	.004	2.589	.015	
•	(Constant)	1.856	.979	.340		(Constant)	-20.734	-8.580	.000	
In	R_KH	-8.899E-006	062	.951	0.275	R_KH	-7.436E-005	519	.608	0 744
	R_Rab	4.311E-005	.225	.824	2.583**	R_Rab	7.761E-005	.191	.850	16 99***
Κ£	MaxT_KH	.009	1.393	.180	2.505	MaxT_KH	022	-1.853	.075	10.77
	MaxT_RAB	018	-2.622	.017		MaxT_RAB	007	626	.537	

	Fert_Int	.012	.913	.373		Fert_Int	002	-6.491	.000	
	Year	001	668	.512		Year	.011	8.945	.000	
Goalpara	(Constant)	11.327	8.153	.000	0.854, -25.431***	(Constant)	-15.900	-8.234	.000	0.730, 15.87***
	R_KH	.000	-1.027	.318		R_KH	6.342E-005	.805	.428	
	R_Rab	.000	.788	.441		R_Rab	.000	.757	.456	
	MaxT_KH	016	-2.295	.033		MaxT_KH	016	-1.274	.214	
	MaxT_RAB	.006	.761	.456		MaxT_RAB	.000	.029	.977	
	Fert_Int	.027	1.488	.153		Fert_Int	001	-5.176	.000	
	Year	005	-7.450	.000		Year	.009	8.366	.000	
	(Constant)	1.516	1.181	.252		(Constant)	-8.175	-5.282	.000	
Cachar	R_KH	5.285E-005	1.282	.215	0.221, 2.185*	R_KH	3.724E-005	.746	.462	0.786, 21.21***
	R_Rab	6.696E-005	.690	.498		R_Rab	-8.168E-005	749	.460	
	MaxT_KH	.001	.248	.807		MaxT_KH	005	820	.419	
	MaxT_RAB	.005	1.329	.200		MaxT_RAB	.002	.360	.722	
	Fert_Int	.006	1.836	.082		Fert_Int	001	-1.542	.135	
	Year	001	983	.338		Year	.004	5.880	.000	
Nagaon	(Constant)	17.116	5.057	.000	0.775, 15.36***	(Constant)	19.791	7.074	.000	0.837, 29.34***
	R_KH	001	-3.012	.007		R_KH	.000	682	.501	
	R_Rab	-1.302E-005	019	.985		R_Rab	.000	.333	.741	
	MaxT_KH	021	-2.168	.043		MaxT_KH	.002	.126	.900	
	MaxT_RAB	002	183	.857		MaxT_RAB	005	462	.648	
	Fert_Int	.020	1.176	.254		Fert_Int	.001	2.169	.039	
	Year	008	-4.555	.000		Year	010	-6.850	.000	
KarbiAnglong	(Constant)	37.707	3.381	.003	0.407, 3.858**	(Constant)	247	152	.880	0.315, 3.53***
	R_KH	.000	.568	.577		R_KH	-6.789E-005	795	.433	
	R_Rab	002	-1.943	.067		R_Rab	.000	704	.487	
	MaxT_KH	001	018	.986		MaxT_KH	.002	.202	.841	
	Max1_RAB	144	-1.961	.065		Max1_RAB	.004	.419	.6/8	
	Vear	057	464	.034		Vear	.002	.047	.323	
NC Hills	(Constant)	-6 729	-1 543	139	-0.036, 0.856	(Constant)	-47 496	-17 707	000	0.929, 72.74***
	R KH	000	1 161	260		R KH	000	3 236	003	
	R Rah	-6 259E-005	- 210	836		R Rah	001	3.067	005	
	MaxT_KH	.002	.139	.891		MaxT_KH	.030	1.372	.181	
	MaxT_RAB	.007	.769	.451		MaxT_RAB	022	-1.126	.270	
	Fert_Int	023	480	.636		Fert_Int	019	-2.827	.009	
	Year	.003	1.584	.130		Year	.024	18.188	.000	