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Abstract 
 

Prediction of the S-nitrosylation site is pivotal for understanding the mechanism of 

protein. The detection of S-nitrosylation site is a challenging task, since the experimental 

methods are laborious, time-wasting and expensive. There are some in silico existing 

approaches to identify S-nitrosylation sites. However, their performances are not so 

satisfactory. Therefore, our proposed method essential to improve or develop a good 

predictor for identifying S-nytrosylation sites. In this study, we have proposed a novel in 

silico predictor based on the random forest for identifying S-nitrosylation sites of Mus 

Musculus species. To develop a novel S-nitrosylation site predictor using the 

experimentally generated S-nitrosylation protein sequences of Mus Musculus, we have 

considered six different popular classifiers for a comparative study on the prediction of S-

nitrosylation sites. We have observed that the random forest based predictor (proposed) is 

improved the performance over the other five classifiers based predictors. The 
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performance was measured by ROC curves, AUC and pAUC scores for both training and 

independent test datasets. We observed that our proposed predictor performs (AUC 0.759, 

Accuracy 75% and MCC 47%) much better than the other existing predictors under the 

10-fold cross-validation. The proposed predictor also achieved an average performance of 

the AUC score of 0.788 and the accuracy score of 72.8% for test datasets. The output of 

the proposed method may also helpful to explore the SNO-related cellular functions in 

Human since Mus Musculus is evolutionary related to Human. 

Keywords: Protein sequence, S-nitrosylation site, composition of k-spaced amino acid 

pairs (CKSAAP) encoding, Feature selection, Random forest (RF) and Building 

predictor. 

AMS Classification: 92C40. 
 

 

1.  Introduction 

S-nitrosylation (SNO) is the utmost ubiquitous post translational modification 

(PTM) of protein that contributes in regulating many cellular plasticity and 

dynamics (Foster et al., 2009). Under both normal and pathological conditions, 

SNO is the main chemical-mechanism in which nitric oxide regulates protein 

functions and exposed to change protein functions, subcellular localization and 

protein-protein interactions (Hess et al., 2005; Whalen et al., 2007). Many studies 

have shown that SNO proteins retrospectively and irregularly increases or 

decreases in a range of diseases (Lugovskoy et al.,1999; Foster et al., 2003; 

Nakamura et al., 2006; Schonhoff et al., 2006; Lipton et al.,1993). It can associate 

with stroke, Alzheimer, cancer and a number of chronic diseases. The use of 

traditional mass spectrometry-based proteomics has been suffering due to the 

essential chemical uncertainty of the SNO bond (Nakamura et al., 2006). So, 

detection of the SNO site is important for understanding the mechanism of SNO 

related biological functions. Generally, the SNO sites are experimentally 

identified by mass spectrometry using a biotin switch method to label the oxidized 

cysteines (Foster et al., 2003; Nakamura et al., 2006). The avobe detection process 

of SNO site is a challenging task, since the experimental methods are laborious, 

time-wasting and expensive. Therefore, a good in silico method which can reduce 

time, labor and cost for identifying SNO sites is required. There are some in silico 

approaches to identify SNO sites for different species including Mus Musculus (Li 

et al., 2011; Li et al., 2012; Xue et al., 2010; Xu et al., 2013). However, it has 
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been observed that their performances are not so satisfactory yet. Therefore, in 

this study, an attempt is made to propose a novel in silico predictor based on 

random forest (RF) for identifying SNO sites of Mus Musculus species. It should 

be noted here that the demo version of this new procedure was published in a 

conference proceeding (Ahmed et al., 2017).  

To investigate the performance of the proposed RF based predictor using the 

previous experimentally generated SNO protein sequences of Mus Musculus, we 

have considered five other different popular classifiers (k-nearest neighbor 

algorithm (KNN), support vector machines (SVM), naive bayes (NB), adaBoost 

(ADA) & logistic regression (LOGI)) for a comparative study on the prediction of 

SNO sites. We have considered two popular encoding schemes (CKSAAP & 

Binary) for comparative study on the prediction of SNO sites. The CKSAAP has 

been selected as a better encoding scheme through a comparative study to develop 

the proposed predictor. The proposed RF based predictor has shown better 

performance measured by ROC curves and AUC scores for both training and 

independent test datasets. We provide the whole development procedure in details 

for the newly proposed method in the next section. 

 

2.  Materials and Methods 

2.1  Data Source 

To construct SNO site predictor we have downloaded 1356 amino acid sequences 

from the Mus Musculus database of cysteine SNO 

(http://140.138.144.145/~dbSNO/download.php). In this dataset, 2641 SNO sites 

were experimentally detected in 1356 proteins. 

2.2  Data preparation 

In this study, the experimentally detected SNO sites (Cysteine residues) were 

considered as positive samples and all the other cysteine residues as negative 

samples (i.e. non-SNO sites). The negative samples were considered based on an 

instinctive assumption (Hasan et al., 2015), even though there was no clear 

evidence of which negative was present or not. An individual site was denoted as 

a fragment of sequence with cysteine in the midpoint. The length of the fragment 

sequence is known as the window size. In 1,356 SNO proteins, there were 2,641 
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positive and 1,0394 negative samples of sites. Since the amounts of positive and 

negative samples were unbalanced in the original dataset, we constructed three 

types of training datasets to develop the best classifier (class predictor). But we 

can’t take similar sequences of positive and negative samples. Because the similar 

sequences cannot classify the SNO sites and non-SNO sites. Those three types of 

training datasets are as follows:    

The training dataset-1 with a 1:1 ratio was constructed by randomly selecting 

n11=2300 positive samples out of 2641 and n12=2300 negative samples out of 

10394, the training dataset-2 with a 1:2 ratio was constructed by randomly 

selecting n21=2300 positive samples out of 2641 and n22=4600 negative samples 

out of 10394 and the training dataset-3 with a 1:3 ratio was constructed by 

randomly selecting n31=2300 positive samples out of 2641 and n32=6900 

negative samples out of 10394 without replacement. For each classifier, to 

investigate the performance of 3 predictors developed based on the 3 training 

datasets as early mentioned and we constructed a test (independent) dataset by the 

rest of the positive and negative samples of the original dataset.  

To develop the classifier based on a training dataset, we converted the sequence 

dataset to the numeric dataset by the encoding approaches. A large number of 

features (e.g. 2646) were created in the encoded dataset. To reduce the 

computational complexity of predictors, we considered the feature selection 

strategy also. Finally, we optimized the ratio, encoding, window size, number of 

important features and classifiers to find the best SNO site predictor.   

2.3  Data Encoding 

There are several encoding approaches in the literature to covert the sequence data 

into numeric data. Here we considered two popular encoding approaches as 

discussed below:  

2.3.1  CKSAAP encoding 

The CKSAAP encoding method was firstly introduced by Chen et al. (Chen et al., 

2007). It has been broadly using in the numerous bioinformatics work (Xu et al., 

2013; Hasan et al., 2019a; Hasan and Kurata, 2018; Hasan et al., 2018b; Hasan et 
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al., 2019b; Khatun et al., 2019). If window size of a fragment is 2r + 1 (where r = 

1, 2, 3 ,…) and 21 types of amino acids (including the gap (O)), it may create 

(21× 21) = 441 types of amino acid pairs (i.e. AA, AC, AD,. . ., OO) for every 

single k (k denotes the space between two amino acids). For the optimal kmax =5, 

there are 21× (kmax + 1) × 21 = 2646 different amino acid pairs are created for 

each sequence. Then the feature vectors are calculated using the following 

equation: 

(
𝑁𝐴𝐴

𝑁𝑡𝑜𝑡𝑎𝑙
,

𝑁𝐴𝐶

𝑁𝑡𝑜𝑡𝑎𝑙
,

𝑁𝐴𝐷

𝑁𝑡𝑜𝑡𝑎𝑙
, … ,

𝑁𝑂𝑂

𝑁𝑡𝑜𝑡𝑎𝑙
)441                                                                        (1) 

where Ntotal is the length of the total composition residues (for example, if the 

fragment length H is 29 and k = 0, 1, 2, 3, 4, 5 then Ntotal = H - k -1 will be 28, 27, 

26, 25, 24 and 23, respectively). 𝑁𝐴𝐴, 𝑁𝐴𝐶,...,𝑁𝑂𝑂 are the frequency of the amino 

acid pair within the fragment. More details are available somewhere (Hasan et al., 

2018b; Hasan et al., 2019b; Khatun et al., 2019). 

2.3.2  Binary encoding 

According to the binary encoding approach, 21 amino acids (including gap (O)) 

are converted to numeric vectors. The 21 types of residues are organized as 

ACDEFGHIKLMNPQRSTVWYO. In the query proteins, A is denoted as 

1000000000000000000000 and C as 01000000000000000000, and so on for 

binary vector. The center position is always C in each window of SNO sites for 

the query protein. If we select a window of size 29, the feature vectors with a 

dimensionality (21×29) = 609 are obtained from the binary encoding.  

2.4  Feature selection 

As discussed previously, each encoding approach produces high dimensional 

features with each window. However, high dimensional features create the 

computational complexity in some popular classifiers during the development of 

class predictor. Therefore, we considered the filtering approach to select the 

important features, since the equally expressed features (The equally expressed 

features mean that features that show similar frequencies between the positive and 

negative data set) among two or more conditions do not have any significant 

contribution to the class prediction.  There are several statistical approaches for 
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filtering the feature variables. However, most of the parametric tests are depended 

on the normality of the dataset. The encoded dataset generated in this study 

usually not satisfies the normality assumption. Therefore, we have used the non-

parametric Wilcoxon Sign Rank Test for filtering the feature variables (Whitley E 

and Ball J, 2002). 
 

2.5  Learning classifiers 

To build a better predictor for protein SNO site prediction, we considered six 

popular classifiers k-nearest neighbor algorithm (KNN), Support Vector Machines 

(SVM), Naive Bayes (NB), AdaBoost (ADA), Random Forest (RF) & Logistic 

Regression (LOGI)) for a comparison based on the encoded protein sequences. 

For the convenience of the readers, let us introduce those classifiers as follows: 

KNN: The KNN is a non-parametric method used for classification. The KNN is 

classified by a plurality vote of its neighbors. According to the KNN algorithm 

(Keller et al., 1985; Zhang Z, 2016), the query sample is predicted to the subset 

represented by its k-nearest neighbors. In this study, if the majority of the k-

nearest neighbors of the query sample is being assigned positive sample, this 

means that it is an SNO site. Otherwise, the query sample is a negative one. Here, 

some distances are used to measure the nearest neighbors for the KNN algorithm, 

such as the Hamming distance, Euclidean distance and the Mahalanobis distance. 

In this study, the KNN algorithm was implemented using the R package ‘kknn’ as 

kknn(training_data$class ~ ., traindata, testdata, k = 50, distance = 2). 

SVM: The SVM was developed based on the structural risk minimization 

principle (Cristianini N and Schölkopf B, 2002; Hasan et al., 2015). Supervised 

learning method mainly applied to classification. The main idea of an SVM is to 

predict classes with a surface that maximizes the boundaries between them. There 

are two concepts of boundaries, first is the concept of an optimum linear margin 

classifier and second is the concept of a kernel. In this study, the SVM algorithm 

was implemented using the R package ‘e1071’ as svm(training_data$class ~ ., 

trainingdata , kernel = "radial").  
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NB: The NB is a probabilistic classifier established on relating Bayes’ theorem 

with individuality assumptions. NB classifiers are based on the conditional 

probability of features belonging to a class, which the features are selected by 

feature selection methods (Zhanga W and Gao F, 2011). In simple terms, a naive 

Bayes classifier assumes that the presence (or absence) of a particular feature of a 

class is unrelated to the presence (or absence) of any other feature. Depending on 

the precise nature of the probability model, naïveBayes classifiers can be trained 

very efficiently in a supervised learning setting. The Naive Bayes classifier was 

implemented using the R package ‘naivebayes’ as naiveBayes(training_data$class 

~ ., trainingdata).  

RF: Random forests are a combination of tree predictors such that each tree 

depends on the values of a random vector sampled independently and with the 

same distribution for all trees in the forest (Breiman L, 2001a). RF classifier is a 

group of decision tree classifiers. It is broadly used in protein bioinformatics 

(Hasan et al., 2018b; Hasan et al., 2019b; Khatun et al., 2019; Hasan et al., 2018a; 

Hasan et al., 2017; Hasan et al.,2018; Breiman, 2001b; Hasan et al., 2016). The 

RF classifier is predicted class by the voting among the number of trees, which 

covers two classes, either positive samples (SNO sites) or negative samples (non- 

SNO sites). The RF classifier was implemented using the R package 

‘randomForest’ as randomForest(training_data$class ~ ., trainingdata, ntree = 400, 

mtry = 10).  

ADA: AdaBoost is a machine learning developed by Yoav Freund and Robert 

Schapire. The boosted classifier represents the final output by combining into a 

weighted sum of the output of the other learning algorithms. The main ideas of 

ADA algorithm is to maintain a distribution or set of weights over the training set 

(Wang R, 2012). The classifier was implemented using the R package ‘ada’ as ada 

(training_data$class~ ., trainingdata, iter=20, nu=1, type  =  "discrete" ).  

LOGI: Logistic regression is used to obtain odds ratio in the presence of more 

than one explanatory variable. The procedure is quite similar to multiple linear 

regression, with the exception that the response variable is binomial.  By fitting 

data to a logistic curve, logistic regression is used for identification of the 

probability of incident of an event (Sperandei S, 2014). It is broadly used for 

predictor variables which are either numerical or categorical. In LOGI, we set the 

function as glm (training_data$class~ ., family = ‘binomial’, data(train)). 
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Figure 1: The SNO predictor pipeline. The best prediction model or classifier was 

built after parameter optimization and performance evaluation. 

3.  Performance Assessment 

To investigate the performance of the proposed predictor, we have used true 

positive rate (TPR), true negative rate (TNR), false discovery rate (FDR), 

accuracy (AC), misclassification rate (MCR), mathew correlation coefficient 

(MCC) as six measurements defined as below: 

𝑇𝑃𝑅 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁
× 100                         (2) 
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𝑇𝑁𝑅 =
𝑛𝑇𝑁

𝑛𝑇𝑁+𝑛𝐹𝑃
× 100                         (3) 

𝐴𝐶 =
𝑛𝑇𝑃+𝑛𝑇𝑁

𝑛𝑇𝑃+𝑛𝐹𝑃+𝑛𝑇𝑁+𝑛𝐹𝑁
× 100                        (4) 

𝑀𝐶𝑅 =
𝑛𝐹𝑃+𝑛𝐹𝑁

(𝑛𝑇𝑃+𝑛𝐹𝑃+𝑛𝑇𝑁+𝑛𝐹𝑁)
× 100                        (5) 

𝐹𝐷𝑅 =
𝑛𝐹𝑃

𝑛𝐹𝑃+𝑛𝑇𝑃
× 100                         (6) 

𝑀𝐶𝐶 =
((𝑛𝑇𝑃×𝑛𝑇𝑁)−(𝑛𝐹𝑃×𝑛𝐹𝑁))×100

√(𝑛𝑇𝑃+𝑛𝐹𝑁)×(𝑛𝑇𝑁+𝑛𝐹𝑃)×(𝑛𝑇𝑃+𝑛𝐹𝑃)×(𝑛𝑇𝑁+𝑛𝐹𝑁)
× 100                     (7) 

 

where, number of true positive = nTP, number of false positive = nFP, number of 

true negative = nTN, number of false negative = nFN. Where, a true positive is a 

predicted positive class where the predictor correctly predicts the positive class, a 

true negative is a predicted negative class where the model correctly predicts the 

negative class, a false positive is a predicted positive class where the model 

incorrectly predicts the positive class and a false negative is a predicted negative 

class where the model incorrectly predicts the negative class. We also 

usedreceiver operating characteristic (ROC) curve, area under the ROC curve 

(AUC) score and partial AUC (pAUC) score to investigate the performance. The 

ROC curve is made from the plot of true positive rate against the false positive 

rate at different thresholds. The partial area under the ROC curve (pAUC) over the 

range (0,e) is defined as an integral of the ROC function over the given range, 

i.e. pAUC(e) = ∫ ROC(f)df
𝑒

0
. When e=1 the partial area represents the 

conventional area under the entire ROC curve (AUC). The values of TPR, TNR 

and AC lies between 0 to 100; MCC lies between -100 to 100, AUC lie between 0 

to 1 and pAUC lies between 0 to e. And a higher value represents a better 

prediction. The values of FDR and MCR lies between 0 to 100, and a lower value 

represents a better prediction. 
 

4.  Results and Discussion 

4.1  Selection of Encoding Method 

To compare better encoding method from two popular encoding methods 

(CKSAAP and binary), we trained AdaBoost, RF, SVM, KNN and NB classifiers 

by the two encoded training datasets. Then the performance indexes (TPR, TNR, 

AC, MCR, FDR, MCC, ROC, AUC and pAUC) were computed. The comparative 
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performance results under two encoding systems with different classifiers are 

given in Table 1. 

Table 1: Comparison of CKSAAP encoding with the binary encoding with 

different classifiers 

Classifiers Encoding 
TPR 
(%) 

TNR 
(%) 

FDR 
(%) 

MCR 
(%) 

AC 
(%) 

MCC 
(%) 

AUC 
 

pAUC 
(at FPR 0.3) 

 

KNN 
CKASSP 94 95 5 5 95 89 0.95 0.26 

BINARY 70 62 35 34 66 32 0.69 0.09 

SVM 
CKASSP 94 92 8 7 93 86 0.95 0.26 

BINARY 86 85 14 14 86 71 0.92 0.24 

NB 
CKASSP 87 84 16 14 86 71 0.89 0.22 

BINARY 85 77 20 18 82 64 0.86 0.18 

ADA 
CKASSP 90 98 3 6 94 87 0.98 0.29 

BINARY 94 92 7 7 93 86 0.93 0.25 

RF 
CKASSP 93 98 2 4 96 91 0.99 0.29 

BINARY 90 98 3 6 94 87 0.93 0.23 

Table 2: Comparison of CKSAAP encoding with the binary encoding for RF on 

test data 

Classifier Encoding 
TPR 
(%) 

TNR 
(%) 

FDR 
(%) 

MCR 
(%) 

AC 
(%) 

MCC 
(%) 

AUC 
 

pAUC  
(at FPR 

0.3) 
 

RF 
CKASSP 70 87.7 18.6 20 80 59.1 0.854 0.178 
BINARY 52 83.1 29.7 30.4 69.6 37.4 0.648 0.113 

From Table 1, we see that all classifiers give better scores with CKSAAP 
encoding than binary encoding. However, RF gives better performance among the 
others with the CKSAAP encoded training dataset. So, in this case, we checked 
the performance of RF classifier only based on the test dataset under these two 
encodings to select the better encoding system. Table 2 indicates that CKSAAP 
encoded test dataset also shows better performance with the RF classifier. 

4.2 Selection of Better Classifier under the CKSAAP Encoded    

Datasets with Different Ratios  

Naturally, the SNO and non-SNO datasets are incredibly imbalanced. It has been 

proven that because of the nature of the imbalanced datasets, the accuracy of 

statistical learning algorithms powerfully affected and computationally inflexible. 

For this reason, three datasets were prepared by 1:1 (i.e. 2300 positive SNO sites 
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and 2300 negative SNO sites in the dataset), 1:2 and 1:3 ratios of the positive and 

negative sample. In each dataset, 21× (5+1) ×21=2646 feature variables were 

created. The dimensions of 3 training datasets were 4600×2646, 6900×2646 and 

9200×2646 corresponding to 1:1, 1:2 and 1:3 ratios, respectively. However, most 

of classifiers suffer from the computational complexity due to the high-

dimensional feature variables. To overcome this problem, we selected top 1500 

significant features by non-parametric Wilcoxon signed rank test as a filtering 

approach, because insignificant features have no significant contribution in both 

supervised and unsupervised learning. The detailed performance measurements of 

different classifiers (RF, SVM, KNN, NB, LOGI and ADA) based on 1:1, 1:2 and 

1:3 ratio of positive and negative samples with 1500 features in the training 

datasets are shown in Table 3. 

Table 3: Comparison of different class predictors with 1:1, 1:2 and 1:3 ratios of 

the positive and negative sample for training dataset based on 29 window size and 

1500 features. 

Ratio of 
training 
dataset 

Classifiers 
TPR 
(%) 

TNR 
(%) 

FDR 
(%) 

MCR 
(%) 

AC 
(%) 

MCC 
(%) 

AUC 
 

pAUC 
(at FPR 

0.3) 
 

1:1 

KNN 94 95 5 7 93 89 0.92 0.21 
SVM 94 92 8 7 93 86 0.92 0.22 
NB 87 84 16 14 86 71 0.89 0.20 

ADA 90 98 3 6 94 87 0.93 0.22 
LOGI 84 95 6 11 89 79 0.86 0.23 

RF 95 98 2 3 97 94 0.99 0.29 

 
1:2 

KNN 33 95 25 26 74 37 0.81 0.09 
SVM 88 90 19 11 89 76 0.93 0.23 
NB 67 88 26 19 81 56 0.86 0.18 

ADA 79 89 21 14 86 68 0.94 0.24 
LOGI 94 95 10 6 93 88 0.92 0.24 

RF 93 95 9 5 95 92 0.97 0.27 

1:3 

KNN 9 97 46 25 75 14 0.77 0.12 
SVM 92 92 21 8 92 80 0.92 0.22 
NB 61 87 .38 19 81 49 0.85 0.17 

ADA .64 96 14 12 88 66 0.93 0.23 
LOGI 94 93 14 6 94 86 0.91 0.24 

RF 92 93 10 6 94 89 0.96 0.26 
 

Table 3 shows that RF classifier with 1:1 ratio based training dataset gives better 

performance (TPR = 95%, TNR = 98%, FDR=2%, MCC = 94%, MCR=3%, AC = 

97%, AUC=0. 99, pAUC=0.29) than any other combination of the classifiers and 

ratios. Figure 2 also shows that the RF classifier with 1:1 ratio based predictor 

perform better for both the training and independent test dataset than other 

predictors. 
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Figure 2(a-f): Figures a, c and e represents the ROC curves for 6 different 

classifiers based on 1:1, 1:2 and 1:3 ratios with training datasets respectively. 

Figures b, d and f represents the ROC curves for the independent test dataset with 

6 different classifiers corresponding to 1:1, 1:2 and 1:3 ratios, respectfully. 
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4.3 Selection of optimal window size  

A window is defined by a sequence fragment of size 2n+1. In this study, different 

window sizes (25, 27, 29, 31, and 33) were considered to select the optimal 

window size. We constructed five predictors based on RF classifier with different 

five window sizes respectively using 1:1 ratio of training dataset with 1500 

features. The Performance of these five predictors based on test dataset are shown 

in Table 4. 
 

Table 4: Performance of the RF classifier for the test dataset for different window 

sizes with 1500 features. 

Window 

Sizes 

TPR 

(%) 

TNR 

(%) 

FDR 

(%) 

MCR 

(%) 

AC 

(%) 

MCC 

(%) 
AUC 

pAUC 

(at FPR 0.3) 

 

25 56 75.4 36.4 33 67 32 0.693 0.112 

27 52 86.2 25.7 28.7 71.3 41.1 0.709 0.132 

29 88 83.1 20 14.8 85.2 70.5 0.891 0.214 

31 52 78.5 35 33 67 31.7 0.688 0.10 

33 54 80 32.5 31.3 68.7 35.4 0.657 0.112 
 

Table 4 shows that RF based predictor based on test dataset gives the highest 

performance with window size 29 than other window sizes. 
 

4.4  Building Proposed Predictor 

The proposed predictor was constructed combining sub-sections 4.1-4.3 that 

includes the RF classifier, top 1500 significant CKSAAP encoding features, 

window size 29 and the 1:1 ratio of SNO and non-SNO sites in the training 

dataset.  
 

4.4.1  Average performance of the proposed predictor  

To investigate the average performance of the proposed predictor, we took 90% 

data as the training dataset satisfying 1:1 ratio of SNO and non-SNO sites and 

10% data as the test dataset without replacement from the original dataset and 

repeated this procedure 5 times. The average performance of the proposed 

predictor with the training and test datasets are shown in Table 5, where the value 

of 1st bracket indicates that the value of the standard deviation of the performance 

scores of the repeated procedure. 
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Table 5: Average and standard error of performance measurements for test 

datasets. 

Dataset 
TPR 

(%) 

TNR 

(%) 

FDR 

(%) 

MCR 

(%) 

AC 

(%) 

MCC 

(%) 

AUC 

 

pAUC 

(at FPR 0.3) 

 

Training  93 (4) 98(1) 2(2) 4(3) 96(2) 91(7) 0.93(6) 0.29(1) 

Test 89.4(7) 54.7(11) 31.8(4) 27.2(2) 72.8(2) 48.2(2) 0.788(2) 0.132(2) 
 

 

Table 5 indicates that average performances of the predictor are TPR = 89.4%, 

TNR = 54.7%, FDR = 31.8%, MCC = 48.2%, MCR = 27.2%, AC = 72.8%, 

AUC= 0.788, pAUC(at FPR 0.3) = 0.132 for test dataset which are a significant 

result. All the above results clearly showed that proposed predictor provides the 

accurate predictions of SNO sites than existing methods. 

4.4.2  Performance evaluation by cross-validation  

For this analysis the total data set is split into 10 sets. One by one, a set is selected 

as test set and the 9 other sets are combined into the corresponding outer training 

set. This is repeated for each of the 10 sets. To investigate the performance of the 

proposed predictor by the area under the ROC curve (AUC), we perform cross 

validation. The Table 6 indicates the AUC value of the proposed method with 

both cross-validated training data and independent test datasets. 

Table 6: Performance measurements of cross-validation and independent test. 

Description AUC 

10 fold cross-validation for the training dataset 0.759 

Independent test dataset 0.787 
 

Table 6 indicates that our proposed method achieves an AUC score of 0.759 for 

10-fold cross-validation with the training dataset and AUC score of 0.787 with the 

independent test dataset. 

4.4.3 Performance comparison of the proposed method with existing methods 

To compare the proposed method with the existing methods (SNOSite, GPS-SNO, 

iSNO-PseAAC and iSNO-AAPair) those were primary sequence based SNO site 

identification techniques ( Li et al., 2011; Li  et al., 2012; Xue, 2010; Xu  et al., 
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2013), we performed 10-fold cross-validation. But in the iSNO-PseAAC only 

accepted characters are 20 natural amino acid notations but not accepted “-” 

although ‘-’ is a amino acid character. Table 7 indicates that the performance 

scores of TPR, TNR, AC and MCC are achieved 80.4%, 68%, 75% and 47% by 

the proposed method those are significantly improved than the existing methods. 

Thus, the proposed method outperformed the existing methods. 

Table 7: Performance comparison with existing methods. 

Prediction methods TPR TNR AC MCC 

SNOSite 84 % 30 % 57 % 0.49 % 

GPS-SNO 46% 66% 56% 0.22 % 

iSNO-PSeAAC 52% 58% 55% 0.19% 

iSNO-AAPair 24% 64% 44% -0.22 % 

Proposed (1:1 ratio + CKSAAP + 29 window +  

1500  feature) method 
80.4% 68% 75% 47% 

 

4.5  Sequence specificity of SNO site 

By using Two Sample Logos software (Vacic et al., 2006), the amino acid 

tendencies of neighboring SNO sites were compared to the non-SNO sites that are 

displayed for the training dataset in Figure 3. In this software, positive samples 

(SNO sites) represent its residues at each location of window size that is plotted 

above the X-axis. On the other hand, negative samples (non-SNO sites) represent 

its residues at each location of window size that are plotted under the X-axis. The 

proportion of positive (over display) or negative samples (under display) were 

showed by the height of the letter harboring the resultant residue. The cumulative 

percentage of these over/under displayed residues were plotted in the Y-axis. In 

the following calculation and operation, we selected 29-mer (-14, +14) window 

size and Figure 3 shows the position-specific difference of amino acid 

compositions between S-nitrosylation sites and non-S-nitrosylation sites. Figure 3 

indicates that some amino acids are over/under represented at specific points and 

to identify the SNO sites, the positional amino acid encoding is an effective 

technique. Although we know that the binary encoding is a positional based 

encoding, but Table 1 shows that binary encoding is not sufficient to exactly 

identify the SNO Sites 
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Figure 3: The amino acid propensities of surrounding SNO sites compared to 

non- SNO sites, as displayed with the Two Sample Logos software. 
 

From the Figure 3 we visualized some interesting findings. There are: (i) the SNO 

site fragment has no Cysteine without middle position but in the non-SNO site 

fragment may have Cysteine at any position, (ii) in the SNO site fragment may 

have (D/T/V), R, (R/K), K, K at position -12, -10, -6, -3, 5 respectively but in the 

non-SNO site fragment may have only C at position -12, -10, -6, -3, 5.  

 

5.  Conclusions 

In this paper, we proposed a random forest based novel in silico predictor for 

predicting of protein SNO site of Mus Musculus species. To develop this novel 

predictor, we considered six different popular classifiers (KNN, SVM, NB, RF, 

ADA & LOGI) for the comparative study on the prediction of SNO sites using the 

experimentally identified S-nitrosylated protein sequences of Mus Musculus. The 

CKSAAP performed a better encoding scheme through a comparative study to 

develop the proposed predictor. We have observed that the proposed random 

forest classifier improves the performance over the other classifiers under the 

CKSAAP encoded dataset with 29 window size and 1500 important features out 
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of 2646. The performance was measured by ROC curves and AUC scores for both 

training and independent test datasets. We observed that our proposed predictor 

performs (AUC 75.9%, Accuracy 75% and MCC 47%) much better than the other 

existing predictors under the 10-fold cross-validation. The output of the proposed 

method may help to explore the SNO-related cellular functions in Mus Musculus 

as well as Human since Mus Musculus is evolutionary related to Human. To 

implement the proposed method, we provided the computational codes and 

instructions, which can be downloaded at 

http://www.bbcba.org/softwares/SnoPred.zip. 
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