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Abstract

The subject of assessing whether a data set is from a specific distribution has
received a good deal of attention. This topic is critically important for the nor-
mal distribution. Often the distributions of the test statistics are intractable.
Here we consider simulation based distributions for several commonly used
normality test statistics, such as, Anderson-Darling A2 test, Chi-square test,
Shapiro-Wilk W test, Shapiro-Francia W ′ test, D’Agostino-Pearson test, and
Jarque-Bera test. Practitioners are used to with the Chi-square test because all
other tests are dependent on specialized tables and/or software. Here, we give
algorithms, how those specialized tables can be generated and then the respec-
tive tests can be implemented without much difficulty. A power comparison is
also performed using simulation.
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1 Introduction

The subject of assessing whether a data set is from a specific distribution has received
a good deal of attention. This topic is critically important for normal distributions.



56 International Journal of Statistical Sciences, Vol. 15, 2015

Recently, Wah (2011), Rahman and Wu (2013a), and Rahman and Wu (2013b) com-
pared several normality tests. Here we compare six different commonly used paramet-
ric goodness of fit tests for normality through simulation. In this study, we consider
simulation based distributions for several commonly used normality test statistics, such
as, Anderson-Darling A2 test, Chi-square test, Shapiro-Wilk W test, Shapiro-Francia
W ′ test, D’Agostino-Pearson test, and Jarque-Bera test. A brief motivation for this
study is given in Section 2. Descriptions of all the seven (previously mentioned six
plus traditional Chi-square test) tests considered are given in Section 3. In Section 4,
a power comparison is presented. A brief conclusion based on the simulation results
is given in Section 5. In Appendix, the simulation results are provided.

2 Motivation

The most commonly used method to check for normality is the Normal Probabil-
ity Plot. The most commonly used method to test for normality is the Chi-square
goodness-of-fit test, which is very simple to comprehend and very easy to implement.
Some softwares are developed to implement other specialized tests but the accessibil-
ity of these softwares is limited to the general practitioners. Most tests rely on tables
which are also not easily accessible. Here we give brief descriptions of the tests under
consideration, implementation of algorithms, and finally a comparison using simula-
tion. In addition, we also consider traditional Chi-square goodness-of-fit test along
with simulation based Chi-square test.

3 Tests for Normality

3.1 Anderson-Darling Test

A distribution function test is suggested by Anderson and Darling (1952). The
Anderson-Darling A2 statistic is computed as

A2 = −n− 1

n

n∑
i=1

(2i− 1) {lnΦi + ln(1− Φi)} , (1)

where Φi’s are the normal cumulative distribution function (CDF) value for the ith

ordered data point. Large sample approximations of the percentiles were given by
Anderson and Darling (1952) based on simulation and then through polynomial fit-
tings with respect to the sample size. Due to computational developments, now one
can use simulation to generate the percentiles of the A2 statistic for the sample size
under consideration and the null hypothesis that the data is from the standard normal
distribution. Then a p-value can be obtained for the observed A2 statistic for the data
at hand.
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3.2 Chi-square Test

Pearson’s chi-squared test is used to assess two types of comparison: tests of goodness
of fit and tests of independence. In this paper, we use it to establish whether or
not an observed frequency distribution differs from a hypothetical distribution. The
test-statistic is defined as

χ2 =

g∑
i=1

(Oi − Ei)
2

Ei
, (2)

where g is the number of groups, Oi is an observed frequency while Ei is the expected
frequency under the null hypothesis. Then χ2 follows approximate Chi-square dis-
tribution with g − k − 1 degrees of freedom, where k is the number of parameters
estimated for the distribution under consideration. A rule can be maintained that the
expected frequencies are at least 5. For moderate to small samples, the highest num-
ber of groups possible should be considered. For large samples, the highest number of
groups might over smooth in complying with Chi-square approximation. To examine
such a behavior, different number of groups can be considered while comparisons are
made. In literature, number of classes in the Chi-square test is analyzed by Dahiya
and Gurland (1971), Hamdan (1963), Mann and Wald (1942), and Williams (1950).
Here we consider expected frequencies as 5 throughout our simulations.

Due to computational developments, now one can use simulation to generate the per-
centiles of the χ2 statistic for the sample size under consideration and the null hy-
pothesis that the data is from the standard normal distribution. Then a p-value can
be obtained for the observed χ2 statistic for the data at hand. Here we denote such
statistic as χ2

s, where s stands for simulation.

3.3 Shapiro-Wilk W Test

Let (X1, X2, · · · , Xn) be a random sample to be tested for departure from normality,
based on the ordered sample X(1) < X(2) < · · · < X(n) , and let mn×1 denote the
vector of expected values Vn×n variance-covariance matrix of the standard normal
order statistics. Shapiro and Wilk (1965) suggested the following test.
Define

W =

(
n∑

i=1

aiX(i)

)2

n∑
i=1

(Xi − X̄)2
, (3)

where X̄ is the sample mean and an×1 = m′V−1

(m′V−1V−1m)1/2
. Note that W equals the

square of the standard product-moment correlation coefficient between the X(i) and
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ai, and therefore measures the straightness of the normal probability plot of the X(i);
small values of W indicate non-normality. In literature, ai’s are tabulated for limited
sample sizes and some approximations are provided for larger samples. Here, we sug-
gest obtaining ai’s using simulation and then creating a simulation of the W statistic
distribution under the null hypothesis for the sample size needed prior to implementing
the test.

3.4 Shapiro-Francia W ′ Test

W ′ =

(
n∑

i=1

miX(i)

)2

n∑
i=1

m2
i ×

n∑
i=1

(
Xi − X̄

)2 , (4)

a modified W statistic proposed by Shapiro and Francia (1972).Sarkadi (1975) dis-
cussed about consistency of this test. Implementation of W ′ is easier and gained
popularity as it requires only the means of the order statistics of the standard nor-
mal variates unlike W which also requires covariance matrix of the order statistics of
the standard normal variates. Harter (1961) provided the approximate means of the
order statistics of the standard normal variates. Parrish (1992) provided the more
accurate means of the order statistics of the standard normal variates using Legendre
Polynomials, which are accurate up to thirty two decimal places. Following Parrish
(1992), Rahman and Pearson (2000) showed that by simulation the means of the order
statistics of the standard normal variates can be approximated pretty accurately up
to about eight decimal places which serves the purpose in most cases.

Rahman and Pearson (2000) showed that through exclusive Monte-Carlo simulation,
that is, incorporating approximate expected values, the W ′ percentiles can be com-
puted pretty accurately, while Rahman and Ali (1999) provided revised W ′ percentiles
using Parrish (1992) expected values.

Hence, before implementing W ′ test one can easily simulate the means of the order
statistics of the standard normal variates and W ′ percentiles and then compute the
p-value for the data at hand. Similar can be done for the W statistic.

3.5 D’Agostino-Pearson Test

Pearson (1895) suggested that the following sample estimates could be used to describe
nonnormal distributions and used as the bases for tests of normality. Let (X1, · · · , Xn)
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denote a sample of n observations. Mj ’s are the j-th sample central moments, and X
is the sample mean.

√
b1 and b2 are defined as

√
b1 =

M3√
M3

2

=

1

n

n∑
i=1

(Xi −X)3

(
1

n

n∑
i=1

(Xi −X)2

)3/2
, (5)

and

b2 =
M4

M2
2

=

1

n

n∑
i=1

(Xi −X)4(
1

n

n∑
i=1

(Xi −X)2

)2 , (6)

where Mj =
1
n

∑n
i=1(Xi −X)j .

D’Agostino et al. (1990) have done separate tests based on
√
b1 and b2. They indicate

how these two can be used in conjunction with normal probability plotting. They have
also provided the procedures on how to calculate the normal approximations of the test
statisticsX(

√
b1) andX(b2) when the sample sizes are large enough (n > 8 and n ≥ 20,

respectively), where X(
√
b1) is the standard normal score for the respective percentile

position for
√
b1 value, and X(b2) is similarly defined as X(

√
b1). In this paper, we will

obtain the estimates of these two statistics X(
√
b1) and X(b2) by simulations. The

test proposed by D’Agostino and Pearson (1973) combines
√
b1 and b2 for an omnibus

test. The test statistic is

DPC = X2(
√
b1) +X2(b2). (7)

Under the normal null hypothesis, DPC follows a Chi-square distribution with 2 de-
grees of freedom. In literature, simulated

√
b1 and b2 values, and their tables are given

for a wide range of sample sizes.

At this computational age, one can easily simulate percentiles for
√
b1 and b2 under

normality assumption prior to implementing the DPC test. Computational steps:

• Step 1: Simulate samples of size n from N(0, 1), compute
√
b1 and b2, store the

values.

• Step 2: Compute
√
b1 and b2 for the data, obtain percentile positions of

√
b1 and

b2 in the stored respective empirical distributions in Step 1, compute DPC in
(7) and then obtain the upper tail p-value by using the Chi-square distribution
with 2 degrees of freedom.
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Alternatively, instead of using the Chi-square table, one can use the simulated empiri-
cal distribution to determine the critical values or the p-values in making the decisions.
Let us call such test DPS. Computational steps:

• Step 1: Simulate samples of size n from N(0, 1), compute
√
b1 and b2, store the

values.

• Step 2: Separately, take samples of size n from N(0, 1), compute
√
b1 and b2,

obtain the percentile positions of
√
b1 and b2 in the stored respective empirical

distributions in Step 1, compute DPC in (7) and store.

• Step 3: Compute
√
b1 and b2 for the data, obtain percentile positions of

√
b1 and

b2 in the stored respective empirical distributions in Step 1, compute DPC in
(7) and then obtain the upper tail p-value by using the empirical distribution in
Step 2.

Rahman and Wu (2013b) showed that performance of DPS is better than DPC, hence
we will consider DPS in this study.

3.6 Jarque-Bera Test

Jarque and Bera (1987) suggested a moment based statistic

JBC =
n

6

(
b1 +

1

4
(b2 − 3)2

)
, (8)

where b1 and b2 are defined above.

For large samples, JBC follows a Chi-square distribution with 2 degrees of freedom.
Computational steps:

• Compute b1 and b2 for the data, compute JBC in (8) and then obtain the upper
tail p-value by using the Chi-square distribution with 2 degrees of freedom.

Alternatively, instead of using the Chi-square table one can use the simulated empirical
distribution to determine the critical values or the p-values in making the decisions.
Let us call such test JBS. Computational steps:

• Step 1: Simulate samples of size n from N(0, 1), compute b1 and b2, compute
JBC in (8) and store.

• Step 2: Compute b1 and b2 for the data, compute JBC in (8) and then obtain
the upper tail p-value by using the empirical distribution in Step 1.

Here, we will consider JBS in our comparisons.
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Figure 1: Different Distributions

4 Power Comparison

All seven tests mentioned in Section 3 are compared using simulation. Data were
generated from N(0, 1) to investigate the null distributions. Then data were gener-
ated from some non-normal distributions, such as, Uniform(0, 1), Exponential(1),
a mixture 1

4N(0, 1) + 3
4N
(
3
2 ,

1
3

)
, t7, Gamma(4, 5), and χ2

4 to compare the powers of
the tests. All the alternative distributions are shown in Figure 1. Samples are con-
sidered of sizes n = 20, 30, 50, and 100. In all simulations 10, 000 replications were
considered. Proportions of rejections (p-values when the null distribution is consid-
ered) were computed and their percentiles are given in the tables in the Appendix.
Levels of significances are considered 1%, 5% and 10%.

Test Abbreviation

D’Agostino-Pearson Test DPS
Jarque-Bera Test JBS
Anderson-Darling Test ADS
Shapiro-Wilk Test SWS
Shapiro-Francia Test SFS
χ2 Simulation Test C2S
χ2 Table Test C2T

We notice that when data are generated from the standard normal distribution, that
is, the null hypothesis is true, powers are the level of significances, all powers are close
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to the respective level of significances, except for C2T for smaller sample sizes. For
Uniform(0, 1) alternatives, JBS has poor performance compared to all others. DPS
has the best performance for larger samples.

5 Concluding Remarks

In general, the further the alternative distributions are away from the normal distri-
bution, the more powerful the tests are. The Chi-square test is the least powerful test
for the sample sizes considered in this study. For very large samples, the Chi-square
test might outperform others but might not be noticeable. All other tests are more
powerful but more computational difficulty. At this computational age, the researchers
should overcome the hesitance and use one of the other tests other than the Chi-square
test. All other tests are equally computational burdensome but in this study as we
experienced that they could be performed with some computational background and
without much difficulty. If one has to use the Chi-square test, should use the number
of groups as high as possible at least for the samples of sizes below one hundred.
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Appendix

Rejection Proportions
α = 0.01 α = 0.05 α = 0.10

n = 20 n = 30 n = 50 n = 100 n = 20 n = 30 n = 50 n = 100 n = 20 n = 30 n = 50 n = 100

TS Normal(0, 1),
√
β1 = 0, β2 = 3

DPS 0.0194 0.0181 0.0192 0.0155 0.0575 0.0592 0.0534 0.0513 0.1038 0.0948 0.1011 0.0955
JBS 0.0095 0.0094 0.0103 0.0116 0.0504 0.0536 0.0519 0.0502 0.1072 0.0962 0.1011 0.1017
ADS 0.0128 0.0094 0.0096 0.0082 0.0516 0.0540 0.0442 0.0502 0.1014 0.1009 0.0967 0.0931
SWS 0.0107 0.0107 0.0075 0.0092 0.0516 0.0560 0.0467 0.0520 0.1042 0.0999 0.1025 0.0961
SFS 0.0102 0.0118 0.0102 0.0103 0.0501 0.0538 0.0470 0.0541 0.1021 0.1015 0.0975 0.1042
C2S 0.0116 0.0099 0.0074 0.0091 0.0541 0.0524 0.0489 0.0519 0.1130 0.1103 0.1041 0.0944
C2T 0.0199 0.0121 0.0100 0.0091 0.1085 0.0659 0.0524 0.0536 0.2475 0.1346 0.1041 0.1057

Uniform(0, 1),
√

β1 = 0, β2 = 1
DPS 0.0508 0.1752 0.4211 0.9712 0.1905 0.3896 0.7634 0.9953 0.2995 0.5171 0.8698 0.9983
JBS 0.0001 0.0000 0.0000 0.0000 0.0214 0.0172 0.0806 0.2888 0.1442 0.1800 0.2760 0.5390
ADS 0.0432 0.0888 0.2549 0.8041 0.1742 0.2989 0.5566 0.9521 0.2898 0.4406 0.7227 0.9785
SWS 0.0162 0.0453 0.9300 0.9347 0.0424 0.4627 0.1572 0.4579 0.1858 0.3706 0.2976 1.0000
SFS 0.0062 0.0273 0.0638 0.7368 0.0462 0.3490 0.2766 0.9261 0.0828 0.3789 0.7115 0.9978
C2S 0.0243 0.0204 0.0810 0.6093 0.1079 0.1135 0.1968 0.7801 0.1791 0.1943 0.2815 0.8481
C2T 0.0380 0.0211 0.0818 0.5989 0.1759 0.1135 0.1968 0.7807 0.3925 0.2372 0.2896 0.8501

Exponential(1),
√

β1 = 5, β2 = 3
DPS 0.4505 0.6375 0.8560 0.9990 0.6004 0.7914 0.9573 0.9999 0.6970 0.8551 0.9898 1.0000
JBS 0.3923 0.5393 0.7941 0.9989 0.8114 0.9455 0.9973 1.0000 0.9299 0.9870 0.9998 1.0000
ADS 0.5598 0.8221 0.9800 1.0000 0.7796 0.9373 0.9971 1.0000 0.8609 0.9632 0.9983 1.0000
SWS 0.6820 0.9801 0.9583 0.9971 0.6356 0.9578 0.9974 1.0000 0.9593 0.9422 1.0000 1.0000
SFS 0.5548 0.8089 0.9841 1.0000 0.7560 0.9540 0.9993 1.0000 0.8907 0.9888 0.9997 1.0000
C2S 0.1324 0.5705 0.8707 0.9978 0.2566 0.6965 0.9847 0.9996 0.3551 0.7451 0.9905 0.9999
C2T 0.1818 0.5746 0.8707 0.9987 0.3508 0.6965 0.9848 0.9996 0.5501 0.7659 0.9905 0.9999

NormalMixture : 1
4
N(0, 1) + 3

4
N

(
3
2
, 1
3

)
,
√

β1 = 5.4819, β2 = 5.5438

DPS 0.0289 0.0396 0.0681 0.1748 0.0886 0.1391 0.1910 0.4642 0.1523 0.2162 0.3559 0.6303
JBS 0.0006 0.0005 0.0003 0.0002 0.0062 0.0045 0.0025 0.0016 0.0398 0.0238 0.0138 0.0072
ADS 0.0385 0.0713 0.1519 0.4491 0.1409 0.2209 0.3490 0.7173 0.2400 0.3250 0.5050 0.8323
SWS 0.0209 0.0996 0.1182 0.1497 0.0481 0.1165 0.3795 0.2392 0.1968 0.2928 0.3938 0.6517
SFS 0.0189 0.0255 0.0791 0.2590 0.0914 0.1173 0.2548 0.6068 0.1566 0.2364 0.4226 0.8166
C2S 0.0182 0.0408 0.1209 0.2548 0.0955 0.1334 0.2657 0.4772 0.1696 0.2086 0.3764 0.6224
C2T 0.0296 0.0422 0.1215 0.2418 0.1614 0.1334 0.2753 0.4817 0.3477 0.2400 0.3845 0.6262

t-distribution with 7 degrees of freedom,
√

β1 = 0, β2 = 5
DPS 0.0955 0.1319 0.1722 0.2812 0.1652 0.2117 0.2790 0.4106 0.2179 0.2720 0.3388 0.5022
JBS 0.0620 0.0890 0.1365 0.2400 0.1379 0.1925 0.2475 0.3518 0.1965 0.2421 0.2969 0.4237
ADS 0.0422 0.0562 0.0763 0.1312 0.1194 0.1434 0.1914 0.2767 0.1860 0.2224 0.2595 0.3827
SWS 0.0506 0.0709 0.1050 0.1117 0.1194 0.1665 0.1669 0.2034 0.1637 0.1967 0.2683 0.3391
SFS 0.0613 0.0849 0.1517 0.2757 0.1482 0.2089 0.2744 0.4309 0.2346 0.2861 0.3579 0.5043
C2S 0.0269 0.0246 0.0244 0.0233 0.0796 0.0844 0.0872 0.0829 0.1492 0.1595 0.1535 0.1655
C2T 0.0433 0.0229 0.0222 0.0236 0.1411 0.1045 0.0872 0.0912 0.3058 0.1896 0.1535 0.1692

Gamma(4, 5),
√
β1 = 1, β2 = 4.5

DPS 0.1362 0.2244 0.3825 0.6708 0.2601 0.3597 0.5531 0.8786 0.3358 0.4441 0.6385 0.9476
JBS 0.1129 0.1796 0.3486 0.6692 0.3659 0.5069 0.7306 0.9704 0.5419 0.6855 0.8706 0.9930
ADS 0.1045 0.1884 0.3430 0.7352 0.2435 0.3638 0.5804 0.8904 0.3581 0.4877 0.6977 0.9384
SWS 0.2400 0.2550 0.2203 0.3538 0.2441 0.3758 0.3985 0.5166 0.5165 0.1592 0.3077 0.5052
SFS 0.1574 0.1649 0.3516 0.8820 0.2939 0.4109 0.7264 0.9046 0.2992 0.4230 0.8125 0.9937
C2S 0.0288 0.0611 0.0927 0.2039 0.0897 0.1749 0.2756 0.4324 0.1533 0.2460 0.3826 0.6021
C2T 0.0500 0.0625 0.1079 0.2077 0.1546 0.1749 0.2759 0.4324 0.3260 0.2824 0.3828 0.6080

χ2
4,

√
β1 = 1.41, β2 = 6

DPS 0.2772 0.3619 0.6194 0.9591 0.3935 0.5616 0.7863 0.9949 0.4767 0.6701 0.8892 0.9987
JBS 0.2271 0.2874 0.5409 0.9394 0.5277 0.7369 0.9387 0.9995 0.7483 0.9037 0.9851 1.0000
ADS 0.2655 0.4429 0.7469 0.9850 0.4685 0.6541 0.8886 0.9986 0.5872 0.7733 0.9394 0.9992
SWS 0.2197 0.6109 0.4545 0.9000 0.6791 0.5273 1.0000 0.9873 0.7467 0.7043 0.9720 0.9970
SFS 0.2776 0.4453 0.8280 0.9938 0.5167 0.6487 0.9391 0.9999 0.7205 0.8329 0.9936 0.9996
C2S 0.0521 0.1768 0.3730 0.7147 0.1381 0.3076 0.6413 0.8707 0.2300 0.4302 0.7544 0.9339
C2T 0.0814 0.1895 0.3994 0.7051 0.2158 0.3523 0.6519 0.8801 0.4161 0.4676 0.7546 0.9361


