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Abstract

The problem of determining the optimal design to examine the degree of the
polynomial that well approximates the response function has been studied
by many authors. Stigler (1971) suggested optimal designs for polynomial
regressions that enable efficient inferences to be made about the fitted model
and, at the same time, check its adequacy in defining the mean response. In
this paper we consider a mixture experiment and investigate the optimal
design that can estimate the parameters of a first degree mixture model
and also check the model adequacy as against the presence of one or more
interaction terms.
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1 Introduction

A standard design problem is concerned with choosing the values of the independent
variables so as to come up with the best experiment. To define a “best design” or
an ‘optimum design’, several optimality criteria have been proposed and discussed by
many authors in the past several decades, (see, for example, Kiefer (1959, 1961, 1974),
Karlin and Studden (1966), Atwood (1969)). However, these criteria have a serious
drawback, namely they are model dependent. As such, if the assumed model is inad-
equate in approximating the response function, they fail to detect this departure, no
matter how large the sample size is. One attempt to address this drawback has been
made by Box and Draper (1959, 1963), who suggested that a design should minimize
V +B, where V is the error due to sampling variation and B is the error due to inade-
quate modeling, and at the same time maximize the power of a goodness-of-fit test for
some class of alternative models. The main weakness of the approach is that it depends
on the alternative model whose parameters are unknown. A further suggestion by Box
and Draper to overcome this difficulty was to minimize B alone. However, as Stigler
(1971) observed, “minimum bias designs, while they are an important attempt to meet
realistically the problem of checking the representational adequacy of the model, may
often be inappropriate, inefficient, or both”. This observation reduces the appeal of
the approach of Karson et al. (1969), who proposed to choose the estimator by mini-
mizing B, rather than by minimizing V.

Stigler (1971) suggested two optimality criteria, which “can be considered as compro-
mises between the incompatible goals of inference about the regression function under
an assumed model and of checking the model’s adequacy” (quote Stigler, 1971). He
called them restricted D- and G-optimality criteria and studied them for the problem
of estimating a regression function which can be well-approximated by a polynomial.
He imposed the condition that the independent variable lies in the interval [-1, 1],
and illustrated the use of the criteria by assuming a first degree polynomial model
as against a second degree polynomial. His study yielded optimum designs which
were superior to designs proposed by others, including the minimum bias designs. An
algorithm for constructing these designs was suggested by Mikulecka (1983). Using
a technique involving canonical moments, Studden (1982) investigated the problem
of design construction under a generalization of Stigler’s criterion. Later, Lee (1987,
1988) introduced several constrained optimality criteria and provided necessary and
sufficient conditions for a design to be optimal.

In this paper, we adopt the approach of Stigler (1975) to suggest optimum designs
in mixture experiments that would permit efficient inferences to be made about the
assumed model while still allowing the model to be checked for adequacy. We assume
a first degree mixture model and attempt to design an experiment which allows to
check the competence of the model as against a quadratic mixture model, and also
tests hypotheses like βij = 0, with some specified degree of precision. The paper is
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organized as follows. Section 2 discusses the problem and its perspectives. Optimal
designs are studied in Section 3. Optimum designs in some specific situations are
computed in Section 4. Finally, in Section 5, concluding remarks on the study are
made.

2 The problem and its perspectives

For the sake of completeness, we start with model adopted by Stigler (1971). He
considered the standard univariate regression set-up, where an experiment is conducted
with n fixed values of the independent variable x, x ∈ [−1, 1], and the response Y is
measured. He assumed that the response function is sufficiently smooth over the range
of interest and is adequately represented by an m-th degree polynomial

Pm : E(Y | x) = β0 + β1 + β2x
2 + . . .+ βmxm,

where βi’s are unknown.

In order to find an optimum design which (i) checks for the adequacy of the fitted
model Pm, (ii) enables to make reasonably efficient inferences concerning the model
(parameters) if it is adequate, and (iii) does not depend on the unknown parameters,
he proposed a restricted D-optimality criterion which maximizes | Mm(ξ) |, where
Mm(ξ) is the information matrix of a design ξ when the fitted model is Pm, subject
to the constraint | Mm(ξ) |≤ C | Mm+1(ξ) | .

Stigler (1971) attempted to provide a justification for imposing this constraint. This
refers to the estimation of the ‘extra’ parameter βm+1 for which an expression for the
variance of the least square estimator β̂m+1 is given by Var (β̂m+1) = σ2 | Mm(ξ) |
. | Mm+1(ξ) |−1 . Next he argues “minimize the generalized variance of the least

squares estimators β̂1, β̂2, . . . β̂m for the model Pm subject to the constraint that
Var(β̂m+1) ≤ σ2C.”

At this stage, it seems imperative to assume a prior knowledge about the error vari-
ance σ2 as otherwise it is impractical to attach any meaning to the constraint σ2C.
Henceforth, we will assume without any loss that σ2 = 1.

Stigler (1971) further indicated that in the event of finding an optimum design to test
the null hypothesis H0 : βm+1 = 0 against the alternative HA : βm+10, for a given
level of significance and the power at a stated alternative not below a specified value,
the restricted D- optimality criterion can be made to meet the requirement.

Following Stigler (1971), we attempt to investigate optimum designs with the proper-
ties (i) - (iii) above in the mixture set-up.
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Consider a mixture experiment that is run under the assumption that the first degree
model is adequate to approximate the response function:

E(Y | x) = ζ
(1)
x = Σ

i
βixi, (1)

where x = (x1, x2, . . . , xq) denotes the mixing proportions defined in the experimental
region

Ξ = {(x1, x2, . . . , xq) | xi ≥ 0, i = 1, 2, . . . , q,Σxi = 1}.

Several optimum designs have been suggested for estimation of βis using different opti-
mality criteria. (Cf. Sinha, et al., 2014). However, these designs fail to check whether
the assumed model provides an adequate fit to the true response function, no matter
how large the sample size is.

Suppose the experimenter suspects that there might be interaction between the first
and some of the other components and considers a quadratic model of the form

E(Y | x) = ζ
(2)
x = Σ

i
βixi + Σ

2≤j≤s
β1jx1xj , (2)

where s ≤ q.

There exist optimum designs for testing the significance of the parameters β1js or
estimating them. However, such designs will not be optimum for estimating the pa-
rameters of (1) in case model (1) is true. Also, even if β1js are significant, these designs
will not be optimal for making global inferences about the response function (2).

It would, therefore, be worthwhile to design a mixture experiment which allows effi-
cient estimation of the parameters of model (1), and also tests hypotheses of the form
β1j = 0, j = 2, 3, . . . , s, 2 ≤ s ≤ q, with some specified degree of precision. Following
Stigler (1971), we define a criterion that minimizes the generalized variance of the least
squares estimators of βis of the model (1) subject to the constraint that the minimum
power of the test for testing β1j = 0 for j = 2, 3, . . . ,s attains at least a specified value
C (in units of σ2, the error variance).

The choice of C reflects a compromise between two conflicting goals: precise inference
about β1js and precise inference about the parameters of model (1). While C should be
small to yield efficient designs for model (1), sufficiently large C will detect departures
from the model with a specified power of the test for β1j = 0, j ≥ 2. We note that for
C = 0, the above criterion gives the D-optimal design for estimating the parameters of
model (1). On the other hand, when C attains its maximum value, we get the optimal
design for testing β1j = 0, j ≥ 2.
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3 Restricted D-optimal design for efficient estimation of
βi’s subject to testing β1j = 0 for 2 ≤ j ≤ s(s ≤ q) with
specified degree of precision

In consideration of the model fitting issue, the experimenter wishes to examine whether
the interactions in model (2) influence the mean response or not, i.e. he wants to test
the null hypothesis

H0 : β12 = β13 = . . . = β1s = 0. (3)

Let us write the models (1) and (2) as

ζ(1)x = f ′
1(x)β

(1)

ζ(2)x = f ′
1(x)β

(1) + f ′
2(x)β

(2),

where

f1(x) = (x1, x2, . . . , xq)
′,f2(x) = (x1x2, x1x3, . . . , x1xs)

′,

β(1) = (β1β2, . . . , βq)
′,β(2) = (β12, β13, . . . , β1s)

′.

The hypothesis (3) is tested using the classical F-test.

For any given design ξ, let M(ξ) denote the information matrix for β = (β(1)′ ,β(2)′)′,
which may be partitioned as

M(ξ) =

 M11 M12

M21 M22

 , (4)

where Mij = Eξ[f i(x)f j(x)
′], i, j = 1, 2.

M11 is the information matrix for β(1) in model (1). The power of the test for (3) is
a non-decreasing function of the non-centrality parameter

δ = β(2)′ [Disp (β̂
(2)

)]−1β(2) =
1

σ2
β(2)′M22,1β

(2),

where, σ2 is the error variance, M22,1 = M22−M21M
−1
11 M12 andDisp(β̂

(2)
) = σ2M−1

22,1.

Here under a non-null hypothesis, β(2) is unknown. Let us assume that β(2) is such
that Ω = {β(2) : β(2)′β(2) = D}, for some D > 0 and known.
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So, the statement “power of the test is at least equal to C for β(2) belonging to Ω′′ is
equivalent to the statement” β(2)′M22,1β

(2) ≥ C0 for β(2) belonging to Ω′′, for some
function C0 of C. It is tacitly assumed that the bounds are expressed in units of σ2.
Now,

β(2)′M22,1β
(2) ≥ C0, for all β

(2) ∈ Ω

⇔ min
β(2)∋β(2)β(2)=D

β(2)′M22,1β
(2) ≥ C0

⇔ λmin(M22,1) ≥ C0D, (5)

where λmin denotes the minimum eigen value of M22,1.

WOLG, we can take D = 1.

Hence our problem reduces to finding a design ξ0 for the problem

maximize ϕ2(ξ) = log | M11(ξ) |

subject to ϕ1(ξ) = λmin(M22,1(ξ)) ≥ C0. (6)

Let, D(C0) denote the class of all designs ξ satisfying the restriction ϕ1(ξ) ≥ C0, and
∆C0 be the set of all constrained optimal designs for a specific choice of C0, that is,
∆C0 = {ξ | ξ maximizes ϕ2(ξ) subject to the constraint ϕ1(ξ) ≥ C0}. If there be a
choice between designs in ∆C0 , then we select the design that does the best on the
primary criterion ϕ1(ξ). Arguing as in Stigler (1971), it is easy to show that D(C0) is
a convex set and the set of restricted D-optimal designs ∆C0 forms a convex subset of
D(C0).

Let ξ1 be a restricted D-optimal design. Let us define ξP ∈ D(C0) such that ξP (x) =
ξ1(Px), where P is a permutation matrix. The matrix P depends on the model and
the hypothesis considered as is evident from the examples considered below.

Example 3.1: Let s = 2 in (2). The model is, therefore,

E(Y | x) = ζ(2)x = Σ
i
βixi + β12x1x2,

and the hypothesis to be tested is H0 : β12 = 0. In this case, the problem is invariant
with respect to x1 and x2, and with respect to x3, x4, . . . , xq and the permutation
matrix is

P =

 0 1 0 0. . . 0
1 0 0 0. . . 0

0 Pq−2

 ,
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where Pq−2 denotes a permutation of the matrix Iq−2.

Example 3.2: Suppose s = 3. In this case model (2) reduces to

E(Y | x) = ζ(2)x = Σ
i
βixi + β12x1x2 + β13x1x3,

and the hypothesis to be tested is H0 : β12 = β13 = 0. Thus, the problem is invariant
with respect to x2 and x3, and with respect to x4, x5 . . . , xq, and the permutation
matrix is

P =


1 0 0 0. . . 0

0 0 1 0. . . 0
0 1 0 0. . . 0

0 0 Pq−3

 ,

where Pq−3 denotes a permutation of the matrix Iq−3.

In fact, for any general s, 3 ≤ s ≤ q, the problem is invariant with respect to
x2, x3, . . . , xs, and with respect to xs+1, xs+2, . . . , xq, and the permutation matrix has
the form

P =


1 0′ 0′

0 Ps−1 0

0 0 Pq−s

 ,

Then, ξP is also a restricted D-optimal design since both | M11 | and λmin(M
−1
22,1) are

invariant with respect to the corresponding permutations.

Now, consider the design ξ∗ defined as ξ∗ = 1
Q

Q

Σ
i=1

ξP1 , where Q denotes the number of

permutations leading to invariant null hypothesis. In example 3.1, Q = 2!.(q−2)!, while
in example 3.2, Q = 2!(q− 3)!. In the case of general s, 3 ≤ s ≤ q,Q = (s− 1)!(q− s)!.

Since the set of restricted D-optimal designs forms a convex subset of D(C0), ξ
∗, which

is a permutation invariant design, is also a restricted D-optimal design.

Thus, we have the following theorem:
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Theorem 3.1: There exists a permutation invariant restricted D-optimal design in
D(C0).

The theorem simplifies the search for the optimal design by restricting to the class of
symmetric designs that are permutation-invariant with respect to the invariant com-
ponents under the null hypothesis. The search can be further reduced by the following
consideration:

Lemma 3.1: Consider the model E(Y | x) = ζ
(2)
x = Σ

i
βixi + Σ

1≤i<j≤q
βijxixj ,x ∈

Ξ, and let (x1, x2, . . . xi, . . . xj , . . . , xq) be a support point of an arbitrary design ξ.
If βij = 0 for some i < j, it is always possible to find two support points viz.
(x1, x2, . . . , xi + xj , . . . , 0, . . . , xq) and (x1, x2, . . . , 0, . . . , xi + xj , . . . , xq) with weights
xi/(xi+xj) and xj/(xi+xj), respectively such that its information matrix dominates
the information matrix of the single point design (x1, x2, . . . , xi, . . . xj , . . . , xq).

The proof is routine.

Hence, if an interaction effect, say βij , is absent in the model then an improved design
can be obtained by including support points in which xi and xj are not simultaneously
non-zero. In our study we have, therefore, confined our search to the class of designs
D1(C0)(⊂ D(C0)) with support points

(i) (1, 0, . . . , 0) and its permutations, and

(ii) points of the form (a, 0, . . . , 1 − a, . . . , 0) (with non-zero elements in the first and
j-th positions) if β1j ̸= 0. (7)

Remark 3.1: When β1j = 0, 3 ≤ j ≤ q, there is invariance between x1 and x2, and
therefore the support points of the optimum design are the extreme points of the sim-
plex and the point (1/2, 1/2, 0, . . . , 0).

Remark 3.2: When β1j = 0, s + 1 ≤ j ≤ q, for some s ≥ 3, there is invariance
between x2, . . . xs and between xs+1, xs+2, . . . , xq.

4 Optimum designs in specific situations

In this section we find the optimum design within D1(C0) for various forms of the
alternative model (2).

4.1 Suppose the alternative model is ζ
(2)
x = Σ

i
βixi + β12x1x2.
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Here, there is invariance between components 1 and 2, and between components
x3, x4, . . . , xq. The optimal design for the problem (5), therefore belongs to a class that
assigns mass α to the extreme points (1, 0, . . . , 0) and (0, 1, . . . , 0),mass γ to each of the
remaining extreme points of the simplex and a mass β to the point (1/2, 1/2, 0, . . . , 0),
where 2α+ (q − 2)γ + β = 1.

For any design ξ, we get

ϕ2(ξ) = αγq−2[α+
1

2
β] =

αγq−2

2
[1− (q − 2)γ],

ϕ1(ξ) =
α(1− 2α− (q − 2)γ)

8[1− (q − 2)γ]
≤ 1

64
.

For a given C0, the optimal value of α and γ can be obtained by solving the non-linear
programming problem

maximize f(α, γ) = αγq−2[α+
1

2
β] =

αγq−2

2
[1− (q − 2)γ],

subject to
α(1− 2α− (q − 2)γ)

8[1− (q − 2)γ]
≥ C0, α+ γ ≤ 1, 0 ≤ α ≤ 1

2
, 0 ≤ γ ≤ 1

q − 2
.

Since M22.1 ≤ 1
64 , C0 cannot exceed 1

64 .

Table 4.1 gives the optimal values of α and γ for some values of q(≥ 3) and C0.

Table 4.1: Optimum designs in D1 for some values of C0 in a q- component mixture

q C0 α β γ | M11 |
3 0.002 0.3195 0.0337 0.3273 0.03517322848

0.006 0.2885 0.1152 0.3078 0.03073559859
0.010 0.2534 0.2338 0.2594 0.02433944299
0.015 0.2454 0.4697 0.0395 0.004659133855

4 0.002 0.2376 0.0344 0.2452 0.003640516384
0.006 0.2114 0.1242 0.2264 0.0029661401933
0.010 0.2000 0.2668 0.1666 0.0018514518642
0.015 0.2426 0.4750 0.0198 4.59289961E-5

5 0.002 0.1885 0.0350 0.1960 2.92409516E-4
0.006 0.1681 0.1343 0.1765 2.17382987E-4
0.010 0.1825 0.2855 0.1165 9.38669829E-5
0.015 0.2407 0.4796 0.0130 2.53391735E-7

6 0.002 0.1551 0.0428 0.1617 1.8740489948E-5
0.006 0.1436 0.1512 0.1404 1.2233908896E-5
0.010 0.1753 0.2950 0.0886 3.490347345E-6
0.015 0.2454 0.4896 0.0049 7.149964739E-11

4.2 Suppose the alternative model is ζ
(2)
x = Σ

i
βixi + Σ

2≤j≤q
β1jx1xj .
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In this case, there being invariance among components 2, 3, . . . , q, we confine to the
class that assigns a mass α to the extreme point (1, 0, . . . , 0), mass γ to each of the
remaining extreme points of the simplex and a mass β to each of the points of the form
(a, 1−a, 0, . . . , 0), (a, 0, 1−a, 0, . . . , 0), . . . , (a, 0, . . . , 0, 1−a), where α+(q−1)(β+γ) =
1. Clearly, the design is saturated.

Then, for any design ξ,

ϕ2(ξ) = [γ + (1− a)2β]q−2[α{γ + (1− a)2β}+ (q − 1)a2βγ] (8)

M22.1 =
a2(1− a)2β

γ + (1− a)2β

[
γIq−1 −

a2γ2

(q − 1)a2βγ + (γ + (1− a)2β)α
β1q−11

′
q−1

]
.

The distinct eigen values of M22.1 are λ1 = a2(1−a)2βγ
γ+(1−a)2β

and λ2 = a2(1 − a)2βγα[{α +

(q − 1)a2β}γ + (1− a)2βα]−1. It is easy to check that λ2 is the minimum eigen value,
whatever be the unknown parameters.

So, our problem is to maximize (8) with respect to a, α, β and γ subject to λ2 ≥
C0, α+ (q − 1)(β + γ) = 1, 0 ≤ a, α ≤ 1, 0 ≤ β, γ ≤ 1/(q − 1).

Using Cauchy-Schwartz inequality, it is easy to check that λ2 ≤ 1/64(q − 1) = c0,
say. Hence, C0 cannot exceed c0. However, this is a very crude bound and may not be
attained by λ2.

Table 4.2 gives the optimal values of a, α, β and γ for some values of q(≥ 3) and
C0.

Table 4.2: Optimum designs in D2 for some values of C0 in a q-component mixture

q C0 α β γ a | M11 |
3 0.001 0.2382 0.0167 0.3642 0.4892 0.0123179745

0.002 0.2270 0.0353 0.3512 0.4782 0.011401509
0.006 0.1996 0.1433 0.2569 0.4444 0.0067704440
0.007 0.2068 0.1868 0.2098 0.4507 0.0050268905

4 0.001 0.1844 0.0174 0.2545 0.4771 8.8529086E-4
0.002 0.1723 0.0386 0.2373 0.4547 7.4725697E-4
0.003 0.1666 0.0656 0.2122 0.4365 5.9183265E-4
0.005 0.2101 0.1466 0.1167 0.4607 1.7940228E-4

5 0.0005 0.1576 0.0091 0.2015 0.4773 5.8550308E-5
0.001 0.1496 0.0190 0.1936 0.4590 5.1783620E-5
0.002 0.1435 0.0443 0.1698 0.4279 3.6873693E-5
0.003 0.1600 0.0788 0.1312 0.4230 2.0033288E-5

6 0.0005 0.1462 0.0217 0.1490 0.4114 2.4108438E-6
0.001 0.1452 0.0322 0.1388 0.4072 1.9417063E-6
0.002 0.1716 0.0632 0.1025 0.4216 7.7929237E-7
0.003 0.2496 0.0969 0.0531 0.4951 7.3477238E-8

4.2 Suppose the alternative model is ζ
(2)
x = Σ

i
βixi + Σ

2≤<j≤s
βijxixj , 3 ≤ s ≤ q − 1.
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Here there is invariance among components 2, 3, . . . , s, and among components s +
1, s+2, . . . , q. So we confine to the class of designs that assign a mass α to the extreme
point (1, 0, . . . , 0), mass γ to each of the (s − 1) extreme points (0, 1, 0, . . . , 0, . . . , 0),
(0, 0, 1, . . . , 0, . . . , 0), . . . , (0, 0, 0, . . . , 1, . . . , 0) and mass δ to each of the remaining
(q − s) extreme points of the simplex, and a mass β to each of the (s − 1) points
of the form (a, 1 − a, 0, . . . , 0), (a, 0, 1 − a, 0, . . . , 0), . . . , (a, 0, . . . , 1 − a, . . . , 0), where
α+ (s− 1)(β + γ) + (q − s)δ = 1.

For any design ξ we therefore have

ϕ2(ξ) = δq−s[γ + (1− a)2β]s−2[α{γ + (1− a)2β}+ (s− 1)a2βγ] (9)

M22.1 =
a2(1− a)2β

γ + (1− a)2β

[
γIs−1 −

a2γ2

(s− 1)a2βγ + (γ + (1− a)2β)α
β1s−11

′
s−1

]
.

The expression for M22.1 is similar to that in Case 2, except that q is replaced by s.
Hence, it is easy to find the minimum eigen value of M22.1.

The optimal values of a, α, β and γ for some values of q(≥ 3) and C0 are given in Table
4.3.

Table 4.3: Optimum designs in D3 for some values of C0 and s = 3 in a
q-component mixture

q C0 α β γ δ a | M11 |
4 0.002 0.1796 0.0363 0.2782 0.1915 0.4730 8.9563062E-4

0.005 0.1679 0.1187 0.2180 0.1587 0.4444 5.4504091E-4

5 0.002 0.1483 0.0384 0.2286 0.1588 0.4672 5.6954921E-5
0.005 0.1536 0.1290 0.1712 0.1229 0.4469 2.7636170E-5

6 0.002 0.1346 0.0591 0.1784 0.1301 0.4460 2.6087455E-6
0.005 0.1821 0.1552 0.1297 0.0827 0.4650 6.9305479E-7

5 Conclusion

We discuss the necessary theoretical framework and computations for the study and
specification of D-optimal mixture designs that permit efficient inferences to be made
about the assumed mixture model while still allowing the model to be checked for
adequacy. We confine our study to the cases where the competence of a first degree
mixture model is examined against possible presence of some quadratic terms.
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