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Abstract

In this paper, minimax estimation of the variance of a normal distribution
for an asymmetric loss function has been derived. The asymmetry brings
about the shift of location of the loss function.
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1 Introduction

Let x1, x2, · · · , xn be a random sample of size n drawn from a normal population
whose mean µ and variance θ are both unknown. Several authors have considered
the problem of estimation of the variance of a normal distribution under different loss
functions. Among them we mention Evan [1], Goodman [2], Pandey and Singh [6], Pal
and Ling [7], Prakash and Pandey [8], Solomon [9] and Strawderman [10] etc. Hodges
and Lehmann [4] investigated some problems in minimax point estimation.

In the present paper, a minimax estimator of the variance of a normal distribution
with unknown mean has been derived by assuming an asymmetric loss function named
modified linear-exponential (MLINEX). The asymmetry brings about the shift of lo-
cation of the loss function. There are many real life data where the use of symmetric
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loss functions may be inappropriate. In some cases a given positive error may be
more serious than a given negative error or vice-versa. In this cases asymmetric loss
functions may be used.

2 Preliminaries

Let X be a random variable whose distribution depends on k parameters θ1, θ2, · · · , θk
and let Ω denotes the parameter space of values of θ, the k− dimensional vector
(θ1, θ2, · · · , θk). Now consider the general problem of estimating the unknown pa-
rameter θ, from the results of a random sample of n observations by the method of
Bayesian point estimation.

Denoting the sample results x1, x2, · · · , xn by x, let θ̂ be an estimator of θ and also let
L(θ̂, θ) be a loss function, the loss incurred by taking the value of θ to be θ̂. The risk

function R(θ̂, θ) is the expected value of the loss function with respect to the sample
observations.

If l(θ|x) is the likelihood function of θ given the sample x, and π(θ) is the prior density

of θ, then combining l(θ|x) and π(θ), the Bayes’ estimator θ̂ of θ will be a solution of
the equation

∫

Ω

δL

δθ̂
l(θ|x)π(θ)dθ = 0, (1)

where L stands for loss function and assuming that the sufficient regularity conditions
prevail to permit differentiation under the sign of integral.

Let us consider an asymmetric loss function as

L(θ̂, θ) = ̟

[(

θ̂

θ

)γ

− γ ln

(

θ̂

θ

)

− 1

]

; γ 6= 0, ̟ > 0, (2)

where ̟ serving to change the scale of the loss function and γ serving to determine
its shape.

When θ̂ = θ i.e., θ̂
θ = 1, then L(θ̂, θ) = 0, writing R = θ̂

θ , the relative error L(R) is

minimum at R = 1. If we write D = lnR = ln θ̂− ln θ, where D = θ̂−θ (say) represent

the estimation error in estimating θ by θ̂, then L(R) can be expressed as the same
form of LINEX loss function,

L(θ̂, θ) = κ
[

eλ(θ̂−θ) − λ(θ̂ − θ)− 1
]

; λ 6= 0, κ > 0, (3)
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where κ and λ are scale and shape characteristics of the loss function. The loss func-
tion defined in (3) is also an asymmetric one, was first introduced by Varian [11] and
developed by Zellner [12] in such a form. For this reason (2) is called modified linear-
exponential (MLINEX) loss function.

However, the Bayes’ estimator of the parameter θ for MLINEX loss function is θ̂ =

[Eθ(θ
−γ |x)]

−
1

γ ; provided that such expectation exists.

It is evident from (1) that, for squared-error (SE) loss function

L(θ̂, θ) = c(θ̂ − θ)2; c > 0, (4)

where c serving to change the scale of the loss function, the Bayes’ estimator of the
parameter θ is simply the mean of the posterior distribution.

The derivation depends primarily on a theorem which is due to Lehmann [5] and can
be stated as follows.

Theorem 2.1. Let τ = {Fθ; θ ∈ Θ} be a family of distribution functions and D be

a class of estimators of θ. Suppose that δ∗ ∈ D is a Bayes’ estimator concerning to

a prior distribution π(θ) on the parameter space Θ. If the risk function R(δ∗, θ) =
constant on Θ, then δ∗ is a minimax estimator for θ.

3 Main Results

Consider the case of estimating the variance θ of a normal distribution of unknown
mean µ. Here, Ω = (µ, θ), Ω is the half-plane; −∞ < µ < ∞, 0 < θ < ∞, and

l(µ, θ|x) = (2πθ)−n/2 exp{−
∑

(xi − µ)2/2θ}

= (2πθ)−n/2 exp
[

−{S + n(µ− x̄)2}/2θ
]

, (5)

where S =
∑

(xi − x̄)2 . A mathematically convenient and widely applicable joint
prior density for the problem under consideration suggested by Evan [1] is the class of
natural conjugates

π(µ, θ) ∝ θ−(1+ν/2) exp
[

−{η + ζ(µ− ξ)2}/2θ
]

, (6)

where ν, η, ζ ≥ 0 and −∞ < ξ < ∞. This is obtained by generalizing the likelihood
(5) regarded as a function of the unknown parameters, and here is seen to be equiva-
lent to assuming that the prior marginal density of θ is such that η/θ is distributed as
chi-square with (ν − 1) degrees of freedom and that the prior conditional density of µ
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given θ is normal with mean ξ and variance θ/ζ.

The advantage of taking the prior distribution to be natural conjugate lies in the
fact that the likelihood l(µ, θ|x), the prior density π(µ, θ) and the posterior density
π(µ, θ|x) are all of the same functional form, thus ensuring mathematically tractability.

For the limiting case, when η = ζ = 0 we have the subclass of prior densities given by

π(µ, θ) ∝ θ−(1+ν/2), (7)

which is equivalent to assuming the prior distributions of µ and θ to be independent,
that of µ being uniform and that of θ being proportional to θ−(1+ν/2). The particular
form of (7) corresponding to ν = 0 is precisely the prior distribution advocated by
Jeffreys’ [3] when one is completely ignorant to the value of µ and θ apart, of course,
from their admissible ranges.

Substitution from (5) and (6) in (1), the Bayes’ estimator θ̂ of θ is a solution of

∫∫

δL(θ̂, θ)

δθ̂
θ−(n+ν+2)/2 exp

[

−{S + n(µ− x̄)2 + ζ(µ− ξ)2 + η}/2θ
]

dµdθ = 0,

the integration being over Ω : −∞ < µ < ∞, 0 < θ < ∞ . On noting that L(θ̂, θ) is
independent of µ and that

∫

∞

−∞

exp
[

−{n(µ− x̄)2 + ζ(µ− ξ)2}/2θ
]

dµ = {2πθ/(n+ζ)}1/2 exp{−nζ(ξ−x̄)2/2(n+ζ)θ},

we find that θ̂ is a solution of

∫

∞

0

δL(θ̂, θ)

δθ̂
θ−(n+ν+1)/2 exp (−K/2θ) dθ = 0, (8)

where K = S + η + ζ(ξ − x̄)2/(n + ζ).

For the loss function given by (2), it follows from (8) that the estimator θ̂ is given by

θ̂γ =

∫

∞

0 θ−(n+ν+1)/2 exp(−K/2θ)dθ
∫

∞

0 θ−(n+ν+2γ+1)/2 exp(−K/2θ)dθ
, (9)

using the transformation K/2θ = y, then (9) becomes



Podder: Minimax Estimation of the Variance of a Normal 41

θ̂γ =

(

K

2

)γ
∫

∞

0 y(n+ν−1)/2−1 exp(−y)dy
∫

∞

0 y(n+ν+2γ−1)/2−1 exp(−y)dy

=

(

K

2

)γ Γ
(

n+ν−1
2

)

Γ
(

n+ν+2γ−1
2

) .

Hence,

θ̂ = CK, (10)

where C = 1
2

[

Γ(n+ν−1

2 )
Γ(n+ν+2γ−1

2 )

]
1

γ

.

For the limiting case η = ζ = 0, we have the Bayes’ estimator θ̂ = CS.

As x ∼ N(µ, θ) then u = S
θ is distributed as chi-square with (n−1) degrees of freedom.

The probability density function of u is

f(u) =
1

2
n−1

2 Γ
(

n−1
2

)

u
n−1

2
−1 exp(−

1

2
u); u ≥ 0,

and hence the probability density function of S is given by

f(S) =
1

(2θ)
n−1

2 Γ
(

n−1
2

)

S
n−1

2
−1 exp(−

1

2θ
S); S ≥ 0. (11)

Therefore, the risk function of the estimator θ̂ for the MLINEX loss function (2) is

RML(θ̂, θ) = E
[

L(θ̂, θ)
]

= ̟

[

1

θγ
E(θ̂γ)− γE(ln θ̂) + γ ln θ − 1

]

. (12)

For simplicity,

E(θ̂γ) = E(CS)γ

= CγE(Sγ)

= Cγ

∫

∞

0
Sγf(S)dS

= Cγ (2θ)
γΓ(n+2γ−1

2 )

Γ(n−1
2 )

,



42 International Journal of Statistical Sciences, Vol. 14, 2014

and

E(ln θ̂) = E(lnCS)

= lnC + E(lnS),

where

E(lnS) =

∫

∞

0
lnSf(S)dS

=
1

(2θ)
n−1

2 Γ(n−1
2 )

∫

∞

0
lnS S

n−1

2
−1 exp(−

1

2θ
S)dS,

let us also make a transformation, S
2θ = z.

Then

E(lnS) =
1

Γ(n−1
2 )

∫

∞

0
{ln(2θ) + ln z} z

n−1

2
−1 exp(−z)dz

= ln(2θ) +
1

Γ(n−1
2 )

∫

∞

0
ln z z

n−1

2
−1 exp(−z)dz

= ln(2θ) +
Γ′(n−1

2 )

Γ(n−1
2 )

,

where Γ′(n−1
2 ) =

∫

∞

0 ln z z
n−1

2
−1 exp(−z)dz is the first derivative of Γ(n−1

2 ) with re-
spect to n.

Therefore,

E(ln θ̂) = lnC + ln(2θ) +
Γ′(n−1

2 )

Γ(n−1
2 )

.

Using these above results, the risk function of the estimator θ̂ for the MLINEX loss
function becomes

RML(θ̂, θ) = ̟

[

Γ(n+ν−1
2 )

Γ(n+ν+2γ−1
2 )

Γ(n+2γ−1
2 )

Γ(n−1
2 )

− ln
Γ(n+ν−1

2 )

Γ(n+ν+2γ−1
2 )

− γ
Γ′(n−1

2 )

Γ(n−1
2 )

− 1

]

,

which is a constant with respect to θ, as n, ν, and γ are known and independent of θ.
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For the limiting case η = ζ = 0 then according to the Lehmann [5], θ̂ = CS is a

minimax estimator of θ, where C = 1
2

[

Γ(n+ν−1

2 )
Γ(n+ν+2γ−1

2 )

]
1

γ

and S =
∑

(xi − x̄)2.

As γ = −1, then

θ̂ =
1

2

Γ
(

n+ν−3
2

)

Γ
(

n+ν−1
2

)S

=
S

n+ ν − 3

=
S

d(n)
,

where d(n) = n+ ν− 3 is same as the Bayesian estimation of the variance of a normal
distribution for squared-error loss function derived by Evans [1].

When ν = 0, then θ̂ = 1
2

[

Γ(n−1

2 )
Γ(n+2γ−1

2 )

]
1

γ
∑

(xi − x̄)2 is a minimax estimator of θ for

MLINEX loss function using the Jeffreys’ prior density and the risk function of the
estimator as

RML(θ̂, θ) = ̟



− ln
Γ′
(

n−1
2

)

Γ
(

n+2γ−1
2

) − γ
Γ′
(

n−1
2

)

Γ
(

n−1
2

)



 ,

which is a constant with respect to θ, as n and γ are known and independent of θ too.

It is seen that when ν = 0 and γ = 1, then θ̂ = 1
n−1

∑

(xi−x̄)2 is an unbiased estimator
of the variance of a normal distribution.
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