
International Journal of Statistical Sciences ISSN 1683–5603

Vol. 13, 2013, pp 21-37

c© 2013 Dept. of Statistics, Univ. of Rajshahi, Bangladesh

Improved Exponential Chain Ratio and Product-Type
Estimators for Finite Population Mean in Double

Sampling

Diganta Kalita
Department of Statistics

North Lakhimpur College (Autonomous)
Assam-787031, India

Email: dkalita.nl@gmail.com

B. K. Singh
Department of Mathematics

North Eastern Regional Institute of Science and Technology
Arunachal Pradesh-791109, India

Sanjib Choudhury
Department of Mathematics

National Institute of Technology Nagaland
Nagaland-797103, India

[Received January 6, 2013; Revised August 6, 2013; Accepted December 5, 2013]

Abstract

An exponential chain ratio and product-type estimators in double sampling
are proposed for estimating finite population mean of the study variate,
when the information on another additional auxiliary character is available
along with the main auxiliary character. The expressions for the bias and
mean square error (MSE) of the proposed estimators have been obtained
in two different cases. An analytical and numerical comparison of the pro-
posed estimators with other existing members of estimators shows that the
proposed estimators are more efficient under certain realistic conditions.
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1 Introduction

In sample surveys, supplementary information is used at either selection or estimation
stage or both, to improve the precision of the estimate of the population parameter.
The literature on survey sampling describes several methods of using the auxiliary
variable at the estimation stage. This includes among others; linear regression estima-
tor, ratio estimator, product estimator and difference estimator. When the auxiliary
variable is used at the estimation stage and the relation between the study variable
(Y ) and auxiliary variable(X) is highly positive, such that the regression line passes
through the origin, the classical ratio method of estimation proposed by Cochran
(1940) is most preferred. On the other hand, when the relation between the variables
is highly negative, the classical product method of estimation by Robson (1957) and
Murthy (1964) is most preferred.

The use of ratio and product strategies in survey sampling solely depend upon the
knowledge of population mean X̄ of the auxiliary character X. However, there are
situations of practical importance; where the population mean X̄ is not known before
the start of the survey. In such a situation, a sample of size n1 is selected initially by
using a suitable sampling design and its sample mean x̄1 is used to estimate population
mean X̄ , then a subsample of size n(n < n1) is selected to estimate the population
mean of the study and auxiliary variables. However, if the population mean Z̄ of
another auxiliary variable Z, closely related to X but compared to X remotely related

to Y is known (i.e. ρyx > ρyz), it is preferable to estimate X̄ by X̄ = x̄1Z̄
z̄1

, which

would provide better estimate of X̄ than x̄1 to the terms of order o(n−1) if ρxzCx

Cz
> 1

2
,

where Cx, Cz and ρyx, ρyz and ρxz are coefficient of variation of x, z and correlation
coefficient between y and x; y and z; x and z respectively. This technique is known as
chaining. The chain regression estimator was first introduced by Swain (1970). Chand
(1975), Sukhatme and Chand (1977), Kiregyera (1980, 1984) proposed some chain
ratio and regression type estimators based on two auxiliary variates. Isaki (1983),
Singh and Singh (2001), Singh et al. (2001), Prasad et al. (2002), Pradhan (2005),
Singh and Choudhury (2012) and many authors have suggested some improved chain
ratio, product, regression type estimators in double sampling.

Let us consider a finite population U = (U1, U2, U3, ..., UN ) of size N units and
the value of the variables on the ith unit be (yi, xi), where i = 1, 2, 3, ..., N . Let

Ȳ = 1

N

∑N
i=1

yi and X̄ = 1

N

∑N
i=1

xi are the population means of the study variable y

and the auxiliary variable x respectively. For estimating the population mean Ȳ of y,
a simple random sample of size n is drawn without replacement from the population
U . Then the classical ratio and product-type estimators are respectively as

ȲR = ȳ X̄
x̄

if x̄ 6= 0 and ȲP = ȳ x̄
X̄
,

where ȳ and x̄ are the sample means of y and x respectively based on a sample of size
n out of the population of size N units and X̄ is the known as population mean of x.
With known population mean X̄ , Bahl and Tuteja (1991) suggested the exponential
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ratio and product type estimators as

ȲRe = ȳ exp
(

X̄−x̄
X̄+x̄

)

and ȲPe = ȳ exp
(

x̄−X̄
x̄+X̄

)

respectively for the population mean Ȳ .

If the population mean X̄ of the auxiliary variable x is not known before start
of the survey, a first-phase sample of size n1 is drawn from the population, on which
only the auxiliary variable x is observed. Then a second-phase sample of size n is
drawn, on which both study variable y and auxiliary variable x are observed. Let
x̄1 = 1

n1

∑n1

i=1
xi denotes the sample mean of size n1 based on the first phase sample

and ȳ = 1

n

∑n
i=1

yi and x̄ = 1

n

∑n
i=1

xi denote the sample means of variables Y and X

respectively, obtained from the second phase sample of size n .

Singh and Vishwakarma (2007) suggested the exponential ratio and product-type
estimators for Ȳ in double sampling respectively as

Ȳ d
Re = ȳ exp

(

x̄1−x̄
x̄1+x̄

)

and Ȳ d
Pe = ȳ exp

(

x̄−x̄1

x̄+x̄1

)

.

If the population mean Z̄ of another auxiliary variate Z, closely related to X but
compared to X remotely related to Y is available and z̄1 = 1

n1

∑n1

i=1
zi be the sample

mean of Z. The chain ratio and product estimators in double sampling suggested by
Chand (1975) are respectively given as

Ȳ dc
R = ȳ x̄1

x̄
Z̄
z̄1

and Ȳ dc
P = ȳ x̄

x̄1

z̄1
Z̄
.

Singh and Choudhury (2012) suggested the exponential chain ratio and product-
type estimators for Ȳ in double sampling respectively as

Ȳ dc
Re = ȳ exp

(

x̄1
Z̄
z̄1

−x̄

x̄1
Z̄
z̄1

+x̄

)

and Ȳ dc
Pe = ȳ exp

(

x̄−x̄1
Z̄
z̄1

x̄+x̄1
Z̄
z̄1

)

.

In this paper, under SRSWOR, we present a class of exponential chain ratio and
product-type estimators in double sampling based on Singh and Choudhury (2012) and
obtain the bias and the MSE of class of estimators to the first order of approximation.
Numerical illustrations are given to show the performance of the proposed estimator
over other estimators.

2 Proposed estimators based on the estimators Ȳ
dc
Re and

Ȳ
dc
Pe

Motivated by Singh and Choudhury (2012), we have proposed the following modified
exponential chain ratio and product-type estimators in double sampling respectively
as

t∗1 = ȳexp







x̄1

(

aZ̄+b
az̄1+b

)

− x̄

x̄1

(

aZ̄+b
az̄1+b

)

+ x̄







= ȳexp







x̄1

(

Ū
ū1

)

− x̄

x̄1

(

Ū
ū1

)

+ x̄







(1)
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and

t∗2 = ȳexp







x̄− x̄1

(

aZ̄+b
az̄1+b

)

x̄+ x̄1

(

aZ̄+b
az̄1+b

)







= ȳexp







x̄− x̄1

(

Ū
ū1

)

x̄+ x̄1

(

Ū
ū1

)







, (2)

where a (6= 0) and b are scalar constants, ū1 = az̄1 + b and Ū = aZ̄ + b.

Remarks

(i) For (a, b) = (1, 0), the estimator t∗1 of equation (1) reduces to the ‘exponential chain

ratio-type estimator’
(

¯Y dc
Re

)

in double sampling.

(ii) For (a, b) = (1, 0), the estimator t∗2 of equation (2) reduces to the ‘exponential

chain product-type estimator’
(

¯Y dc
Pe

)

in double sampling.

The bias and the MSE of the proposed estimators are obtained for the following
two cases.
Case I: When the second phase sample is a subsample of the first phase sample.
Case II: When the second phase sample is drawn independently of the first phase
sample.

3 Bias and MSE of t∗1 and t
∗
2 for Case I

To obtain the bias (B) and mean square error (M) of estimators t∗1 and t∗2, we write

e0 =
ȳ−Ȳ

Ȳ
, e1 =

x̄−X̄
X̄

, e′1 =
x̄1−X̄
X̄

and e2 =
z̄1−Z̄
Z̄

such that























E(e0) = E(e1) = E(e′1) = E(e2) = 0, E(e20) =
1−f
n

C2
y ,

E(e21) =
1−f
n

C2
x, E(e′21 ) =

1−f1
n1

C2
x, E(e22) =

1−f1
n1

C2
z ,

E(e0e1) =
1−f
n

CyxC
2
x, E(e0e

′

1) =
1−f1
n1

CyxC
2
x, E(e0e2) =

1−f1
n1

CyzC
2
z ,

E(e1e
′

1) =
1−f1
n1

C2
x, E(e1e2) =

1−f1
n1

CzxC
2
z , E(e′1e2) =

1−f1
n1

CzxC
2
z .

(3)

where f = n
N
, f1 = n1

N
, Cy =

Sy

Ȳ
, Cx = Sx

X̄
, Cz = Sz

Z̄
, Cyx =

ρyxCy

Cx
, Cyz =

ρyzCy

Cz
,

Czx = ρzxCx

Cz
, ρyx =

Syx

SySx
, ρyz =

Syz

SySz
, ρzx = Szx

SzSx
, S2

y = 1

N−1

∑N
i=1

(

yi − Y
)2
, S2

x =

1

N−1

∑N
i=1

(

xi − X̄
)2
, S2

z = 1

N−1

∑N
i=1

(

zi − Z
)2
, Sxy = 1

N−1

∑N
i=1

(

yi − Y
) (

xi − X̄
)

,

Syz =
1

N−1

∑N
i=1

(

yi − Y
) (

zi − Z̄
)

and Szx = 1

N−1

∑N
i=1

(

zi − Z
) (

xi − X̄
)

.

Expanding the right hand side of (1) and (2) in terms of e’s, multiplying out and
neglecting the terms of e’s of power greater than two, we have
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t∗1 − Ȳ ∼= Ȳ

{

e0 +
1

2

(

e′1 − e1 − φe2 + e0e
′

1 − e0e1 − φe0e2
)

−
1

4

(

e′21 − e21 − φ2e22 + e1e
′

1 + φe′1e2 − φe1e2
)

+
1

8

(

e′21 + e21 + φ2e22
)

}

(4)

and

t∗2 − Ȳ ∼= Ȳ

{

e0 +
1

2

(

e1 − e′1 + φe2 − e0e
′

1 + e0e1 + φe0e2
)

−
1

4

(

e21 + e′21 + φ2e22 + e1e
′

1 + φe′1e2 − φe1e2
)

+
1

8

(

e′21 + e21 + φ2e22
)

}

(5)

where φ = aZ̄
aZ̄+b

.

Therefore, the bias of the estimators t∗1 and t∗2 can be obtained by using the results of
equation (3) in equations (4) and (5) as

B (t∗1)I = Ȳ
{

3

8

(

1−f∗

n
C2
x + φ2 1−f1

n1
C2
z

)

− 1

2

(

1−f∗

n
CyxC

2
x − φ1−f1

n1
CyzC

2
z

)}

and

B (t∗2)I = Ȳ
{

−1

8

(

1−f∗

n
C2
x + φ2 1−f1

n1
C2
z

)

+ 1

2

(

1−f∗

n
CyxC

2
x + φ1−f1

n1
CyzC

2
z

)}

where f∗ = n
n1
.

From equations (4) and (5), we have

t∗1 − Ȳ ∼=

{

e0 +
1

2

(

e′1 − e1 − φe2
)

}

(6)

and

t∗2 − Ȳ ∼=

{

e0 +
1

2

(

e1 − e′1 + φe2
)

}

(7)

Squaring both sides of equations (6) and (7), taking expectations and using the re-
sults of equation (3), we get the MSE of the estimators t∗1 and t∗2 to the first degree
approximation as

M (t∗1)I = Ȳ 2

{

1− f

n
C2
y +

1

4

(

1− f∗

n
C2
x + φ2 1− f1

n1

C2
z

)

−

(

1− f∗

n
CyxC

2
x + φ

1− f1

n1

CyzC
2
z

)}

(8)

and

M (t∗2)I = Ȳ 2

{

1− f

n
C2
y +

1

4

(

1− f∗

n
C2
x + φ2 1− f1

n1

C2
z

)

+

(

1− f∗

n
CyxC

2
x + φ

1− f1

n1

CyzC
2
z

)}

(9)
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Differentiating equation (8) with respect to φ yields its optimum value as

φopt. = 2Cyz. (10)

Substituting the value of φopt. from equation (10) in equation (8), we get the optimum
MSE of t∗1 as

opt.M (t∗1)I = Ȳ 2

{

1− f

n
C2
y +

1− f∗

n
C2
x

(

1

4
− Cyx

)

−
1− f1

n1

C2
yzC

2
z

}

(11)

Differentiating equation (9 with respect to φ yields its optimum value as

φopt. = −2Cyz . (12)

Substituting the value of φopt. from equation (12) in equation (9), we get the optimum
MSE of t∗2 as

opt.M (t∗2)I = Ȳ 2

{

1− f

n
C2
y +

1− f∗

n
C2
x

(

1

4
+ Cyx

)

−
1− f1

n1

C2
yzC

2
z

}

(13)

The MSE of usual unbiased estimator ȳ under SRSWOR scheme is

M (ȳ) = Ȳ 2 1− f

n
C2
y (14)

To the first degree approximation, the MSE of estimators Ȳ dc
R , Ȳ dc

P , Ȳ dc
Re and Ȳ dc

Re are

M
(

Ȳ dc
R

)

I
= Ȳ 2

{

1− f

n
C2
y +

1− f∗

n
C2
x (1− 2Cyx) +

1− f1

n1

C2
z (1− 2Cyz)

}

(15)

M
(

Ȳ dc
P

)

I
= Ȳ 2

{

1− f

n
C2
y +

1− f∗

n
C2
x (1 + 2Cyx) +

1− f1

n1

C2
z (1 + 2Cyz)

}

(16)

M
(

Ȳ dc
Re

)

I
= Ȳ 2

{

1− f

n
C2

y +
1

4

(

1− f∗

n
C2

x +
1− f1

n1

C2

z

)

−

(

1− f∗

n
CyxC

2

x +
1− f1

n1

CyzC
2

z

)}

(17)
and

M
(

Ȳ dc
Pe

)

I
= Ȳ 2

{

1− f

n
C2

y +
1

4

(

1− f∗

n
C2

x +
1− f1

n1

C2

z

)

+

(

1− f∗

n
CyxC

2

x +
1− f1

n1

CyzC
2

z

)}

(18)

respectively.
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3.1 Efficiency Comparisons of t∗1 and t
∗

2

From the equations (11) and (17), we have

M
(

Ȳ dc
Re

)

I
− opt.M (t∗1)I = Ȳ 2 1−f1

n1
C2
z

(

1

2
− Cyz

)2
> 0.

From the above comparison, it is clear that the proposed exponential chain ratio-type
estimator (t∗1) is more efficient than the exponential chain ratio estimator

(

Ȳ dc
Re

)

in
double sampling.
From the equations (13) and (18), we have

M
(

Ȳ dc
Pe

)

I
− opt.M (t∗2)I = Ȳ 2 1−f1

n1
C2
z

(

1

2
+Cyz

)2
> 0.

From the above comparison, we observe that the proposed exponential chain product-
type estimator (t∗2) is more efficient than exponential chain product estimator

(

Ȳ dc
Pe

)

in double sampling.

4 Bias and MSE of t∗1 and t
∗
2 for Case II

To obtain Bias and MSE of estimators t∗1 and t∗2, we have











E(e0) = E(e1) = E(e′1) = E(e2) = 0, E(e20) =
1−f
n

C2
y ,

E(e21) =
1−f
n

C2
x, E(e′21 ) =

1−f1
n1

C2
x, E(e22) =

1−f1
n1

C2
z , E(e0e1) =

1−f
n

CyxC
2
x,

E(e′1e2) =
1−f
n

CxzC
2
z , E(e0e

′

1) = E(e0e2) = E(e1e
′

1) = E(e1e2) = 0.

(19)

Taking expectations in equations (4) and (5) and using the results of equation (19),
we get the bias of the estimators t∗1 and t∗2 to the first degree approximation as

B (t∗1)II = Ȳ
{

1

8

(

f∗∗C2
x + 3φ2 1−f1

n1
C2
z

)

+ 1

4

(

1−f∗

n
C2
x − φ1−f1

n1
CxzC

2
z

)

− 1

2

1−f
n

CyxC
2
x

}

and
B (t∗2)II = Ȳ

{

1

8

(

f∗∗C2
x − φ2 1−f1

n1
C2
z

)

− 1

4

(

1−f∗

n
C2
x + φ1−f1

n1
CxzC

2
z

)

+ 1

2

1−f
n

CyxC
2
x

}

Squaring both the sides of equations (6) and (7), taking expectations and using the
results of equation (19), we get the MSE of t∗1 and t∗2 as

M (t∗
1
)II = Ȳ 2

{

1− f

n
C2

y +
1

4

(

f∗∗C2

x + φ2
1− f1

n1

C2

z

)

−
1

2

(

1− f

n
CyxC

2

x + φ
1− f1

n1

CxzC
2

z

)}

(20)
and

M (t∗
2
)II = Ȳ 2

{

1− f

n
C2

y +
1

4

(

f∗∗C2

x + φ2
1− f1

n1

C2

z

)

−
1

2
φ
1− f1

n1

CxzC
2

z +
1− f

n
CyxC

2

x

}

(21)

where f∗∗ = 1−f
n

+ 1−f1
n1

.

Differentiating equation (20) with respect to φ yields its optimum value as

φopt. = Cxz (22)



28 International Journal of Statistical Sciences, Vol. 13, 2013

Substituting the value of φopt. from equation (22) in equation (20), we get the optimum
MSE of t∗1 as

opt.M (t∗1)II = Ȳ 2

{

1− f

n
C2
y +

1

4

(

f∗∗C2
x −

1− f1

n1

C2
xzC

2
z

)

−
1− f

n
CyxC

2
x

}

(23)

Differentiating equation (21) with respect to φ yields its optimum value as

φopt. = Cxz (24)

Substituting the value of φopt. from equation (24) in equation (21), we get the optimum
MSE of t∗2 as

opt.M (t∗2)II = Ȳ 2

{

1− f

n
C2
y +

1

4

(

f∗∗C2
x −

1− f1

n1

C2
xzC

2
z

)

+
1− f

n
CyxC

2
x

}

(25)

To the first degree approximation, the MSE of estimators Ȳ dc
R , Ȳ dc

P , Ȳ dc
Re and Ȳ dc

Re are

M
(

Ȳ dc
R

)

II
= Ȳ 2

{

1− f

n
C2

y +
1− f

n
C2

x (1− 2Cyx) +
1− f1

n1

C2

x +
1− f1

n1

C2

z (1− 2Cxz)

}

(26)

M
(

Ȳ dc
P

)

II
= Ȳ 2

{

1− f

n
C2

y +
1− f

n
C2

x (1 + 2Cyx) +
1− f1

n1

C2

x +
1− f1

n1

C2

z (1− 2Cxz)

}

(27)

M
(

Ȳ dc
Re

)

II
= Ȳ 2

{

1− f

n
C2

y +
1

4

(

f∗∗C2

x +
1− f1

n1

C2

z

)

−
1− f

n
CyxC

2

x −
1

2

1− f1

n1

CxzC
2

z

}

(28)
and

M
(

Ȳ dc
Pe

)

II
= Ȳ 2

{

1− f

n
C2

y +
1

4

(

f∗∗C2

x +
1− f1

n1

C2

z

)

+
1− f

n
CyxC

2

x −
1

2

1− f1

n1

CxzC
2

z

}

(29)

respectively.

4.1 Efficiency Comparisons of t
∗

1 and t
∗

2 with the estimators Ȳ
dc
Re and

Ȳ
dc
Pe

From the equations (23) and (28), we have

M
(

Ȳ dc
Re

)

II
− opt.M (t∗1)II = Ȳ 2 1

4

1−f1
n1

C2
z (1− Cxz)

2 > 0.

From the above comparison, we observed that the proposed estimator t∗1 is more effi-
cient than the double sampling exponential chain ratio-type estimator (Ȳ dc

Re) .
From the equations (25) and (29), we have

M
(

Ȳ dc
Pe

)

II
− opt.M (t∗2)II = Ȳ 2 1−f1

n1
C2
z (1− Cxz)

2 > 0.

This shows that the proposed estimator t∗2 is more efficient than the double sampling
exponential chain product-type estimator (Ȳ dc

Pe) .



Kalita, Singh and Choudhury: Improved Exponential Chain Ratio 29

5 Empirical Study

To examine the merits of the proposed estimators, we have considered four natural
population data sets. The sources of populations, nature of the variates y, x and z;
and the values of the various parameters are given as follows.

Population I -Source: Cochran (1977)
Y : Number of ‘Placebo’ children, X: Number of paralytic polio cases in the placebo

group, Z: Number of paralytic polio cases in the ‘not inoculated’ group.

N=34, n=10, n1=15, Ȳ=4.92, X̄=2.59, Z̄=2.91, ρyx=0.7326, ρyz=0.6430,
ρzx=0.6837, C2

y=1.0248, C2
x=1.5175, C2

z=1.1492.

Population II -Source: Sukhatme and Chand (1977)
Y : Apple trees of bearing age in 1964, X: Bushels of apples harvested in 1964, Z:

Bushels of apples harvested in 1959.

N=200, n=20, n1=30, Ȳ = 0.103182×104 , X̄ = 0.293458×104 , Z̄ = 0.365149×104 ,
ρyx=0.93, ρyz=0.77, ρzx=0.84, C2

y=2.55280, C2
x=4.02504, C2

z=2.09379.

Population III -Source: Srivastava et al.(1989)
Y : The measurement of weight of children , X: Mid arm circumference of children,

Z: Skull circumference of children.

N=82, n=25, n1=43, Ȳ=5.60 kg, X̄=11.90 cm, Z̄=39.80 cm, ρyx=0.09, ρyz=0.12,
ρzx=0.86, C2

y=0.0107, C2
x=0.0052, C2

z=0.0008.

Population IV-Source: Srivastava et al.(1989)
Y : The measurement of weight of children , X: Mid arm circumference of children,

Z: Skull circumference of children.

N=55, n=18, n1=30, Ȳ=17.08 kg, X̄=16.92 cm, Z̄=50.44 cm, ρyx=0.54, ρyz=0.51,
ρzx=–0.08, C2

y=0.0161, C2
x=0.0049, C2

z=0.0007.

To observe the relative performance of different estimators of Ȳ , we have computed
the percentage relative efficiencies of the proposed estimators (t∗1 and t∗2), exponential
chain ratio-type

(

Ȳ dc
Re

)

, exponential chain product-type
(

Ȳ dc
Pe

)

, chain ratio
(

Ȳ dc
R

)

and

chain product
(

Ȳ dc
P

)

estimators in double sampling and sample mean per unit estimator
ȳ with respect to usual unbiased estimator ȳ for Case I and Case II. The findings are
presented in Table 1 and 2.

Table 1: Percentage relative efficiencies of Ȳ dc
R , Ȳ dc

P , Ȳ dc
Re, Ȳ

dc
Pe, t

∗

1
and t∗

2
w.r.t. ȳ for Case I

Estimators→ ȳ Ȳ dc
R Ȳ dc

P Ȳ dc
Re Ȳ dc

Pe t∗1 t∗2
Population I 100.00 136.91 25.96 184.36 47.55 186.71 72.45
Population II 100.00 279.93 26.02 247.82 46.58 293.97 74.35
Population III 100.00 81.92 70.22 97.11 88.38 97.12 97.74
Population IV 100.00 131.91 61.01 120.57 78.75 131.12 255.53
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Table 2: Percentage relative efficiencies of Ȳ dc
R , Ȳ dc

P , Ȳ dc
Re, Ȳ

dc
Pe, t

∗

1
and t∗

2
w.r.t. ȳ for Case II

Estimators→ ȳ Ȳ dc
R Ȳ dc

P Ȳ dc
Re Ȳ dc

Pe t∗1 t∗2
Population I 100.00 87.63 21.24 141.68 42.15 158.73 44.31
Population II 100.00 182.67 19.16 220.59 37.90 230.35 37.95
Population III 100.00 68.82 58.68 91.06 82.82 204.74 83.55
Population IV 100.00 116.68 48.81 122.79 70.87 127.02 71.19

From the Table 1 and Table 2, it is clear that the proposed exponential chain
ratio-type estimator t∗1 is more efficient than the usual unbiased estimator ȳ, chain
ratio and product estimators

(

Ȳ dc
R and Ȳ dc

P

)

in double sampling, exponential chain

ratio and product-type estimators
(

Ȳ dc
Re and Ȳ dc

Pe

)

in double sampling for both the
cases except population III in Case I.

6 Proposed estimators based on the estimators t
∗
1 and t

∗
2

Based on the estimators t∗1 and t∗2, we propose the following exponential chain ratio
and product-type estimators in double sampling respectively as

t∗∗1 = ȳexp







(

x̄1

x̄

)α
(

Ū
ū1

)

− 1

(

x̄1

x̄

)α
(

Ū
ū1

)

+ 1







(30)

and

t∗∗2 = ȳexp







1−
(

x̄1

x̄

)α
(

Ū
ū1

)

1 +
(

x̄1

x̄

)α
(

Ū
ū1

)







(31)

where α is a suitably chosen constant. Some members of these proposed estimators
are given in Table 3.

7 Bias and MSE of t∗∗1 and t
∗∗
2 for Case I

Expanding the right hand side of equations (30) and (31) in terms of e’s, multiplying
out and neglecting the terms of e’s of power greater than two, we have

t∗∗1 − Ȳ ∼= Ȳ

[

e0 +
1

2

{

αe′1 − αe1 − φe2 − αe0e1 + αe0e
′

1 − φe0e2 +
α (α− 1)

2
e′21

}

+
α (α+ 1)

4
e21 −

1

4

(

α2e′21 − 2α2e′1e1 + α2e21 − φ2e22
)

+
1

8

(

α2e′21 + α2e21 + φ2e22 + 2αφe′1e2
)

]

(32)



Kalita, Singh and Choudhury: Improved Exponential Chain Ratio 31

Table 3: Some existing members of proposed class of estimators t∗∗1 and t∗∗2
Value of constants in estimator t∗∗1
α a b Estimator

1 1 0 Ȳ dc
Re = ȳexp

(

x̄1
Z̄
z̄1

−x̄

x̄1
Z̄
z̄1

+x̄

)

Singh and Choudhury (2012)

1 – – t∗1 = ȳexp

{

x̄1

(

aZ̄+b
az̄1+b

)

−x̄

x̄1

(

aZ̄+b
az̄1+b

)

+x̄

}

Value of constants in estimator t∗∗2
α a b Estimator

1 1 0 Ȳ dc
Pe = ȳ exp

(

x̄−x̄1
Z̄
z̄1

x̄+x̄1
Z̄
z̄1

)

Singh and Choudhury (2012)

1 – – t∗2 = ȳexp

{

x̄−x̄1

(

aZ̄+b
az̄1+b

)

x̄+x̄1

(

aZ̄+b
az̄1+b

)

}

and

t∗∗2 − Ȳ ∼= Ȳ

[

e0 +
1

2

{

αe1 − αe′1 + φe2 + αe0e1 − αe0e
′

1 + φe0e2 −
α (α− 1)

2
e′21

}

−
α (α+ 1)

4
e21 −

1

4

(

α2e21 − α2e′21 + φ2e22
)

+
1

8

(

α2e′21 + α2e21 + φ2e22 − 2α2e′1e1 − 2αφe′1e2 + 2αφe1e2
)

]

(33)

Therefore, the bias of the estimators t∗∗1 and t∗∗2 can be obtained by using the results
of equation (3) in equations (32) and (33) as

B (t∗∗1 )I = Ȳ
[

1

8

{

α (α+ 1) 1−f∗

n
C2
x + 3φ2 1−f1

n1
C2
z

}

− 1

2

(

α1−f∗

n
CyxC

2
x + φ1−f1

n1
CyzC

2
z

)]

and

B (t∗∗2 )I = Ȳ
[

1

8

{

α (α− 1) 1−f∗

n
C2
x − φ2 1−f1

n1
C2
z

}

+ 1

2

(

α1−f∗

n
CyxC

2
x + φ1−f1

n1
CyzC

2
z

)]

From equations (32) and (33), we have

t∗∗1 − Ȳ ∼=

{

e0 +
1

2

(

e′1 − αe1 − φe2
)

}

(34)

and

t∗∗2 − Ȳ ∼=

{

e0 +
1

2

(

e1 − αe′1 + φe2
)

}

(35)
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Squaring both the sides of equations (34) and (37), taking expectations and using the
results of equation (3), we get the MSE of t∗∗1 and t∗∗2 as

M (t∗∗1 )I = Ȳ 2

{

1− f

n
C2
y +

1

4

(

α2 1− f∗

n
C2
x + φ2 1− f1

n1

C2
z

)

−

(

α
1− f∗

n
CyxC

2
x + φ

1− f1

n1

CyzC
2
z

)}

(36)

and

M (t∗∗2 )I = Ȳ 2

{

1− f

n
C2
y +

1

4

(

α2 1− f∗

n
C2
x + φ2 1− f1

n1

C2
z

)

+

(

α
1− f∗

n
CyxC

2
x + φ

1− f1

n1

CyzC
2
z

)}

(37)

Differentiating in equation (36) with respect to α and φ separately, yields optimum
values of α and φ as
αopt. = Cyx and φopt. = Cyz.

Substituting the above optimum values of αopt. and φopt. in equation (36), we obtain
the optimum MSE of the estimator t∗∗1 as

opt.M (t∗∗1 )I = Ȳ 2

(

1− f

n
C2
y −

1− f∗

n
C2
yxC

2
x −

1− f1

n1

C2
yzC

2
z

)

(38)

Differentiating in equation (37) with respect to α and φ separately, yields optimum
values of α and φ as
αopt. = −2Cyx and φopt. = −2Cyz.

Substituting the above optimum values of αopt. and φopt. in equation (37), we obtain
the optimum MSE of the estimator t∗∗2 as

opt.M (t∗∗2 )I = Ȳ 2

(

1− f

n
C2
y −

1− f∗

n
C2
yxC

2
x −

1− f1

n1

C2
yzC

2
z

)

(39)

From equations (38) and (39), we have observed that the optimum MSE of the esti-
mators t∗∗1 and t∗∗2 are same in case of their optimality.

7.1 Efficiency Comparison of the estimator t
∗∗

1 (or t
∗∗

2 ) with the es-
timators t

∗

1 and t
∗

2

From the equations (11) and (38) or (39), we have

opt.M (t∗1)I −
{

opt.M (t∗∗1 )I or opt.M (t∗∗2 )I
}

= Ȳ 2 1−f∗

n
C2
x

(

1

2
− Cyx

)2
> 0.

From the equations (13) and (38) or (39), we have
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opt.M (t∗2)I −
{

opt.M (t∗∗1 )I or opt.M (t∗∗2 )I
}

= Ȳ 2 1−f∗

n
C2
x

(

1

2
+ Cyx

)2
> 0.

From the above expressions, it is clear that the estimator t∗∗1 (or t∗∗2 ) is more efficient
than the estimators t∗1 and t∗2 in case of its optimality.

8 Bias and MSE of t∗∗1 and t
∗∗
2 for Case II

Taking expectations in equations (32) and (33) and using the results from equation
(19), we get the bias of the estimators t∗∗1 and t∗∗2 respectively as

B (t∗∗1 )II = Ȳ

[

1

8
α

{

(α+ 2)
1− f

n
+ (α− 2)

1− f1

n1

}

C2
x +

3

8
φ2 1− f1

n1

C2
z

−α

(

1

2

1− f

n
CyxC

2
x +

1

4
φCxzC

2
z

)]

and

B (t∗∗2 )II = Ȳ

[

1

8
α

{

(α− 2)
1− f

n
+ (α+ 2)

1− f1

n1

}

C2
x −

1

8
φ2 1− f1

n1

C2
z

+α

(

1

2

1− f

n
CyxC

2
x −

1

4
φCxzC

2
z

)]

Squaring both the sides of equations (34) and (35), taking expectations and using the
results from equation (19), we get the MSE of t∗∗1 and t∗∗2 respectively as

M (t∗∗1 )II = Ȳ 2

{

1− f

n
C2
y +

1

4

(

α2f∗∗C2
x + φ2 1− f1

n1

C2
z

)

−α

(

1− f

n
CyxC

2
x + φ

1

2

1− f1

n1

CxzC
2
z

)}

(40)

and

M (t∗∗2 )II = Ȳ 2

{

1− f

n
C2
y +

1

4

(

α2f∗∗C2
x + φ2 1− f1

n1

C2
z

)

+α

(

1− f

n
CyxC

2
x − φ

1

2

1− f1

n1

CxzC
2
z

)}

(41)

Differentiation in equation (40) with respect to α and φ separately, yields optimum
values of α and φ as
αopt. =

C
A+BCxz

and φopt. =
CCxz

A+BCxz
,

where A = f∗∗Cx, B = −1−f1
n1

ρxzCz and C = 21−f
n

ρyxCy.
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Substituting the above optimum values of αopt. and φopt. in equation (40), we obtain
the optimum MSE of the estimator t∗∗1 as

opt.M (t∗∗1 )II = Ȳ 2 1− f

n
C2
y











1−
1−f
n

C2
yxC

2
x

1−f
n

+ 1−f1
n1

(

CxzCz

Cx

)2











(42)

Differentiation in equation (41) with respect to α and φ separately, yields optimum
values of α and φ as
αopt. =

C
A+BCxz

and φopt. =
CCxz

A+BCxz
.

Substituting the above optimum values of αopt. and φopt. in equation (41), we obtain
the optimum MSE of the estimator t∗∗2 as

opt.M (t∗∗2 )II = Ȳ 2 1− f

n
C2
y











1−
1−f
n

C2
yxC

2
x

1−f
n

+ 1−f1
n1

(

CxzCz

Cx

)2











(43)

From equations (42) and (43), we observe that the optimum MSE of the estimators
t∗∗1 and t∗∗2 are same in case of their optimality.

8.1 Efficiency Comparison of the estimator t
∗∗

1 (or t
∗∗

2 ) with the es-
timators t

∗

1 and t
∗

2

From the equations (23) and (42) or (43), we have
opt.M (t∗1)II −

{

opt.M (t∗∗1 )II or opt.M (t∗∗2 )II
}

=

Ȳ 2







1

4
f∗∗C2

x +

1−f

n

C2
yxC2

x

C2
y

1−f

n
+

1−f1
n1

C2
xzC

2
z

C2
x

− 1

4

1−f1
n1

C2
xzC

2
z − 1−f

n
CyxC

2
x







> 0 if

1

4
f∗∗C2

x +

1−f
n

C2
yxC2

x

C2
y

1−f
n

+
1−f1
n1

C2
xzC

2
z

C2
x

> 1

4

1−f1
n1

C2
xzC

2
z + 1−f

n
CyxC

2
x.

From the equations (25) and (42) or (43), we have
opt.M (t∗2)II −

{

opt.M (t∗∗1 )II or opt.M (t∗∗2 )II
}

=

Ȳ 2







1

4
f∗∗C2

x +

1−f

n

C2
yxC2

x

C2
y

1−f

n
+

1−f1
n1

C2
xzC

2
z

C2
x

− 1

4

1−f1
n1

C2
xzC

2
z + 1−f

n
CyxC

2
x







> 0 if

1

4
f∗∗C2

x +

1−f

n

C2
yxC2

x

C2
y

1−f

n
+

1−f1
n1

C2
xzC

2
z

C2
x

> 1

4

1−f1
n1

C2
xzC

2
z − 1−f

n
CyxC

2
x.



Kalita, Singh and Choudhury: Improved Exponential Chain Ratio 35

9 Empirical Study

To observe the relative performances of different estimators of Ȳ , we have computed
the percentage relative efficiencies of the proposed estimators t∗∗1 and t∗∗2 with respect
to ȳ by using the population data sets given in Section 5.

Table 4: PREs of estimators t∗1, t
∗

2, t
∗∗

1 and t∗∗2 w.r.t. ȳ

Estimators→ t∗1 t∗∗1 t∗2 t∗∗2
Case I

Population I 186.71 189.27 72.45 189.27
Population II 293.97 326.41 74.35 326.41
Population III 97.12 101.07 97.74 101.07
Population IV 131.12 138.66 255.53 138.66

Case II

Population I 158.73 172.10 44.31 172.10
Population II 230.35 369.89 37.95 369.89
Population III 204.74 100.73 83.55 100.73
Population IV 127.02 126.24 71.19 126.24

10 Conclusions

From Table 1 and Table 2, it is evident that the proposed exponential chain ratio
and product-type estimators (t∗1 and t∗2 ) have shown their gain in efficiencies over the
estimators proposed by Singh and Choudhury (2012). From Table 4, it is also clear
that the further proposed estimators t∗∗1 and t∗∗2 are more efficient than the estimators
t∗1 and t∗2 in about all population data sets. So the use of the proposed estimators
t∗1, t

∗

2 and hence t∗∗1 , t∗∗2 are preferable in practice over other estimators taken into
considerations.
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