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Abstract

There is an impressive published literature on the statistical issue of as-
sessment of agreement among two or more raters involving both qualitative
and quantitative data. In this article we have focused only on the data
based on a continuous measurement. In such frameworks, there are several
usual approaches for evaluating agreement. Applied to data arising out of
a bivariate normal distribution (either naturally or under suitable trans-
formation(s)), Lin’s method (1989) was further pursued in Yimprayoon et
al. (2006) as a multi-parameter testing problem involving the means, vari-
ances and the correlation coefficient of the two measurement distributions.
Specifically, it was posed as one of testing the composite null hypothesis
H0: µx = µy, σx = σy and ρ ≥ ρ0 [close to 1]. This formulation corresponds
to what is referred to as perfect agreement scenario when ρ=1 and this is
too much to expect in real life situations. In this study, we have developed
large sample likelihood ratio test [LRT] for a more meaningful hypothesis
of the form H0 : |µx − µy| ≥ ε0,

σx

σy

or
σy

σx

≥ η0, ρ ≤ ρ0 where ε0 is close

to zero and η0 and ρ0 are close to unity - all are assumed to be specified.
We evaluate the performance of the test when X and Y do not agree at the
desired levels of ε0, η0 and ρ0.
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1 Introduction

Measurements of agreement are needed to assess the acceptability of new or generic
process, methodology, and formulation in both science and non-science fields of lab-
oratory performance, instrument or assay validation, method comparisons, statistical
process control, goodness of fit, and individual bioequivalence. For example, the agree-
ment of laboratory measurements collected in various laboratories, the agreement of a
newly developed method with gold standard method, the agreement of manufacturing
process measurements with specifications, the agreement of observed values with pre-
dicted values, and the agreement in bioavailability of a new or generic formulation with
a commonly used formulation. By the way, measuring agreement has been used very
often to designate the level of agreement between different data-generating sources
referred to as observers or raters. A rater could be a chemist, a psychologist, a radi-
ologist, a clinician, a nurse, a rating system, a diagnosis, a treatment, an instrument,
a method, a process, a technique or a formula.

Evaluation of agreement has received considerable attention in the literature more
than one and a half centuries ago. Cohen (1960, 1968) discussed this problem in the
context of categorical data. Bland and Altman (1986) proposed a simple and meaning-
ful graphical approach for assessing the agreement between two clinical measurements.
In a series of articles, Lin (1989, 1992, 1997, 2000) and Lin and Torbeck (1998) exam-
ined this problem critically in the framework of method reproducibility and suggested
a few measures and studied their properties. In the context of bioequivalence, similar
studies have been reported by Anderson and Hauck (1990), Sheiner (1992), Holder
and Hsuan (1993), Schall and Luus (1993), Schall (1995), Schall and Williams (1996),
and Lin (2000). In the context of goodness of fit, Vonesh, Chinchilli, and Pu (1996)
and Vonesh and Chinchilli (1997) have modified Lin’s approach for choosing models
that have better agreement between the observed and the predicted values. A com-
prehensive account of the methods for studying intra- and inter-rater agreements is
available in the latest book in this area by Lin et al. (2012).

In this article, we have focused only on the data for two competing raters measured
on a continuous scale. There are several usual approaches for evaluating agreement
for such paired data such as Pearson correlation coefficient, regression analysis, paired
t-tests, least squares analysis for slope and intercept, within-subject coefficient of vari-
ation, and intra-class correlation coefficient. The concordance correlation coefficient
(CCC) was first proposed by Lin (1989) for assessment of agreement in continuous
data. It represents a breakthrough in assessing agreement between two distinct meth-
ods for continuous data in that it appears to avoid all the shortcomings associated
with usual approaches in some situations. In short, Lin (1989) expresses the degree of
concordance between two variables X and Y by the mean of their squared difference
(MSD), E(X-Y)2 , and defines the CCC as

ρc = 1− E(Y-X)2

EIndep(Y-X)
2 =

2σxy
σ2
x + σ2

y + (µx − µy)2
(1)
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where EIndep(.) represents expectation under the assumption of independence of X
and Y, µx=E(X), µy =E(Y), σ2

x =Var(X), σ2
y=Var(Y), and σxy=Cov(X,Y)=ρσxσy.

Lin (1989) estimates this CCC with data by substituting the sample moments of an
independent bivariate sample into above formula to compute the sample counterpart of
CCC (rc). The CCC translates the MSD into a correlation coefficient that measures
the agreement along the identity line. It has the properties of a CCC in that it
ranges between -1 and +1, with -1 indicating perfect reversed agreement (Y=−X), 0
indicating no agreement, and +1 indicating perfect agreement (Y=X). Lin et al. (2002)
gave a review and comparison of various measures, including the CCC, of developments
in this field by comparing the powers of the tests: 1) µx = µy, 2) σx = σy, and 3)
ρ = ρ0, where ρ0 is a given value. Their calculation is illustrated using a real data
example. This work was further extended in Hedayat et al. (2009) involving multiple
raters. In another direction, Yimprayoon et al. (2006) extended the work of Lin et al.
(2002) by combining the problems of testing for µx = µy, σx = σy, and ρ ≥ ρ0 into
one overall testing problem under bivariate normal set-up and then they presented the
result based on simulation study. In this article, we have revisited this testing problem
and tried to reformulate an appropriate hypothesis by considering probability of the
absolute value of X-Y (=D) less than the fixed boundary, κ under bivariate normal
set-up. Moreover, we try to find out the appropriate test statistics for this combined
testing problem.

2 Construction of Hypothesis

An intuitively clear measurement of agreement is a measure that captures a large pro-
portion of data within a predetermined boundary from target values. In other words,
we want the probability of the absolute value of D=Y−X less than the boundary, κ,
to be large. This probability is termed in literature as coverage probability (CP) (cf.
Lin et al. (2002)) and it is defined as

CP(κ) = P[|D| < κ], (2)

where X and Y denote random variables representing paired observations for assessing
the agreement. We assume that X and Y have a bivariate normal distribution with
means µx and µy, variances σ

2
x and σ2

y , correlation coefficient ρ and the covariance of
X and Y is σxy = ρσxσy. We denote this by

(
X

Y

)
∼ N2

[(
µx

µy

)
,

(
σ2
x ρσxσy

ρσxσy σ2
y

)]
, (3)

where −∞ < µx, µy < ∞, σx, σy > 0, − 1 < ρ < 1.
Under this normality assumption, (2) is reduced to

CP(κ) = P[|D| < κ] = Φ

(
κ− µd

σd

)
− Φ

(−κ− µd

σd

)
, (4)



4 International Journal of Statistical Sciences, Vol. 13, 2013

where, µd = µy − µx and σ2
d = σ2

y + σ2
x − 2ρσxσy = σ2

y(1 + t2 − 2ρt) and t = σx

σy
.

At this stage, we have critically studied the behaviour of CP for fixed κ = 0.1 for
varying t (=0.8, 0.85, 0.9, 0.95, 1.00, 1.10, 1.15, 1.20, 1.25), µd (=0, 0.01, 0.05, 0.07,
0.08), σ2

y (=0.01, 0.05, 0.10, 0.50, 1.00) and ρ (=0.8, 0.9).

Figure 1: t vs CP(0, 1)
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From Figure 1, it has been observed that CP(0.1) is greater than 0.6 when 0.8 ≤
t ≤ 1.10, µd=0, 0.01, 0.05, 0.07, 0.08 and σ2

y = 0.01. Therefore from the above
observations, it can be concluded that CP for given κ is reasonably satisfactory for
|µx−µy| ≤ ε0,

1
η0

≤ σx

σy
≤ η0, ρ ≥ ρ0, where ε0, η0 > 0 are suitably chosen in advance,

being close to 0 and 1 respectively.

Therefore, a more appropriate and plausible null hypothesis can be formulated as

H0 : |µx − µy| ≥ ε0,
σx

σy
or

σy

σx
≥ η0, ρ ≤ ρ0 (5)

where ε0 is close to zero and η0 and ρ0 are close to unity - all are assumed to be
specified. We evaluate the performance of the test when X and Y do not agree at
the desired levels of ε0, η0 and ρ0. We offer below a solution based on the Likelihood
Ratio Test under a bivariate normal set-up. It may be noted that in agreement studies
involving two raters, the primary goal of an experimenter is to offer a test procedure
which points towards the agreement in a logical sense. That is why, the formulation
in Lin et al. (2002) was generalized in Yimprayoon et al. (2006) and that is further
generalized in the above. Following Lin et al. (2002), we notice that when there is a
disagreement between the two marginal distributions, the source is defined as constant
and/or scale “shift”, or lack of “accuracy”. When there is a disagreement due to large
within-sample variation, the source is defined as lack of “precision”. The alternative
to H0 formulated above addresses both these issues.

Since the density function for bivariate normal distribution belongs to monotone
likelihood ratio family, the testing of composite null hypothesis (5) will be the same
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as testing the union of following four composite hypotheses:

H01 : µx = µ, µy = µ+ ε0, σx = σ, σy = ση0, ρ = ρ0 (6)

H02 : µx = µ, µy = µ+ ε0, σx = σ, σy =
σ

η0
, ρ = ρ0 (7)

H03 : µx = µ, µy = µ− ε0, σx = σ, σy = ση0, ρ = ρ0 (8)

H04 : µx = µ, µy = µ− ε0, σx = σ, σy =
σ

η0
, ρ = ρ0. (9)

It may be noted that the four composite hypotheses stated above point to the four
directions of disagreement. Clearly, in working out the over-all likelihood under the
union of these four component hypotheses, we will be guided by the five statistics

based on n paired observations and these are x̄ = 1
n

n∑

i=1

xi, ȳ = 1
n

n∑

i=1

yi, Sxx =

n∑

i=1

(xi − x̄)2, Syy =

n∑

i=1

(yi − ȳ)2, Sxy =

n∑

i=1

(xi − x̄)(yi − ȳ).

3 Derivation of Test Procedures

The likelihood function can be written as

L(µx, µy, σx, σy, ρ|data) =
1

(2πσxσy
√

1− ρ2)n
exp

[
− 1

2(1 − ρ2)

n∑

i=1

{(
xi − µx

σx

)2

− 2ρ

(
xi − µx

σx

)(
yi − µy

σy

)
+

(
yi − µy

σy

)2}]
.

(10)

Our approach will be to work out maximum of the likelihood under each of the
four hypotheses stated above and then to compute the largest of the four expressions,
so derived, to finally arrive at the numerator of the LRT. We assume without any loss
of generality that ε0 > 0, η0 > 1. Next note that the domain of variation of the four
statistics viz., x̄, ȳ, Sx (=

√
Sxx), Sy (=

√
Syy) can be logically partitioned as : D1 :

[x̄ > ȳ;Sx > Sy];D2 : [x̄ > ȳ;Sx < Sy];D3 : [x̄ < ȳ;Sx > Sy];D4 : [x̄ < ȳ;Sx < Sy].
These will presumably provide largest of the four likelihoods in a logical and expected
manner. Under the assumption of ε0 > 0, η0 > 1, it should turn out that D4 favors
H01, D3 favors H02, D2 favors H03 and D1 favors H04. This is readily verified to be
true. Details are shown in the Appendix.

We use the statistic λ∗
1 from the LRT defined by

λ1 =

max
Θ01

L(µx, µy, σx, σy, ρ|data)

max
Θ

L(µx, µy, σx, σy, ρ|data)
, (11)
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where Θ = (µx, µy, σx, σy, ρ) and Θ01 = (µ, σ).

We reject the composite hypotheses if

λ1 < d∗1. (12)

To evaluate max
Θ01

L(µx, µy, σx, σy, ρ|data) it can be easily shown that when we confine

to the domain D4, maximum likelihood estimators of µ and σ are as follows:

µ̂ = ax̄+ (1− a)ȳ∗, (13)

σ̂2 =
Q(µ̂)

2n(1− ρ20)
, (14)

where

ȳ∗ = ȳ − ε0, (15)

a =
η0(η0 − ρ0)

k
, (16)

k = 1 + η20 − 2ρ0η0 (17)

Q(µ) = Q1(µ) + Q2 (18)

Q1(µ) = n[(x̄− µ)2 − 2
ρ0

η0
(x̄− µ)(ȳ∗ − µ) +

1

η20
(ȳ∗ − µ)2)], (19)

Q2 = Sxx − 2
ρ0

η0
Sxy +

1

η20
Syy. (20)

Substituting the above estimators, we get

max
Θ01

L(µx, µy, σx, σy, ρ|data) =
(
n
√
1− ρ20
πη0

)n

exp(−n)Q−n(µ̂). (21)

Likewise, for all other domains, maximum of the likelihood has been displayed in the
Appendix.

To find max
Θ

L(µx, µy, σx, σy, ρ|data), it is well known that ̂̂µx = x̄, ̂̂µy = ȳ,
̂̂
σ2
x =

Sxx
n ,

̂̂
σ2
y =

Syy

n , ̂̂ρ =
Sxy

SxxSyy
= r, where r is sample correlation coefficient, which gives

max
Θ

L(µx, µy, σx, σy, ρ|data) =
nn exp(−n)(√

SxxSyy − S2xy

)n

(2π)n
. (22)

Hence in case of domain D4, λ1 is obtained as

λ1 =

(
2
√

1− ρ20
η0

)n( √
Q∗

2

Q1(µ̂) + Q2

)n

, (23)
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where
Q∗

2 = SxxSyy − S2xy. (24)

Now we have seen that under H01,

√
n(x̄− ȳ∗)

σ
√
k

∼ N(0, 1), (25)

where EH01
(x̄− ȳ∗) = 0 and VarH01

(x̄− ȳ∗) = σ2k
n .

Again
Q1(µ̂) = nk1(x̄− ȳ∗)2, (26)

where

k1 = (1− 2a) +
2aρ0η0 + a2k

η20
. (27)

It is also known that

(
Sxx Sxy
Sxy Syy

)
∼ W(Σ, n − 1) where W represents Wishart

distribution and Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
. It is also known that E(Sij)=(n-1)σij

and Cov(Sij , Skl)=(n-1)(σikσjl + σilσjk). Hence under H01, E(Q2)=2(n-1)σ2(1− ρ20),
E(Q∗

2)=(n-1)(n-2)σ4η20(1− ρ20) and

Q2√
Q∗

2

P−→ 2
√

1− ρ20
η0

. (28)

Likewise, combining all the domains, we find that the test depends on the two sample
means only through the absolute value of their difference. Hence, under the union of
the component hypotheses,

lim
n→∞

P[λ1 < d∗1] = lim
n→∞

P[T1 > d1] = lim
n→∞

P

[
Q1(µ̂)

(Q∗
2)

1

2

> d1 −
2
√

1− ρ20
η0

]

= lim
n→∞

P

[√
nk1|x̄− ȳ∗|
(Q∗

2)
1

4

>

(
d1 −

2
√

1− ρ20
η0

) 1

2
]

= lim
n→∞

P

[√
n|x̄− ȳ∗|
(k2Q∗

2)
1

4

>

(
d1 − 2

√
1−ρ2

0

η0

k1k

) 1

2
]

= lim
n→∞

P

[ |V|
(V2

1V
2
2)

1

4

> η
1

2

0 (1− ρ20)
1

4

(
d1 − 2

√
1−ρ2

0

η0

k1k

) 1

2
]

= lim
n→∞

P

[
|T| > η

1

2

0 (1− ρ20)
1

4

(
d1 − 2

√
1−ρ2

0

η0

k1k

) 1

2
]
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(29)

where V=
√
n(x̄−ȳ∗)

σ
√
k

, V2
1V

2
2 =

Q∗

2

σ4η2
0
(1−ρ2

0
)
, T = V

(V2
1V

2
2)

1
4

and
V ∼ N(0, 1), V2

1 ∼ χ2
n−1, V2

2 ∼ χ2
n−2under H01 (30)

and V, V1 and V2 are independently distributed.

3.1 Limiting distribution of T

The joint distribution of (V, V2
1, V

2
2) is

f(v, v21 , v
2
2) =

1

Γ(n−1

2
)Γ(n−2

2
)Γ( 1

2
)2n−1

exp

[

−

v2 + v21 + v22

2

]

v
n−3

1 v
n−4

2 ; −∞ < v < ∞, v1, v2 > 0.

(31)
The joint distribution of (V, V1, V2) is

f(v, v1, v2) =
1

Γ(n−1

2
)Γ(n−2

2
)Γ( 1

2
)2n−3

exp

[

−

v2 + v21 + v22

2

]

v
n−2

1 v
n−3

2 ; −∞ < v < ∞, v1, v2 > 0.

(32)

Transform (V, V1, V2)−→ (R,θ1,θ2), where

v = R cos θ1

v1 = R sin θ1 cos θ2

v2 = R sin θ1 sin θ2; 0 < θ1 < π, 0 < θ2 <
π

2
.

The Jacobian of the transformation is

∂(v, v1, v2)

∂(R, θ1, θ2)
=

∣∣∣∣∣∣

cos θ1 sin θ1 cos θ2 sin θ1 sin θ2
−R sin θ1 R cos θ1 cos θ2 R cos θ1 sin θ2

0 −R sin θ1 sin θ2 R sin θ1 cos θ2

∣∣∣∣∣∣
= R2 sin θ1; (33)

and
v2 + v21 + v22 = R2. (34)

Therefore the joint distribution of (R, θ1, θ2) is

f(R, θ1, θ2) =
1

Γ(n−1

2
)Γ(n−2

2
)Γ( 1

2
)2n−3

exp

[
− R2

2

]
R2n−3(sin θ1)

2n−4(sin θ2)
n−3(cos θ2)

n−2;

R > 0, 0 < θ1 < π, 0 < θ2 <
π

2
. (35)

We have seen from Expression (35) that R, θ1, θ2 are independent.
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The joint distribution of (θ1, θ2)

f(θ1, θ2) =
2

B(n− 3
2 ,

1
2)B(

n−2
2 , n−1

2 )
(sin θ1)

2n−4(sin θ2)
n−3(cos θ2)

n−2;

0 < θ1 < π, 0 < θ2 <
π

2
. (36)

Transform (θ1, θ2)−→(T, θ2),

where t = cot θ1√
sin θ2 cos θ2

; −∞ < t < ∞.

Jacobian of transformation is,

∂θ1

∂t
=

√
sin θ2 cos θ2

1 + t2 sin θ2 cos θ2
.

Therefore the joint distribution of (T, θ2) is

f(t, θ2) =
2

B(n− 3

2
, 1
2
)B(n−2

2
,n−1

2
)
× (sin θ2)

n−
5
2 (cos θ2)

n−
3
2

(1+t2 sin θ2 cos θ2)n−1

=
2

B(n− 3
2 ,

1
2)B(

n−2
2 , n−1

2 )

∞∑

j=0

(−(n− 1)

j

)
t2j(sin θ2)

n+j− 5

2 (cos θ2)
n+j− 3

2 . (37)

Then the marginal distribution of T is

f(t) =
2

B(n− 3
2 ,

1
2)B(

n−2
2 , n−1

2 )

∞∑

j=0

(−(n− 1)

j

)
t2j

∫ π
2

0
(sin θ2)

n+j− 5

2 (cos θ2)
n+j− 3

2 dθ2

=
1

B(n− 3
2 ,

1
2 )B(

n−2
2 , n−1

2 )

∞∑

j=0

(−(n− 1)

j

)
B

(
n+ j − 3

2

2
,
n+ j − 1

2

2

)
t2j

=
1

B(n − 3
2 ,

1
2)B(

n−2
2 , n−1

2 )

∞∑

j=0

(−1)j

j!
t2j

(n + j − 2)!

(n− 2)!
B

(
n+ j − 3

2

2
,
n+ j − 1

2

2

)
. (38)

Now we recall Stirling’s approximation

B(x, y) ≃
√
2π

xx−
1

2 yy−
1

2

(x+ y)x+y− 1

2

for large x and y;

B(x, y) ≃ Γ(y)x−y for large x but y is fixed;

n! ≃
√
2πnn+ 1

2 exp(−n).
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(n+ j − 2)!

(n− 2)!
×

B

(
n+j− 3

2

2 ,
n+j− 1

2

2

)

B(n− 3
2 ,

1
2)B(

n−2
2 , n−1

2 )
≃

√
2π(n+ j − 2)n+j−2+ 1

2 exp(−(n + j − 2))
√
2π(n − 2)n−2+ 1

2 exp(−(n− 2))
×

√
2π

(
n+j− 3

2
2

)n+j− 3
2

2
−

1
2
(

n+j− 1
2

2

)n+j− 1
2

2
−

1
2

(
n+j− 3

2
2

+
n+j− 1

2
2

)n+j− 3
2

2
+

n+j− 1
2

2
−

1
2

Γ(12)(n − 3
2)

− 1

2 ×
√
2π

(
n−2

2

)n−2
2

−
1
2
(

n−1

2

)n−1
2

−
1
2

(
n−2

2
+n−1

2

)n−2
2

+
n−1
2

−
1
2

=

(
1 +

j

n− 2

)n−2+ 1

2

nj

(
1 +

j

n− 2

)j

exp(−j)×

(n
2
)
n+j− 3

2
2

−
1
2
+

n+j− 1
2

2
−

1
2

(
1+

j− 3
2

n

)n+j− 3
2

2
−

1
2
(

1+
j− 1

2
n

)n+j− 1
2

2
−

1
2

nn+j− 3
2

(
1+ j−1

n

)n+j− 3
2

√
πn− 1

2 (1− 3
2n)

− 1

2 × (n
2
)
n−2
2

+
n−1
2

−1(1− 2

n
)
n−2
2

−
1
2 (1− 1

n
)
n−1
2

−
1
2

n
n−2
2

+
n−1
2

−
1
2 (1− 3

2n
)n−2

≃
exp(j)nj+ 1

2 exp(−j)×
1

2n+j−2
×exp(

j− 3
2

2
+

j− 1
2

2
)×nn+j−2

nn+j− 3
2×exp(j−1)

√
π n

n−
5
2

2
n−

5
2

exp (− 3

2
)

nn−2 exp(− 3

2
)

=

√
n√
2π

nj

2j
.

Here we use this fact:

lim
n→∞

(
1 +

a

n

)n

= exp(a).

Therefore the limiting distribution of T is

f(t) ≃
√
n√
2π

∞∑

j=0

(−1)j
(nt

2

2 )j

j!
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=

√
n√
2π

exp(−nt2

2
).

Hence under H01,
√
nT

a−→ N(0, 1).

4 Computation of the cut-off points in small samples

In this section we briefly illustrate computation of d1 when the sample size n is small.
Let, under H01,

P[|T | > t] = α (39)

that is ∫ t

−t

∫ π
2

0
f(T, θ2)dθ2dT = 1− α (40)

where,

f(T, θ2) =
2

B(n− 3
2 ,

1
2)B(

n−2
2 , n−1

2 )
× (sin θ2)

n− 5

2 (cos θ2)
n− 3

2

(1 + T 2 sin θ2 cos θ2)n−1
(41)

t = η
1

2

0 (1− ρ20)
1

4

(
d1 − 2

√
1−ρ2

0

η0

k1k

) 1

2

. (42)

Let

I =

∫ t

−t

∫ π
2

0
f(T, θ2)dθ2dT. (43)

Here we use Monte Carlo integration to find I. For this, we generate separately s

independent uniform random variables T1, T2,...,Ts on the interval [−t, t] and s inde-
pendent uniform random variables θ21, θ22, ..., θ2s on the interval [0, π

2 ] and compute

Î =
πt

s2

s∑

i=1

s∑

j=1

f(Ti, θ2i). (44)

Step 1: First we find initial value t0 of t by trial and error method such that I≃ 1−α,
for given α.
Step 2: Compute Î for ti where ti = t0 + di, i = 1, 2, ..., l
Step 3: Repeat Step 2 based on 100 simulations.
Step 4: Repeat Steps 1 through 4 using ρ0 = 0.7, 0.8, 0.9, η0 = 0.8, 1, 1.25 and
n = 5, 10, 15, 20, 100.
Step 5: Find values of d1 for the level α=1%, 5%.
The simulated cut-off points are shown in Table 1 for s = 1000, l = 100, d = 0.0001.
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Table 1: Cut-off points
α = 0.05

η0 ρ0 n T d1
5 1.3717 3.464986
10 0.7554 2.294746

0.7 15 0.5622 2.067505
20 0.4755 1.987192
100 0.1950 1.819301
5 1.3717 2.911171
10 0.7554 1.927972

0.8 0.8 15 0.5622 1.737052
20 0.4755 1.669575
100 0.1950 1.528519
5 1.3717 2.114916
10 0.7554 1.400639

0.9 15 0.5622 1.261939
20 0.4755 1.212918
100 0.1950 1.110443
5 1.3717 2.771989
10 0.7554 1.835796

0.7 15 0.5622 1.654004
20 0.4755 1.5897536
100 0.1950 1.4554410
5 1.3717 2.328937
10 0.7554 1.542377

1 0.8 15 0.5622 1.389641
20 0.4755 1.3356601
100 0.1950 1.2228150
5 1.3717 1.691933
10 0.7554 1.120511

0.9 15 0.5622 1.009551
20 0.4755 0.9703346
100 0.1950 0.8883545
5 1.3717 2.217591
10 0.7554 1.468637

0.7 15 0.5622 1.3232032
20 0.4755 1.2718028
100 0.1950 1.1643528
5 1.3717 1.863149
10 0.7554 1.233902

1.25 0.8 15 0.5622 1.1117130
20 0.4755 1.0685281
100 0.1950 0.9782520
5 1.3717 1.353547
10 0.7554 0.896409

0.9 15 0.5622 0.8076408
20 0.4755 0.7762677
100 0.1950 0.7106836

α = 0.01

η0 ρ0 n T d1
5 2.3554 6.737857
10 1.3633 3.444478

0.7 15 0.7307 2.261978
20 0.6871 2.206796
100 0.4873 1.997334
5 2.3554 5.660932
10 1.3633 2.893940

0.8 0.8 15 0.7307 1.900442
20 0.6871 1.854080
100 0.4873 1.678096
5 2.3554 4.112572
10 1.3633 2.102399

0.9 15 0.7307 1.380639
20 0.6871 1.346958
100 0.4873 1.219108
5 2.3554 5.390285
10 1.3633 2.755582

0.7 15 0.7307 1.809583
20 0.6871 1.765437
100 0.4873 1.5978670
5 2.3554 4.528745
10 1.3633 2.315152

1 0.8 15 0.7307 1.520353
20 0.6871 1.483264
100 0.4873 1.3424768
5 2.3554 3.290057
10 1.3633 1.681919

0.9 15 0.7307 1.104511
20 0.6871 1.077566
100 0.4873 0.9752868
5 2.3554 4.312228
10 1.3633 2.204466

0.7 15 0.7307 1.447666
20 0.6871 1.412350
100 0.4873 1.2782936
5 2.3554 3.622996
10 1.3633 1.852122

1.25 0.8 15 0.7307 1.216283
20 0.6871 1.186611
100 0.4873 1.0739814
5 2.3554 2.632046
10 1.3633 1.345535

0.9 15 0.7307 0.883609
20 0.6871 0.862053
100 0.4873 0.7802294
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5 Derivation of cut-off points for large sample size

In this section we discuss the derivation of cut-off points for large sample size. The cut-
off points under normal approximation are shown in Table 2 for n = 15, 20, 100, η0 =
0.8, 1, 1.25, ρ0 = 0.7, 0.8, 0.9.

Table 2: Cut-off points under normality approximation
α = 0.05

n τα/2 η0 ρ0 d1
0.7 1.811681

0.8 0.8 1.522116
0.9 1.105792
0.7 1.4493446

15 2.575829 1 0.8 1.2176931
0.9 0.8846335
0.7 1.1594757

1.25 0.8 0.9741544
0.9 0.7077068
0.7 1.800164

0.8 0.8 1.512440
0.9 1.098762
0.7 1.440131

20 2.575829 1 0.8 1.209952
0.9 0.879010
0.7 1.1521051

1.25 0.8 0.9679619
0.9 0.7032080
0.7 1.844585

0.8 0.8 1.549762
0.9 1.125876
0.7 1.4756683

100 2.575829 1 0.8 1.2398094
0.9 0.9007006
0.7 1.1805347

1.25 0.8 0.9918475
0.9 0.7205605

α = 0.01

n τα/2 η0 ρ0 d1
0.7 1.800598

0.8 0.8 1.512805
0.9 1.099027
0.7 1.4404784

15 1.959964 1 0.8 1.2102439
0.9 0.8792218
0.7 1.1523827

1.25 0.8 0.9681951
0.9 0.7033774
0.7 1.793930

0.8 0.8 1.507203
0.9 1.094957
0.7 1.4351441

20 1.959964 1 0.8 1.2057622
0.9 0.8759659
0.7 1.1481152

1.25 0.8 0.9646098
0.9 0.7007727
0.7 1.819649

0.8 0.8 1.528811
0.9 1.110655
0.7 1.4557192

100 1.959964 1 0.8 1.2230488
0.9 0.8885243
0.7 1.1645754

1.25 0.8 0.9784390
0.9 0.7108195
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APPENDIX

Four hypotheses:

1. H01 : µx = µ, µy = µ+ ǫ0, σx = σ, σy = ση0, ρ = ρ0

2. H02 : µx = µ, µy = µ+ ǫ0, σx = σ, σy = σ
η0
, ρ = ρ0

3. H03 : µx = µ, µy = µ− ǫ0, σx = σ, σy = ση0, ρ = ρ0

4. H04 : µx = µ, µy = µ− ǫ0, σx = σ, σy = σ
η0
, ρ = ρ0

and respective maximum likelihoods
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1. maxH01
L =

(
n
√

(1−ρ2
0
)

πη0

)n

exp(−n)Q−n(µ̂H01
) = L1, say

2. maxH02
L =

(
nη0

√
(1−ρ2

0
)

π

)n

exp(−n)Q−n(µ̂H02
) = L2, say

3. maxH03
L =

(
n
√

(1−ρ2
0
)

πη0

)n

exp(−n)Q−n(µ̂H03
) = L3, say

4. maxH04
L =

(
nη0

√
(1−ρ2

0
)

π

)n

exp(−n)Q−n(µ̂H04
) = L4, say

where L is likelihood function and Q(µ̂) = Q1(µ̂) + Q2.

Q1(µ̂H01
) = n

[
(x− µ̂H01

)2 − 2
ρ0

η0
(x− µ̂H01

)(y − ǫ0 − µ̂H01
) +

1

η20
(y − ǫ0 − µ̂H01

)2
]

where µ̂H01
= ax+ (1− a)(y − ǫ0), a = η0(η0−ρ0)

1+η2
0
−2ρ0η0

.

Let, K1 = n(x− y + ǫ0)
2
(
(1− a)2 + 2ρ0

η0
(1− a)a+ a2

η2
0

)
> 0 when η0 > 1.

Therefore we can write Q1(µ̂H01
) = K1, Q1(µ̂H02

) = η20K1, Q1(µ̂H03
) = (x−y−ǫ0)2

(x−y+ǫ0)2
K1,

Q1(µ̂H04
) = (x−y−ǫ0)2

(x−y+ǫ0)2
η20K1.

We start with an assumption: ǫ0 > 0, η0 > 1.

Observation 1:

1. If x > y then Q1(µ̂H01
) > Q1(µ̂H03

) and Q1(µ̂H02
) > Q1(µ̂H04

);

2. If x < y then Q1(µ̂H01
) < Q1(µ̂H03

) and Q1(µ̂H02
) < Q1(µ̂H04

).

Let T1 = Sxx − 2.ρ0η0Sxy +
1
η2
0

Syy and T2 =
1
η2
0

Sxx − 2.ρ0η0Sxy + Syy.

Now T2 − T1 = (1− 1
η2
0

)(Syy − Sxx)

Observation 2:

1. If Syy > Sxx and η0 > 1 then T2 > T1;

2. If Syy < Sxx and η0 > 1 then T2 < T1 .

We observe that Q2,H01
= Q2,H03

= T1 and Q2,H02
= Q2,H04

= η20T2.
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Observation 3:

1. If x > y, then from observation 1, we conclude that L1 < L3 and L2 < L4;

2. If x < y, then from observation 1, we conclude that L1 > L3 and L2 > L4.

Now consider
L3

L4
=

(
K∗

1 +T2

K∗
1 +T1

)n

=

(
1 +

T2 −T1

K∗
1 + T1

)n

,

where K∗
1 = K1

(x−y−ǫ0)2

(x−y+ǫ0)2
.

Observation 4:

1. If Syy > Sxx and η0 > 1 then L3 > L4;

2. If Syy < Sxx and η0 > 1 then L3 < L4.

Statement 1:

1. When D1: x > y; Sx > Sy holds, and ǫ0 > 0, η0 > 1 from Observation 3 and
Observation 4, we conclude that L4 > L1, L2 ,L3;

2. When D2: x > y; Sx < Sy, and ǫ0 > 0, η0 > 1 from Observation 3 and
Observation 4, we conclude that L3 > L1, L2 ,L4.

Now consider
L1

L2
=

(
K1 +T2

K1 +T1

)n

=

(
1 +

T2 − T1

K1 + T1

)n

.

Observation 5:

1. If Syy > Sxx and η0 > 1 then L1 > L2;

2. If Syy < Sxx and η0 > 1 then L1 < L2.

Statement 2:

1. When D3: x < y; Sx > Sy, and ǫ0 > 0, η0 > 1 from Observation 3 and
Observation 5, we conclude that L2 > L1, L3 ,L4;

2. When D4: x < y; Sx < Sy, and ǫ0 > 0, η0 > 1 from Observation 3 and
Observation 5, we conclude that L1 > L2, L3 ,L4.

Conclusion: Statements 1 and 2 can be made without any further condition on the
4 statistics i.e. x, y, Sx, Sy.


