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Abstract

Attempts are made to adjust recumbent length at birth which is assumed to
be subject to measurement errors. Inverse regression estimate of recumbent
length is found to be free from measurement errors empirically. But sum of
squared distance of inverse regression estimates from the observed values is
found to be very high. To reduce the sum of squared distance between the
observed and estimated recumbent length at birth, arithmetic mean and
geometric mean of inverse regression estimate and that of Pervin (2004)
estimate are computed that give nearly identical results and capable of
removing measurement errors which Pervin’s estimate does not.
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1 Introduction

Correlated variables, say X and Y, are functionally related as

y = f(x). The simplest explicit relationship under ordinary least square setup may
be written as
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Yi = β0 + β1Xi + ϵi, ϵi → NID(0, σ2
ϵ ), Cov(X, ϵ) = 0 i = 1, 2, . . . , n (1)

There also exists an inverse function

x = f−1(y) (2)

When we fail to observe X correctly but with some errors u, so that the errorneous
observed value is X0 = X + u.

True values of X may be estimated from the estimated explicit functional rela-
tionship (1) using (2) which may reduce the amount of measurement error in X.
Wright (1928) introduced this concept and Kructchkoff (1967) first applied this con-
cept successfully in the Calibration of pressure Gauge. In earlier concepts, linear
functional relationships are considered. Recently, Lavagnini and Magno (2007) pro-
vided an overview of univariate calibration by inverse regression where both linear and
quadratic forms of (1) are discussed in the set up of ordinary least squares method,
that is, the explanatory variable X is free from error and the error term ε governing
the relationship (1) is uncorrelated with X. The OLS method of estimating the ex-
plicit relationship provided by (1) breaks down providing biased inconsistent estimates
of underlying parameters if X is subject to measurement error (Fuller, 1987: Cheng
et.al, 1998: Wikipedia, 2012). Whitemore (1989) provided an estimator X⋆

i for Xi

based on reliability index. But this estimator is also biased but consistent with small-
est mean squared error (Saleh, 2006). In this case, we may use instrumental variable
method to estimate the explicit functional relationship (1) for getting unbiased and
consistent estimates. Details of univariate and multivariate linear estimation of (1) by
instrumental variable method is available in Wikipedia (2012). The problem arises if
the explicit form of (1) is quadratic in nature and X is subject to measurement errors.
Instrumental variable method is not available for this problem and we have to search
for an alternative method.

2 Two Stage Method

Let the explicit relationship of Y and X be quadratic as

Yi = β0 + β1Xi + β2X
2
i + ϵi; ϵi ∼ NID(0, σ2

ϵ ), Cov(X, ϵ) ̸= 0; X0
i = Xi + ui (3)

Here, any choice of instrumental variable z fails to estimate β1 and β2 simultane-
ously. Let us first consider the linear portion of the model (3) as

Yi = β0 + β1Xi + ϵi (4)

An unbiased and consistent estimator of β1 say b1 is available from (4) by applying
instrumental variable method. Now, we may rewrite (3) as

(Yi − b1X
0
i ) = β0 + β2X

2
i + ui, ui ∼ NID(0, σ2

u) (5)
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Now an unbiased and consistent estimator of β2, say b2, is available from (5) by using
the same instrumental variable set as in (4). Finally, we may estimate β0 from (3), if
b2 is significant as,

b0 = β̂0 = Ȳ − b1X̄
0 − b2X̄

02 (6)

The full estimated model (3) is now

Ŷi = b0 + b1Xi + b2X
2
i (7)

Now using the inverse regression, we may estimate Xi as

X̂i =
−b1 ±

√
b21 − 4b2(b0 − Yi)

2b2
(8)

Of the two values of X̂i, we may consider the one closer to X0
i . Thus, we may obtain

a new set of observations (X̂i, Yi), i=1,2,. . . ,n. Fresh estimation may be proceeded

with (X̂i, Yi), i=1,2,. . . ,n. The process is repeated until the estimates of param-
eters converge. From (5), b2 is asymptotically normal with meanβ2 and variance

s2(z′x2)−1(z′z)(x2
′
z)−1(Johnston,1984), s2 = (y∗−b2x2)′(y∗−b2x2)

n−2 , Y ∗ = (Y − b1X
0),

y∗ = Y ∗ − Ȳ ∗

Now we may test b2for significance using student-t statistic. If found insignificant, we
may restrict in (4), yielding

b0 = Ȳ − b1X̄
0 (9)

and

X̂i =
Yi − b0

b1
, i = 1, 2, . . . , n (10)

3 Recumbent Length

Until a baby can stand on his/her own feet by himself/herself properly, height of
the baby is measured at lying position and this height is known as recumbent length
in the literature of ergonomics. It is a very difficult job to measure this recumbent
length at birth for lots of reasons. In general, this measurement is subject to er-
rors. Growth monitoring of a baby upto one year of age is dependent on recumbent
length at birth. Many other biostatistical and anthropological investigations depend
on recumbent length at birth and thus demand a possible minimum error measure of
recumbent length which we may refer as adjusted recumbent length. We can estimate
the recumbent length at birth from various sources but our problem is to choose one
that will be closer to the reality.
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3.1 Genesis

Rouche et. al. (1989) showed that the model

Yt = a+ b
√
t+ c loge t+ ϵt (11)

where Yt is the recumbent length at time t and a, b, c are constants, fits the growth
in recumbent length well in the first year of life if the measurements are taken in
one month interval and can be used for prediction purpose. The major criticism of
this model is that at time t = 0, recumbent length y0, that is, recumbent length at
birth becomes constant for all babies. Secondly, the model depends on the length of
t. Pervin (l.c) collected primary data on 296 babies born between May 25-December
13, 2002 in different clinics and hospitals of Rajshahi City, Bangladesh and monitored
their growth for 0-48 months. She (2004) fitted model (11) for recumbent length
of 293 babies measured at 15 days interval at 23 points within the first year of life
excluding the recumbent length at birth and found good fit for each and every baby
separately. She then extended the growth curves backward to zero point freehand
which cut the y-axis in some point above the origin. She considered that point as the
recumbent length at birth. Since, the measures are based on graph, can not be used
for farther statistical treatment. Moreover, ordinary least square fitted errors shows
significant correlation with the estimated recumbent length indicating the presence of
measurement errors in the estimated values.

3.2 Model and Estimation

Height and weight of human being are well correlated. So is the recumbent length and
weight at birth. Let Yj be the weight in kg. and Xj be the recumbent length in cm.
of the jth baby at birth. We may write the possible functional relationship as

(i) Yj = β0 + β1Xj + ϵj
or
(ii) Yj = β0 + β1Xj + β2X

2
j + ϵj

X0
j = Xj + uj

j = 1, 2, . . . , n

(12)

Xj ’s being subject to measurement error, OLS can not be applied to the estimation of
(12). To apply (4) and (12), we have to search for the instrumental variable z which
is not related to Y or ϵ but related to X only. We may define Z as below:

Zj = Rank (X0
j ), j = 1, 2, . . . , n (13)

Pre-multiplying (i) of (12) by 1
nZ

′and applying assumption of (4), we have for
Z = (z1, z2, . . . , zn)

′; Y = (y1, y2, . . . , yn)
′ and X0 = (x01, x

0
2, . . . , x

0
n)

′
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b1 = β̂1 =

∑
zjyj∑
zjx0j

, yj = Yj − Ȳ , x0j = X0
j − X̄0, zj = Zj − Z̄ (14)

X̄0, Ȳ , Z̄ being the arithmetic mean of X0, Y, Z.
Now we may construct Y ∗

j = (Yj − b1X
0
j ) and regress Y ∗

j on X02
j using the same

instrumental variable Z which was applied to (i) of (12) yeilding the estimator

b2 = β̂2 =

∑
zjy

∗
j∑

zjx0
2

j

∼ AN ( β2,
σ2
u(∑

zix0
2

j

)2 ) (15)

We can test b2 for significance in the OLS set up using Student’s t-test. Finally we
can obtain b0 = β0 of (12) from (6) if b2 is found significant. Otherwise (9) may be
used to obtain the same. Finally, we may have inverse estimates of Xj by using (8) or
(10) as is the case may be.

4 Results and Discussions

Fitted model-1 of table-1 shows that both X0 and X02 are statistically significant.
Also correlation between X0 and fitted errors are statistically significant. This implies
that ordinary least square estimation of model-1 produces inconsistent estimates of
parameters. Fitted model-2 of table-1 shows that instrumental variable estimators are
consistent because correlation between fitted errors and the instrumental regressor is
statistically insignificant. It also shows that quardetic term is insignificant so that the
inverse regression estimator of X is provided by the equation (10). Fitted model-3

of table-1 with Pervin’s (2004) estimate X̂1 of X shows that correlation between X̂1

and the corresponding fitted errors are statistically significant which restricts the use
of X̂1 as an estimate of X. Fitted model-4 of table-1 shows that inverse regression
estimate X̂2 of X and the OLS fitted errors have statistically insignificant correlation.
This implies that X̂2 is free from measurement errors. But variance of X̂2 is much
larger than that of X̂1. Sum of squared distances between X̂2 and X0 is also com-
paratively large than that of X̂1 and X0. To reduce the variance and sum of squared

distances, estimators X̂3 = X̂1+X̂2
2 and X̂4 = (X̂1.X̂2)

1
2 are also proposed. Values of

Y,X0, X̂1, X̂2, X̂3 and X̂4 are appended in table-3. Fitted model-5 and 6 of table-1
shows that correlations between fitted errors and X̂3 or X̂4 are statistically insignifi-
cant which implies that both X̂3 and X̂4 are also measurement errors free estimates
of X. Variances and sum of squared distances of X̂3 and X̂4 are also comparatively
smaller than that of X̂2. Descriptive statistics of Y,X0, X̂1, X̂2, X̂3 and X̂4 along with
the sum of squared distance of X̂1, X̂2, X̂3 and X̂4 from X0 are appended in table-2.

Considering the ease of calculation, tolerable variation and sum of squared errors
along with insignificant correlation with the fitted residuals, we recommend X̂3 as the
best estimator of X, the unknown recumbent length at birth.
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Table 1: Fitted models and Test Results

Models Variables Coefficients S. Error t-value Significance
Level

Correlation with
fitted errors

OLS
Model 1 Constant 23.403 8.1748 2.863 0.005 0.000

X0 -0.926 0.3365 -2.754 0.006 -0.858**

X02 0.0104 0.0035 3.010 0.003 -
IV

Model 2 Constant -0.496 0.2357 -2.101 0.003 0.000
Z′X0 0.0719 0.0236 3.450 0.006 0.002

Z′X02 0.0078 1.2195 0.006 0.958 -

OLS
Model 3 Constant 4.432 0.3031 14.622 0.000 0.000

X̂1 (Pervin) -0.069 0.0119 -5.793 0.000 -0.840**

X̂2
1 0.001 0.0001 6.824 0.000 -

OLS
Model 4 Constant -0.767 0.0256 -30.171 0.000 0.000

X̂2 (IRE) 0.077 0.0008 96.250 0.000 0.004
OLS

Model 5 Constant -2.962 0.1140 -26.049 0.000 0.000

X̂3 =
X̂1+X̂2

2
0.122 0.2200 52.583 0.000 0.017

OLS
Model 6 Constant -2.988 0.1140 -26.190 0.000 0.000

X̂4 =
(
X̂1 + X̂2

)1/2
0.123 0.0020 52.632 0.000 0.015

OLS: Ordinary Least Squares
IV: Instrumental Variable

IRE: Inverse Regression Estimator

** Correlation is significant at the 0.01 level (2-tailed).

Table 2: Descriptive Statistics and Sum of Squared distance from X0

Variables N Mean Variance Sum of Squared distance from X0

Y 296 2.999 0.241 -

X0 296 48.625 5.889 -

X̂1 296 48.545 6.353 45.77

X̂2 296 48.625 46.605 11673.98

X̂3 296 48.585 16.253 2842.66

X̂4 296 48.482 16.075 2832.40
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Table 3: Observed and Estimated Values of Weights and Recumbent Length at Birth

SL Y X0 X̂1 X̂2 X̂3 X̂4
1 2.30 42.00 42.00 38.90 40.45 40.42
2 2.30 43.00 42.00 38.90 40.45 40.42
3 2.70 43.00 43.00 44.46 43.73 43.73
4 3.50 44.00 43.00 55.60 49.30 48.89
5 2.20 44.00 44.00 37.51 40.75 40.62
6 2.50 44.00 44.00 41.68 42.84 42.82
7 2.70 44.00 44.00 44.46 44.23 44.23
8 2.50 44.00 44.00 41.68 42.84 42.82
9 2.50 44.00 44.00 41.68 42.84 42.82
10 3.00 44.00 44.00 48.64 46.32 46.26
11 2.30 44.00 44.00 38.90 41.45 41.37
12 2.70 44.00 44.40 44.46 44.43 44.43
13 2.60 45.00 44.00 43.07 43.54 43.53
14 3.50 45.00 44.00 55.60 49.80 49.46
15 2.50 45.00 44.00 41.68 42.84 42.82
16 2.70 45.00 44.40 44.46 44.43 44.43
17 2.00 45.00 45.00 34.72 39.86 39.53
18 2.70 45.00 45.00 44.46 44.73 44.73
19 3.50 45.00 44.00 55.60 49.80 49.46
20 2.70 45.00 45.00 44.46 44.73 44.73
21 2.50 45.00 45.00 41.68 43.34 43.31
22 2.50 45.00 45.00 41.68 43.34 43.31
23 3.50 45.00 45.00 55.60 50.30 50.02
24 2.70 45.00 45.00 44.46 44.73 44.73
25 3.00 45.00 45.00 48.64 46.82 46.78
26 2.70 45.00 45.00 44.46 44.73 44.73
27 2.50 45.00 45.00 41.68 43.34 43.31
28 3.00 45.00 45.00 48.64 46.82 46.78
29 2.60 45.00 45.00 43.07 44.04 44.03
30 2.50 45.00 45.00 41.68 43.34 43.31
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
267 2.50 52.00 52.00 41.68 46.84 46.55
268 2.50 52.00 52.00 41.68 46.84 46.55
269 2.50 52.00 52.00 41.68 46.84 46.55
270 2.50 52.00 52.00 41.68 46.84 46.55
271 3.57 52.00 51.00 56.57 53.78 53.71
272 2.50 52.00 52.00 41.68 46.84 46.55
273 3.20 52.00 52.00 51.42 51.71 51.71
274 3.00 52.00 52.00 48.64 50.32 50.29
275 2.70 52.00 52.00 44.46 48.23 48.08
276 3.40 52.00 52.00 54.20 53.10 53.09
277 2.00 52.00 52.00 34.72 43.36 42.49
278 3.50 52.00 52.00 55.60 53.80 53.77
279 3.50 52.00 52.00 55.60 53.80 53.77
280 3.20 52.00 52.00 51.42 51.71 51.71
281 3.50 52.00 52.00 55.60 53.80 53.77
282 4.00 52.00 52.00 62.55 57.28 57.03
283 4.50 52.00 52.00 69.51 60.76 60.12
284 4.00 52.00 52.00 62.55 57.28 57.03
285 4.00 52.00 52.00 62.55 57.28 57.03
286 3.20 53.00 53.00 51.42 52.21 52.20
287 3.00 53.00 53.00 48.64 50.82 50.77
288 3.70 53.00 53.00 58.38 55.69 55.62
289 3.50 53.00 53.00 55.60 54.30 54.28
290 3.70 53.00 53.00 58.38 55.69 55.62
291 4.50 54.00 54.00 69.51 61.76 61.27
292 4.40 54.00 54.00 68.12 61.06 60.65
293 4.30 55.00 55.00 66.73 60.86 60.58
294 4.20 55.00 55.00 65.34 60.17 59.95
295 4.10 55.00 55.00 63.94 59.47 59.30
296 4.20 55.00 55.00 65.34 60.17 59.95


