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Abstract

The generalized inverse Gaussian distribution which was popularized in the late seventies by
Ole Barndorff-Neilsen is extended in this paper by incorporating an additional parameter
in its density function. A reduced version of the resulting model is also being considered.
The effects of the parameters are described for both distributions. Additionally, several of
their statistical functions are provided. Data sets pertaining to maximum flood levels and
snowfall precipitations were fitted with several statistical models for comparison purposes.
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1 Introduction

The inverse Gaussian distribution with positive parameters µ and λ (also known as
Wald’s distribution) has density function

f(x) =

√
λ√

2π x3
e−λ(x−µ)2/(2xµ2) Iℜ+(x) , (1)

where IB(x) denotes the indicator function of the set B, ℜ+ being the set of positive
real numbers. This distribution has numerous applications in various fields of scientific
investigation. For instance, Seshadri (1999) points out applications in connection with
actuarial models, electrical networks, life testing, hydrology, demography, physiology,
meteorology, small area estimation, traffic noise intensity, remote sensing, and market
research.
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As explained by Dugué (1941) and Seshadri (1997), a generalization called the
Generalized Inverse Gaussian (GIG) distribution was originally proposed by Etienne
Halphen. This distribution was later popularized by Barndorff-Neilsen (1977) and
Jørgensen (1982). Its density function is given by

f(x) =
(φ/θ)

λ
2

2Kλ(
√
θ φ)

xλ−1 e−
1

2
(θ x−1+φx) Iℜ+(x), φ > 0, θ > 0, λ ∈ ℜ, (2)

where Kλ(·) is a modified Bessel function of the second type that has the following
integral representation:

Kλ(η) =
1

2

∫

∞

0
xλ−1e

1

2
η (x+ x−1)dx. (3)

Incidentally, Kλ(·) is a built-in function in the symbolic computing package Mathe-
matica. As explained in Abramowitz and Stegun (1972), the modified Bessel functions
of the first and second types, namely Iλ(w) and Kλ(w), are the two linearly indepen-

dent solutions of the differential equation w2 d2y
dw2 + w dy

dw − (w2 + λ2) y = 0 .
We are proposing an extension of the GIG distribution that will be referred as to

the Extended Inverse Gaussian (EIG) distribution. Its density function is given by

fE(x) =
δ (ν/τ)

δ+ξ+1

2δ xδ+ξ e−τx−δ−νxδ

2K δ+ξ+1

δ

(2
√
ντ)

Iℜ+(x) (4)

where ξ ∈ ℜ, ν > 0, τ > 0 and δ > 0. By introducing a single additional parameter,
we aim to obtain a more flexible modeling distribution while keeping the resulting
model relatively parsimonious. A location parameter could also be introduced in (4)
for modeling purposes. Note that the GIG density function can be obtained from (4)
by making the following substitutions: δ = 1, τ = θ/2, ν = φ/2 and ξ = λ− 2.

A reduced model called the Reduced Extended Inverse Gaussian (REIG) distri-

bution, is obtained by omitting e−ν xδ
(or equivalently letting ν = 0) in the density

function (4), which gives

fR(x) =
δ τ−

ξ+δ+1

δ

Γ
(

− ξ+δ+1
δ

) xξ+δ e−τ x−δ Iℜ+(x) , ξ ∈ ℜ, ν > 0, τ > 0, δ > 0, (5)

provided that 1 + δ + ξ < 0 .

Another reduced version of the EIG model is obtained by omitting e−τ x− δ
(or

equivalently letting τ = 0) in the density function (4), which yields

g(x) =
δ ν

δ+ξ+1

δ

Γ
( δ+ξ+1

δ

)
xξ+δe−ν xδ Iℜ+(x), (6)



Provost and Mabrouk: An Extended Inverse Gaussian Model 137

where δ + ξ > −1. This density function is in fact a Reparameterized Generalized
Gamma (RGG) density function, which is obtained by letting β = δ, θ = ν−1/β and

k = δ+ξ+1
δ in the generalized gamma density,

g1(x) =
β

θk β Γ(k)
xk β− 1e−(x

θ
)β Iℜ+(x) . (7)

For specific distributional results in connection with the generalized gamma distribu-
tion, the reader is referred to Johnson et al. (1994).

The parameter effects on the EIG and REIG distributions are described in Section
2. Moment expressions as well as other statistical functions are included in Section 3
for both the EIG and REIG distributions. Two data sets are fitted with the proposed
models in Section 4. The Anderson-Darling and the Cramér-von Mises statistics are
employed as measures of discrepancy. Even though the extended inverse Gaussian
distribution relies on one or two additional parameters when compared to other models,
it ought to be given due consideration when the objective is to obtain the best possible
fit with respect to an empirical cumulative distribution function.

2 Parameter Effects

This section illustrates graphically how the extended generalized inverse Gaussian
model and its reduced version are affected by their parameters.

2.1 The Extended Inverse Gaussian (EIG) Model

Figures 1-3 indicate that the parameters ξ, δ and ν somewhat affect the shape of the
EIG model while ξ and τ have a noticeable shifting effect on the distribution. More-
over, the parameters ν and τ in the density expression (4) are clearly scale parameters.
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Figure 1: Effect of ξ on the EIG distribution.
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Figure 2: Effects of δ (left panel) and ν (right panel) on the EIG model.
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Figure 3: Effect of τ on the EIG distribution.

2.2 The Reduced Extended Inverse Gaussian (REIG) Model

Figure 4 suggests that the parameter δ acts somewhat as a shifting parameter while ξ
affects the shape of the REIG distribution. The scale parameter τ acts as a shifting
parameter as it did for the EIG model.
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Figure 4: Effects of ξ (left panel) and δ (right panel) on the REIG model.
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3 Certain Statistical Functions

Some statistical functions are provided in the next two subsections in connection with
the EIG and REIG models.

3.1 The Extended Inverse Gaussian (EIG) Model

Let X be an EIG random variable. Then,
(i) its hth moment is

E(Xh) =
ν−

h
δ (ντ)

h
2δKh+δ+ξ+1

δ

(2
√
ντ)

K δ+ξ+1

δ

(2
√
ντ)

; (8)

(ii) its expectation, E(X), is as given above for h = 1.
(iii) its variance, E(X2)− (E(X))2, can be directly obtained from (8).
(iv) its skewness is given by (E(X3) − 3E(X2)µ + 2µ3)/σ3 ;
(v) its kurtosis is given by (E(X4) − 4E(X3)µ + 6E(X2)µ2 − 3µ4)/σ4 − 3 ;
(vi) its mode is

2−1/δ

(

δ + ξ +
√

4δ2ντ + δ2 + 2δξ + ξ2

δ ν

)
1

δ

.

3.2 The Reduced Extended Inverse Gaussian (REIG) Model

Let X be a REIG random variable. Then,
(i) its hth moment is

E(Xh) =
τk/δ Γ

(

− k+ξ+δ+1
δ

)

Γ
(

− ξ+δ+1
δ

)
; (9)

(ii) its expectation, E(X), is as given above for h = 1.
(iii) its variance, E(X2)− (E(X))2, can be directly obtained from (9).
(iv) its skewness is given by (E(X3) − 3E(X2)µ + 2µ3)/σ3 ;
(v) its kurtosis is given by (E(X4) − 4E(X3)µ + 6E(X2)µ2 − 3µ4)/σ4 − 3 ;
(vi) its mode is

e−
iπ
δ δ

1

δ (ξ + δ)−1/δ τ
1

δ ;

(vii) its cumulative distribution function (CDF) is

FR(y) =
yξ+1 (y−ρ)

ξ+1

ρ Γ
(

− ξ+ρ+1
ρ , y−ρτ

)

Γ
(

− ξ+ρ+1
ρ

) ,

where Γ (α, β) denotes the incomplete gamma function.
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4 Numerical Examples

In order to assess the adequacy of a statistical model with respect to a given data set,
we make use of the following goodness-of-fit statistics:

(i) The Anderson-Darling statistic given by

A2
0 =

(

1 +
0.2√
n

)(

− n− 1

n

n
∑

i=1

(2 i− 1) log(zi(1− zn+1−i))
)

, (10)

where zi is equal to the cumulative distribution function of the distribution under
consideration evaluated at the point xi, i = 1, . . . , n, with the xi’s being the ordered
observations from a sample of size n and the model parameters having been replaced
by their respective maximum likelihood estimates;

(ii) The Cramér-von Mises statistic, that is,

W 2
0 =

(

1 +
0.2√
n

)( 1

12n
+

n
∑

i=1

(

zi −
2 i− 1

2n

)2
)

, (11)

where the zi’s are as defined above. The smaller these statistics are, the better the fit.
Related considerations are discussed for instance in D’Agostino and Stephens (1986).

The following density functions, all related to the EIG model, will be considered.
The gamma density function which is given by

f(x) =
xθ−1e−x/φ

φθ Γ(θ)
Iℜ+(x), θ > 0, φ > 0 , (12)

is clearly a particular case of the EIG density as specified by (4) with ξ = θ−2, δ = 1,
ν = 1/φ and τ = 0. On letting ξ = −5/2, δ = 1, ν = λ/(2µ2) and τ = λ/2 in (4), the
inverse Gaussian distribution with parameters µ ∈ ℜ and λ > 0 whose density is given
by (1), is also seen to be a special case of the EIG distribution. The reparameterized
generalized gamma (RGG) density as given in (6) can be obtained from the EIG model
by letting τ = 0 in (4). The EIG density reduces to the Weibull density function,

f(x) = θ φxφ−1e−θ xφ Iℜ+(x) , θ > 0, φ > 0 , (13)

with the substitutions, δ = φ, τ = 0 ν = θ and ξ = −1 in (4). The relationship
between the GIG density, as given in (2), and the EIG density function is specified
in Section 1. Finally, the REIG model as defined by the density (5) is obtained by
letting ν = 0 in (4). Two data sets were fitted with each one of these models as well
as the lognormal distribution, and the resulting parameter estimates and goodness-
of-fit statistics were tabulated. Several of the fitted cumulative distribution functions
are graphically displayed along the empirical cumulative distribution functions for
comparison purposes.
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4.1 Maximum Flood Level Data

Consider the data set presented in Table 1. This data which was studied by Dumon-
ceaux and Antle (1973), consists of maximum flood levels (in millions cubic of feet
per second) of the Susquehanna River at Harrisburg, Pennsylvania, observed over 20
four-year periods.

Table 1: Maximum Flood Level Data
.654 .613 .402 .379 .269 .740 .416 .338 .315 .449

.297 .423 .379 .3235 .418 .412 .494 .392 .484 .265

This data was fitted to several distributions including those specified by (4) and (5).
We made use of the symbolic computing package Mathematica in conjunction with the
command NMaximize applied to the loglikelihoods to estimate the parameters. This
command always attempts to find a global maximum subject to certain constraints.
In this case, such constraints are specified by inequalities that certain functions of
the parameters should satisfy and intervals within which the parameters can vary.
The determination of such intervals was guided by the parameter estimates obtained
for the reduced models. The results are presented in Table 4.2. For comparison
purposes, the lognormal model whose parameters estimates were found to be µ̂ =
−0.8978 and σ = 0.2692, was also considered. It can be seen that the proposed EIG
model and its reduced version provide a better fit than that resulting from the other
models. Figures 5 and 6 show the cumulative distribution functions of the lognormal,
RGG, REIG and EIG models superimposed on the empirical cumulative distribution
function. Admittedly, the EIG and REIG models fit the data nearly equally well
in this case. However, it should be noted that the sample size is minute and that
only scant data is available in the tails of the distribution, which apparently precludes
taking full advantage of the additional parameter in this instance.

Table 2: Parameter Estimates and A2
0 & W 2

0 for the Flood Data

ξ̂ δ̂ ν̂ τ̂ A2
0 W 2

0

Weibull −1 3.5260 14.450 0 .8213 0.1400

Gamma 11 1 30.769 0 0.4433 0.0712

Inverse Gaussian −2.5 1 15.745 2.8195 0.3514 0.0558

Lognormal(−0.8978, .2692) 0.3470 0.0540

RGG 339.113 0.0364 9600 0 0.3390 0.0560

GIG −16.567 1 0.005 5.7343 0.2861 0.0449

REIG −10 2.3 0 0.3108 0.2567 0.0436

EIG −9.95 2.24 0.09 0.34 0.2551 0.0437
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Figure 5: CDF (solid line) and empirical CDF (dots) for the flood data set. Left panel: Lognormal;
Right panel: GIG.
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Figure 6: CDF (solid line) and empirical CDF (dots) for the flood data set. Left panel: EIG; Right
panel: REIG.

4.2 Snowfall Precipitations in Buffalo

The same models are now fitted to the Buffalo snowfall data set, as given in Table 3
(and available for instance from the S-PLUS data library). This set comprises a record
of the annual snowfall precipitations in centimeters over 63 consecutive years in the
city of Buffalo. It can be seen from Table 4 that the EIG distribution provides the
best fit. In this case, the goodness-of-fit measures indicate that a close fit can also be
obtained by making use of the RGG distribution. This is corroborated by the graphs
of the cumulative distribution functions superimposed on the empirical cumulative
distribution function (Figures 7 and 8). Again, the lognormal was considered as an
alternative model. In this case, the EIG model clearly produces a superior fit as
compared to the REIG model.
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Table 3: The Snowfall Precipitation Data
25 39.8 39.9 40.1 46.7 49.1 49.6 51.2 51.6 53.5 54.7

55.5 55.9 58 60.3 63.6 65.4 66.1 69.3 70.9 71.4 71.5

71.8 72.9 74.4 76.2 77.8 78.2 78.4 79 79.3 79.6 80.7

82.4 82.4 83 83.6 83.6 84.8 85.5 87.4 88.7 89.6 89.8

89.9 90.9 97. 98.3 101.4 102.4 103.9 104.5 105.2 110 110.5

110.5 113.7 114.5 115.6 120.5 120.7 124.7 126.4

Table 4: Parameter Estimates and A2
0 & W 2

0 for the Snowfall Data

ξ̂ δ̂ ν̂ τ̂ A2
0 W 2

0

Inverse Gaussian −2.5 1 0.0548 353.261 0.8676 0.1504

Lognormal(−4.3368, .3270) 0.7752 0.1284

REIG −53.66 0.1671 0 650.2 0.7417 0.0886

Gamma 8 1 0.124536 0 0.4840 0.0792

GIG 7.97 1 0.1219 0.0025 0.4291 0.0532

Weibull −1 3.8338 3.37×10−8 0 0.2964 0.0454

RGG 1.2889 3.629 9.31×10−8 0 0.2817 0.0428

EIG 0.3268 3 2.22×10−6 0.029 0.2698 0.0407
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Figure 7: CDF (solid line) and empirical CDF (dots) for the snowfall data set. Left panel: Lognor-
mal; Right panel: GIG.
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Figure 8: CDF (solid line) and empirical CDF (dots) for the snowfall data set. Left panel: RGG;
Right panel: EIG.
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[4] Dugué, D. (1941). Sur un nouveau type the courbe de fréquence. Comptes Rendus
de l’Académie des Sciences, 213, 634–635.

[5] Dumonceaux, R. and Antle, C. (1973). Discrimination between the Lognormal
and the Weibull distributions. Technometrics, 15(4), 923–926.

[6] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Distributions in Statistics
– Continuous Univariate Distributions. Volume 1. Wiley-Interscience, New York.

[7] Jørgensen, B. (1982). Statistical Properties of the Inverse Gaussian Distribution,
Lecture Notes in Statistics. Eds: D. Brillinger, S. Fienberg, J. Gani, J. Hartigan,
J. Kiefer, and K. Krickeberg. Springer-Verlag, New York.

[8] Seshadri, V. (1993). The Inverse Gaussian Distribution: A Case Study in Expo-
nential Families. Oxford Science Publication, Oxford.

[9] Seshadri, V. (1997). Halphen’s Laws. pp. 302–306 in Encyclopedia of Statistical
Sciences, Update Volume 1. Eds: S. Kotz, C. B. Read, D. L. Banks. Wiley, New
York.

[10] Seshadri, V. (1999). The Inverse Gaussian Distribution: Statistical Theory and
Applications. Springer-Verlag, New York.


