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Abstract

It is well-known that tests of hypothesis reveals whether the experimental
results are significantly different than the control results. Effect size, on
the other hand, gives the magnitude of the experimental effect and it is
a key component of meta-analysis. In this paper, we define two new esti-
mators, namely, the preliminary test and the shrinkage estimators of the
effect size when apriori one suspects that it may be equal to zero. For the
shrinkage estimator, we find that the coverage probability of the confidence
interval with fixed length, have properties similar to the mean square error
comparisons. On the other hand, properties of the coverage probability of
the preliminary test estimator is dissimilar. Between the two estimators,
the shrinkage estimator, we defined is comparable to the empirical Bayes
estimator discussed by Efron (2010), and it may have potential use in the
large-scale inference with micro-array data discussed in the book by Efron.
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1 Introduction

Let Y E
1 , . . . , Y

E
n1

be the experimental outcomes of size n1 fromN(µE , σ2) and Y C
1 , . . . , Y

C
n2

be the control outcomes of size n2 from N(µC , σ2). We propose two new estimators of

δ = µE−µC

σ in addition to the well-known unbiased estimator, when one may suspect
that δ may be equal to zero. Basically, the unbiased estimation of δ is complete when
we have

δ̃n =
Ȳ E
n1

− Ȳ C
n2

σ
if σ2 is known, (1)

δ̃∗n = c(ν)
Ȳ E
n1

− Ȳ C
n2

sp
if σ2 is unknown (2)

where c(ν) =
Γ(ν/2)√

(ν/2)Γ(ν−1
2 )

, ν = n1 + n2 − 2.

The unbiased estimator in (2) is due to Hedges (1981, 1982). Here, Γ(.) is the Gamma
function, and the pooled estimator of σ2 is given by

s2p = ν−1{
n1∑

j=1

(Y E
j − Ȳ E

n1
)2 +

n2∑

j=1

(Y C
j − Ȳ C

n2
)2}. (3)

Hartung, Knapp and Sinha (2008) survey in detail, the estimation of effect size and
Efron (2010) discusses the empirical Bayes estimation of effect size in connection with
micro-array data. There is a close connection of the approaches of Efron and the
approaches used in this paper. However, we formulate the hypothesis that δ may be
equal to zero. That is to say, we suspect that the two means are equal, meaning that
there is no effect of the experimental ingredients. To remove this vague hypothesis,
we carry on a statistical test of hypothesis:

H0 : µ
E = µC Vs HA : µE 6= µC

based on the test statistics

Z2 =
(Ȳ E
n1

− Ȳ C
n2
)2

σ2( 1
n1

+ 1
n2
)
if σ2 is known. (4)

and F1,ν =
(Ȳ E
n1

− Ȳ C
n2
)2

s2p(
1
n1

+ 1
n2
)

if σ2 is unknown. (5)

Now, we propose the following two estimators as in Saleh (2006) (Chapter 3, Sections
3.2, 3.5) depending on whether σ2 is known or unknown as follows:

δ̂PTn = δ̃n − δ̃nI(Z
2 ≤ cα).

δ̂sn = δ̃n − d|Z|−1δ̃n, d > 0.



 if σ2 is known (6)
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where d is called the shrinkage constant, free of any parameter of the distribution,
Ix(A) stands for the indicator function of the set A, and cα is the upper α-level critical
value of the central chi-square distribution with one degree of freedom.

δ̂∗PTn = δ̃∗n − δ̃∗nI(F1,ν ≤ cα).

δ̂∗sn = δ̃∗n − d|(F1,ν)
1/2|−1δ̃∗n, d > 0.



 if σ2 is unknown (7)

where cα is the upper α-level critical value of the central F-distribution with (1, ν)
degrees of freedom.

The estimators (δ̂PTn , δ̂∗PTn ) are called “preliminary estimators” (PTE) due to Ban-

croft (1944), and (δ̂sn, δ̂
∗s
n ) are called “shrinkage type estimators” (SE) as in Saleh

(2006).

In this paper, we study the statistical properties of the estimators (δ̃n, δ̂
PT
n , δ̂sn) and

(δ̃∗n, δ̂
∗PT
n , δ̂∗sn ) based on their bias and mean square errors (MSE) which are given in

sections 2 and 3. For the corresponding confidence intervals, we consider the cover-
age probabilities of fixed intervals, as they are given in section 4. In section 5, we
study empirical Bayes estimators due to Efron (2010), and compare them with our
estimators. Conclusion is given in section 6.

2 Estimators and their Bias and Mean Squared Error

Expressions

2.1 Case 1: When σ
2 is Known

In this section, we consider the properties of the estimators when σ2 is known. Let us

call δ̃n =
Ȳ E
n1

−
¯Y C
n2

σ , the unrestricted estimator (UE), then clearly, under the assumption

of normal theory given in the introduction, δ̃n ∼ N{µE−µC

σ , ( 1
n1

+ 1
n2
)} so that E(δ̃n) =

δ giving bias and variance as

b1(δ̃n) = 0 and the var(δ̃n) = (
1

n1
+

1

n2
) =M1(δ̃n). (8)

M1(δ̃n) stands for the mean squared error ( MSE ) of δ̃n. For the test ofH0 one uses the
test-statistcs Z2 in (4) where Z2 has chi-square distribution with one degree of freedom
D.F. and noncentrality parameter 1

2∆
2 where ∆2 defined by ∆2 = ( 1

n1
+ 1
n2
)−1δ2 using

normal theory. Under H0, it follows a central chi-square distribution. Thus, at the
α-level of significance we reject H0 if Z2 ≥ cα, where cα is the upper α-level critical
value of the central chi-square distribution with one degree of freedom.

Now, consider the PTE defined in (6) and obtain the expected value of δ̂PTn using
theorem 4 of Saleh (2006, Chapter 2) as

E(δ̂PTn ) = δ − δH3(cα,∆
2), (9)
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where H3(.,∆
2) is the cdf of a chi-square distribution with 3 D.F. and noncentrality

parameter 1
2∆

2. Hence the bias expression is given by

b2(δ̂
PT
n ) = −δH3(cα,∆

2). (10)

Correspondingly, we obtain the MSE using theorems 4 and 5 of Saleh (2006, Chap-
ter 2) as

M2(δ̂
PT
n ) = (

1

n1
+

1

n2
){1−H3(cα,∆

2) + ∆2[2H3(cα,∆
2)−H5(cα,∆

2)]}. (11)

Similarly, for the shrinkage type estimator defined in (6), we obtain the bias using
theorem 1 of Saleh (2006, Chapter 3, Section 3.5) as

b3(δ̂
s
n) = −

√
(
1

n1
+

1

n2
) dE[

Z

|Z| ],

= −
√

(
1

n1
+

1

n2
) d[2Φ(∆)− 1],

where Z =
Ȳ E
n1 − ¯Y C

n2

σ
√
( 1
n1

+ 1
n2
)
. (12)

Here Φ(.) is the cdf of N(0,1). The MSE of δ̂sn may be obtained as

M3(δ̂
s
n) = (

1

n1
+

1

n2
)[1 + d2 − 2d

√
2/π e−∆2/2]. (13)

The value of d which minimizes M3(δ̂
s
n) is d =

√
2/π e−∆2/2, which depends on ∆2.

To make it free of the parameter, ∆2 we choose d∗ =
√
2/π. Hence, the resulting MSE

becomes

M3(δ̂
s
n) = (

1

n1
+

1

n2
){1 − 2

π
[2e−∆2/2 − 1]}. (14)

2.2 Case 2: When σ
2 is Unknown

In this case, δ̃∗n = c(ν)
Ȳ E
n1

−
¯Y C
n2

sp
, is the unrestricted estimator (UE) of δ, and

( 1

n1
+ 1

n2
)−

1
2

c(ν) δ̃∗n
follows a noncentral t-distribution with ν degrees of freedom D.F., and noncentrality

parameter ( 1
n1

+ 1
n2
)−

1

2 δ. Thus, using the noncentral t-distribution, we have E(δ̃∗n) = δ
and the bias and variance expressions are given by

b1(δ̃
∗

n) = 0 and var(δ̃∗n) = (
1

n1
+

1

n2
)[
νc2(ν)

(ν − 2)
(1 + ∆2)−∆2] =M1(δ̃

∗

n) say. (15)
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For the test of H0 : µE = µC one uses the test-statistcs F1,ν given by (5) where F1,ν

follows a noncentral F-distribution with (1, ν) degrees of freedom D.F. and noncentral-
ity parameter 1

2∆
2 where ∆2 defined by ∆2 = ( 1

n1
+ 1
n2
)−1δ2 under the normal theory.

Under H0, F1,ν follows a central F-distribution. Thus, at the α-level of significance
we reject H0 if F1,ν ≥ cα, where cα is the upper α-level critical value of the central
F-distribution with (1, ν) degrees of freedom.

Now, consider the PTE defined in (7). We may obtained the bias expression of

δ̂∗PTn following Saleh (2006) (Chapter 4, Section 4.2) as

b2(δ̂
∗PT
n ) = −δG3,ν−2(

ν − 2

3ν
cα,∆

2), (16)

where G3,ν−2(.,∆
2), is the cdf of F-distribution with (3, ν − 2) D.F. and noncentrality

parameter 1
2∆

2 and we may obtain the MSE expression for δ̂∗PTn as

M(δ̂∗PTn ) = (
1

n1
+

1

n2
){νc

2(ν)

ν − 2
[1−G3,ν−2(

ν − 2

3ν
cα,∆

2)]

+ ∆2[(
νc2(ν)

ν − 2
− 1) + 2G3,ν−2(

ν − 2

3ν
cα,∆

2)

− νc2(ν)

ν − 2
G5,ν−2(

ν − 2

5ν
cα,∆

2)]}. (17)

Next, we consider the shrinkage type estimator defined in (7), the bias expression may
be shown to be

b3(δ̂
∗s
n ) = −d c(ν)

√
(
1

n1
+

1

n2
) [1− 2Φ(−∆)].

We may calculate the MSE of δ̂∗sn as follows

M3(δ̂
∗s
n ) = (

1

n1
+

1

n2
){[ νc

2(ν)

(ν − 2)
(1 + ∆2)−∆2]

+ d2c2(ν)− 2dc(ν)[E|Z| −∆E
( Z
|Z|
)
]}.

Minimizing w.r.t d, we obtain the optimum value of d as d = 1
c(ν)

√
2
πe

−
∆

2

2 which

depends on ∆2. To make it free of ∆2, we choose d∗ = 1
c(ν)

√
2
π . So that the MSE

becomes

M3(δ̂
∗s
n ) = (

1

n1
+

1

n2
){[ νc

2(ν)

(ν − 2)
(1 + ∆2)−∆2]− 2

π
[2e−

∆
2

2 − 1]}. (18)

We summarize the results of the previous two subsections in the following two theo-
rems.



96 International Journal of Statistical Sciences, Vol. 11s, 2011

Theorem 2.1. If σ2 is known, then the bias and MSE expressions of the three
estimators are given by

b1(δ̃n) = 0,

M1(δ̃n) = (
1

n1
+

1

n2
).

b2(δ̂
PT
n ) = −δH3(cα,∆

2),

M2(δ̂
PT
n ) = (

1

n1
+

1

n2
){1 −H3(cα,∆

2) + ∆2[2H3(cα,∆
2)−H5(cα,∆

2)]}.

b3(δ̂
s
n) = −

√
(
1

n1
+

1

n2
) d[2Φ(∆)− 1],

M3(δ̂
s
n) = (

1

n1
+

1

n2
){1 − 2

π
[2e−∆2/2 − 1]}.

Theorem 2.2. If σ2 is unknown, then the bias and MSE expressions of the three
estimators are given by

b1(δ̃
∗

n) = 0,

M1(δ̃
∗

n) = (
1

n1
+

1

n2
)[
νc2(ν)

(ν − 2)
(1 + ∆2)−∆2].

b2(δ̂
∗PT
n ) = −δG3,ν−2(

ν − 2

3ν
cα,∆

2),

M(δ̂∗PTn ) = (
1

n1
+

1

n2
){νc

2(ν)

ν − 2
[1−G3,ν−2(

ν − 2

3ν
cα,∆

2)]

+ ∆2[(
νc2(ν)

ν − 2
− 1) + 2G3,ν−2(

ν − 2

3ν
cα,∆

2)

− νc2(ν)

ν − 2
G5,ν−2(

ν − 2

5ν
cα,∆

2)]}.

b3(δ̂
∗s
n ) = −d c(ν)

√
(
1

n1
+

1

n2
) [1− 2Φ(−∆)],

M3(δ̂
∗s
n ) = (

1

n1
+

1

n2
){[ νc

2(ν)

(ν − 2)
(1 + ∆2)−∆2]− 2

π
[2e−

∆
2

2 − 1]}.

3 Properties of the Estimators

We present the properties of the estimators for the unknown variance case only. For
the known variance case, the properties of the estimators are very similar. We consider
the unrestricted estimator as the basis for comparing the others. Thus, we may define
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the MSE-based relative efficiency (MRE) of δ̂∗PTn relative to δ̃∗n as

MRE(δ̂∗PTn , δ̃∗n) =
MSE(δ̃∗n)

MSE(δ̂∗PTn )

MRE(δ̂∗PTn , δ̃∗n) = [1 + gα(∆
2)]−1

where gα(∆
2)

= −(
1

n1
+

1

n2
)[var(δ̃∗n)]

−1

(
νc2(ν)

ν − 2
G3,ν−2(

ν − 2

3ν
cα,∆

2)−∆2

× [2G3,ν−2(
ν − 2

3ν
cα,∆

2)− νc2(ν)

ν − 2
G5,ν−2(

ν − 2

5ν
cα,∆

2)]

)
.

MRE(δ̂∗PTn , δ̃∗n) may be written as a function of (α,∆2). Figure 1 below illustrates the
graph of MRE(α,∆2) as a function of ∆2. For fixed α, it decreases, crossing the 1-line
to a minimum at ∆2 = ∆2

min(α), then increases towards the 1-line as ∆2 → ∞. The
maximum of MRE(α,∆2) occurs at ∆2 = 0 with the value

MRE(α, 0) = [1− (
1

n1
+

1

n2
)[var(δ̃∗n)]

−1 νc
2(ν)

ν − 2
G3,ν−2(

ν − 2

3ν
cα, 0)]

−1 (19)

for all α ∈ A, the set of all possible values of α. The value of the max of MRE(α,∆2)
decreases as α increases. Intersection of the graph of MRE(α,∆2) with the 1-line

occurs at ∆2
1. Thus if 0 ≤ ∆2 ≤ ∆2

1, then δ̂∗PTn performs better than δ̃∗n, and if

∆2 ≥ ∆2
1, then δ̃

∗

n performs better. The cut-off point ∆2
1 may be determined by

∆2
1 =

νc2(ν)
ν−2 [G3,ν−2(

ν−2
3ν cα,∆

2)]

2G3,ν−2(
ν−2
3ν cα,∆

2)− νc2(ν)
ν−2 G5,ν−2(

ν−2
5ν cα,∆

2)
. (20)

In order to obtain a PTE with minimum guaranteed RE, say E0, we adopt the
following procedure : if 0 ≤ ∆2 ≤ ∆2

1, we always choose δ̃∗n since, MRE(α,∆2) ≥ 1
in this interval. However, in general ∆2 is unknown, and there is no way one can
choose an estimator which is uniformly best. Thus, we look for an estimator with
minimum guaranteed RE, say, E0 such that set A = {α\MRE(α,∆2) ≥ E0} which is
well-defined and satisfies the equation

maxαmin∆2MRE(α,∆2) = E0 for some α ∈ A.

The solution α∗ gives the optimum α-level satisfying the minimum guaranteed RE.
Table 1 below may be used to determine the optimum level of significance for the PTE.
Table 1 gives the performance of δ̂∗sn and δ̂∗PTn (for each selected level of significance)



98 International Journal of Statistical Sciences, Vol. 11s, 2011

0 2 4 6 8 10
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

delta.square

M
R

E

alpha=0.05 (dashed)

 alpha=0.15 (dotted)

 SE

Figure 1: Graph of MSE-based relative efficiency of SE and PTE for n1 = 9, n2 =
10, α = 0.05 and 0.15

for selected sample sizes. The first two rows of Table 1 contain the maximum and
minimum relative efficiency of SE for selected sample sizes. The remaining rows of
Table 1 contain the minimum relative efficiency, E0, of the PTE at ∆2 = ∆2

0 and the
maximum relative efficiency, Emax, which has been recorded for each α=0.05(0.10)0.45
with the corresponding efficiency ( E∆2

0
) of SE for ∆2 = ∆2

0. To explain how to use

this table, for example, let (n1, n2) = (3, 4) and assume that we wish to obtain a PTE
with at least 86% efficiency. Table 1 gives α∗ = 0.25 at the intersection of E0 = 0.8674
and (n1, n2) = (3, 4). Hence, the optimum level for the PTE in this case is α = 0.25
with a maximum possible efficiency 1.2480. Now, we consider the MSE-based relative
efficiency of δ̂∗sn versus δ̃∗n as

MRE(δ̂∗sn , δ̃
∗

n) = {1− 2

π
[
νc2(ν)

(ν − 2)
(1 + ∆2)−∆2]−1[2e−

∆
2

2 − 1]}−1·

If ∆2 = 0 ,MRE(δ̂∗sn , δ̃
∗

n) =
νπc2(ν)

νπc2(ν)− 2(ν − 2)
·

and if ∆2 → ∞ ,MRE(δ̂∗sn , δ̃
∗

n) =
νπc2(ν)

νπc2(ν) + 2(ν − 2)
·

Further, as ν → ∞ and ∆2 = 0,MRE(δ̂∗sn , δ̃
∗

n) → π
π−2 · Moreover, as ν → ∞ and

∆2 → ∞, RE(δ̂∗sn , δ̃
∗

n) → π
π+2 · Figure 1 illustrates the graphs of MSE-based relative

efficiency of preliminary test estimators for α=0.05 and 0.15, and that of shrinkage
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Table 1: Maximum and Minimum relative efficiency of SE and PTE for selected sample
sizes

α\(n1, n2) (3,4) (5,6) (9,10) (13,14)

Emax 2.1760 2.4560 2.6030 2.6520
Emin 0.7952 0.7255 0.6798 0.6613

0.05 E0 0.6286 0.5053 0.4522 0.4360
Emax 2.4266 2.9413 3.2459 3.3546
E∆2

0
0.8168 0.7642 0.7350 0.7257

∆2
0 4.7 4.95 4.7 4.7

0.15 E0 0.7843 0.6895 0.6417 0.6259
Emax 1.4961 1.6343 1.7113 1.7381
E∆2

0
0.8168 0.7642 0.7350 0.7257

∆2
0 3.4 3.5 3.55 3.55

0.25 E0 0.8674 0.8004 0.7633 0.7506
Emax 1.2480 1.3110 1.3455 1.3575
E∆2

0
0.8337 0.7860 0.7630 0.7484

∆2
0 2.95 3.05 3.1 3.15

0.35 E0 0.9201 0.8761 0.8502 0.8411
Emax 1.1334 1.1660 1.1836 1.1897
E∆2

0
0.8469 0.8059 0.7777 0.7665

∆2
0 2.7 2.75 2.85 2.9

0.45 E0 0.9544 0.9278 0.9115 0.9056
Emax 1.0713 1.0884 1.0976 1.1008
E∆2

0
0.8565 0.8137 0.7903 0.7791

∆2
0 2.55 2.65 2.7 2.75

type estimators. Now, note that the MRE(δ̂∗sn , δ̃
∗

n) as a function of ∆2 crosses the

1-line at ∆2 = ln 4. Thus, for 0 ≤ ∆2 ≤ ln 4, δ̂∗sn performs better than δ̃∗n, otherwise δ̃
∗

n

performs better outside this interval. The maximum relative efficiency of SE increases
as the sample size n (n = n1 + n2) increases, and as n → ∞ it tends to π

π−2 , while
the minimum efficiency decreases as n increases. Finally as n → ∞, it tends to π

π+2 ·
Figure 1 and Table 1, explain that when ∆2 is near the origin, SE outperforms PTE
for most α values. Also, at ∆2 = 0, the relative efficiency of SE is higher than that of
PTE. Further, SE is independent of α. Thus, considering the overall performance of
SE relative to PTE, SE is preferable to PTE since it produces interpolated estimators
which are free from the level of significance, α.
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4 Confidence Intervals

4.1 When σ
2 is Known

We consider the 100(1 − β)% confidence interval for δ when the variance is known,
using δ̃n, which may be written as the Neyman-Pearson solution

C0(δ̃n) = {δ :
√
ñ |δ − δ̃n| ≤ zβ/2} (21)

where zβ/2 is the upper β/2-level critical value from the standard normal distribution,

ñ = ( 1
n1

+ 1
n2
)−1, where

P0{
√
ñ |δ − δ̃n| ≤ zβ/2} = 1− β = P0{ñ(δ − δ̃n)

2 ≤ z2β/2}. (22)

Next, we consider the 100(1−β)% confidence interval for δ using the PTE, δ̂PTn as the
solution

CPT (δ̂PTn ) = {δ :
√
ñ |δ − δ̂PTn | ≤ zβ/2}. (23)

The computational formula of the coverage probability of the set CPT (δ̂PTn ) is given
by

P∆2{
√
ñ |δ − δ̂PTn | ≤ zβ/2} = H1(χ

2
1,α;∆

2)I(∆2 < z2β/2) + (1− β)

− Φ[min{zβ/2, zα/2 −∆}]
+ Φ[max{−zβ/2,−(zα/2 +∆)}] (24)

Graphs of coverage probability of 95% and 90% C.I. and the test levels α = 0.05, 0.1
and 0.2 of the set CPT (δ̂PTn ) are shown below along with the coverage probability of
set based on SE.

From the graphs one may see that from 0 to zβ/2, the coverage probability is greater
than or equal to 1 − β and there is a discontinuity at ∆ = zβ/2 when the coverage
probability drops to its minimum (depending on α, β) then increases towards 1−β at
∆ = zβ/2 + zα/2 and eventually goes to 1-β/2 as ∆ → ∞.

Tabular values of the coverage probability are presented in Table 2 for the 95%
and 90% confidence sets based on PTE ( and the test levels α = 0.05, 0.1, 0.2) and SE.

Now, we state the properties of the coverage probability of the set CPT (δ̂PTn ) in
the following theorem.

Theorem 4.1.

If (i) 0 ≤ ∆2 ≤ z2β/2, P{CPT (δ̂PTn )} ≥ 1− β.

(ii) z2β/2 ≤ ∆2 < (zβ/2 + zα/2)
2, P{CPT (δ̂PTn )} ≤ 1− β.

(iii) ∆2 = (zβ/2 + zα/2)
2, P{CPT (δ̂PTn )} = 1− β.

(iv) ∆2 = 0 and min(zβ/2 + zα/2) = zα/2, P{CPT (δ̂PTn )} = 1− β.

(v) ∆2 → ∞, P{CPT (δ̂PTn )} = 1− β/2.
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Figure 2: Coverage probabilities of 95% C.I. based on PTE ( α= 0.05, 0.1, 0.2 ) and
SE

Proof. Note that

(i) P∆2{
√
ñ |δ − δ̂PTn | ≤ zβ/2} = P∆2{ñ

(
δ − δ̃nI(Z

2 ≥ χ2
1,α)
)2

≤ z2β/2}

= P∆2{∆2 < z2β/2, Z
2 < χ2

1,α}
+ P{ñ(δ − δ̃n)

2 ≤ z2β/2, Z
2 ≥ χ2

1,α}
= H1(χ

2
1,α;∆

2)I(∆2 < z2β/2)

+ P{ñ(δ − δ̃n)
2 ≤ z2β/2, Z

2 ≥ χ2
1,α}

≥ P∆2{ñ(δ − δ̃n)
2 ≤ z2β/2, Z

2 ≤ χ2
1,α}

+ P{ñ(δ − δ̃n)
2 ≤ z2β/2, Z

2 ≥ χ2
1,α}

≥ P∆2{ñ(δ − δ̃n)
2 ≤ z2β/2} = 1− β.

Hence, we have proved that if ∆2 < z2β/2, then

P∆2{
√
ñ |δ − δ̂PTn | ≤ zβ/2} ≥ 1− β.

(ii) If z2β/2 ≤ ∆2 < (zβ/2 + χ1,α)
2, we have

P∆2{δ ∈ CPT (δ̂PTn )} = P∆2{ñ(δ − δ̃n)
2 ≤ z2β/2;Z

2 ≥ χ2
1,α}

≤ P∆2{ñ(δ − δ̃n)
2 ≤ z2β/2} = 1− β.
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Figure 3: Coverage probabilities of 90% C.I. based on PTE ( α=0.05, 0.1, 0.2 ) and
SE

Hence, we have proved that if z2β/2 ≤ ∆2 < (zβ/2 + χ1,α)
2, then

P∆2{
√
ñ |δ − δ̂PTn | ≤ zβ/2} ≤ 1− β.

(iii) If ∆2 = (zβ/2 + zα/2)
2, then

P∆2{
√
ñ |δ − δ̂PTn | ≤ zβ/2} = P∆2{ñ(δ − δ̃n)

2 ≤ z2β/2, Z
2 ≥ χ2

1,α}
= P∆2{

√
ñ |δ − δ̃n| ≤ zβ/2}

− P∆2{
√
ñ |δ − δ̃n| ≤ zβ/2, |Z| ≤ zα/2}

= 1− β − Φ[min{zβ/2, zα/2 −∆}]
+ Φ[max{−zβ/2,−(zα/2 +∆)}]. (25)

Substituting the value of ∆ = zβ/2 + zα/2, we obtain

P∆2{
√
ñ |δ − δ̂PTn | ≤ zβ/2} = 1− β.

(iv) If ∆2 = 0, and min(zβ/2 + zα/2) = zα/2, substituting the value of ∆ = 0 in (25)

we obtain P∆2{
√
ñ |δ − δ̂PTn | ≤ zβ/2} = 1− β.

(v) Further, if ∆2 → ∞, from (25) we obtain

P∆2{
√
ñ |δ − δ̂PTn | ≤ zβ/2} = 1− β/2.
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Table 2: Coverage probability of 95% and 90% C.I. of the sets CPT (δ̂PTn ) and Cs(δ̂sn)

95% 90 %
∆\α 0.05 0.1 0.2 SE 0.05 0.1 0.2 SE

0 0.9500 0.9500 0.9500 0.9942 0.9500 0.9000 0.9000 0.9854
1 0.9734 0.9703 0.9637 0.9942 0.9484 0.9459 0.9387 0.9456
2 0.4909 0.6137 0.7387 0.8943 0.4659 0.5887 0.7137 0.8096
3 0.8258 0.8873 0.9321 0.8729 0.8000 0.8623 0.9071 0.7882
4 0.9543 0.9657 0.9717 0.8716 0.9293 0.9407 0.9467 0.7869
5 0.9736 0.9746 0.9750 0.8716 0.9488 0.9496 0.9498 0.7869
6 0.9750 0.9750 0.9750 0.8716 0.9499 0.9499 0.9499 0.7869
7 0.9750 0.9750 0.9750 0.8716 0.9499 0.9499 0.9500 0.7869
8 0.9750 0.9750 0.9750 0.8716 0.9500 0.9500 0.9500 0.7869
9 0.9750 0.9750 0.9750 0.8716 0.9500 0.9500 0.9500 0.7869
10 0.9750 0.9750 0.9750 0.8716 0.9500 0.9500 0.9500 0.7869

Next, we consider the coverage probability of confidence interval defined by δ̂sn as

Cs(δ̂sn) = {δ :
√
ñ |δ − δ̂sn| ≤ zβ/2} (26)

It may be shown that

P{Cs(δ̂sn)} = P{
√
ñ |δ − δ̃n +

d√
ñ

δ̃n

|δ̃n|
| ≤ zβ/2}

= P{(d− zβ/2) ≤ (
√
ñ δ̃n −∆) ≤ (d+ zβ/2);

√
ñδ̃n > 0}

+ P{−(d+ zβ/2) ≤ (
√
ñ δ̃n −∆) ≤ −(d− zβ/2);

√
ñδ̃n < 0}

= 2Φ(d+ zβ/2)− 1− Φ
(
max(d− zβ/2,−∆)

)

+Φ
(
min(−(d− zβ/2),−∆)

)
. (27)

Here, d =
√

2
π . For 95% and 90% C.I. of δ based on δ̂sn, we obtain the coverage

probability for variation of ∆ as given in Table 2.
Thus, for 95% C.I. for δ based on δ̂sn, we observe that the coverage probability as
a function of ∆ is decreasing up to a point say ∆ = ∆min, then becomes constant
0.8716. Thus, eventual loss of efficiency of this C.I. is 8.25% and gain if ∆ is near 0
is 4.65%. Similarly, for 90% C.I. of δ based on δ̂sn, the eventual loss of efficiency is
12.56% and gain near the origin 9.5% . Graphs of coverage probabilities of 95% C.I.
and 90% C.I. based on δ̂sn are shown in Figure 2 and Figure 3.
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Table 3: Efficiency of 95% C.I. of the sets CPT (δ̂PTn ) and Cs(δ̂sn)

α

∆ SE 0.1 0.15 0.20 0.25 0.30 0.35

0 1.046 1 1 1 1 1 1
1 1.046 1.022 1.018 1.014 1.009 1.004 1

1.96 0.9477 1.026 1.026 1.025 1.025 1.024 1.024
2.89 0.9197 0.9062 0.9429 0.9648 0.9793 0.9896 1
3 0.9188 0.9340 0.9638 0.9812 0.9924 1 1.006

3.11 0.9184 0.9496 0.9753 0.9900 0.9993 1.006 1.010
3.24 0.9180 0.9692 0.9893 1 1.007 1.012 1.015
3.40 0.9178 0.9846 1 1.008 1.013 1.017 1.019
3.60 0.9176 1.001 1.010 1.015 1.018 1.020 1.022
4 0.9174 1.020 1.020 1.023 1.024 1.024 1.025
5 0.9174 1.026 1.026 1.026 1.026 1.026 1.026
6 0.9174 1.026 1.026 1.026 1.026 1.026 1.026
7 0.9174 1.026 1.026 1.026 1.026 1.026 1.026

Next, we define the efficiency of the 100(1 − β)% confidence interval as

EFF =
coverage probability obtained

1− β
. (28)

Tabular values of the efficiency of 95% and 90% confidence intervals based on PTE
and SE for selected ∆ values are presented in Table 3 and Table 4. The values of ∆
are 0,1, zβ/2, zβ/2 + zα/2 (for each α= 0.35(-0.05)0.1), 4, 5, 6 and 7 .

4.2 When σ
2 is Unknown

For the finite sample 100(1-β)% confidence interval for δ one needs the computational
procedures using the noncentral t-distribution or noncentral F-distribution, see for
example, Cumming and Finch (2001) and Lecoutre (2007) among others. At the end,
they all proposed methods of approximations as it became difficult to specify simple
methods. With this backdrop, here we consider the asymptotic distribution of δ̃∗n as

N(δ, σ2(δ)), σ2(δ) = 1
ñ + δ2

2n , n = n1 + n2 and define the Neyman-Pearson solution as

C0(δ̃∗n) = {δ : |δ − δ̃∗n| ≤ zβ/2

√
1

ñ
+

δ̃∗2

2(n − 2)
}. (29)
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Table 4: Efficiency of 90% C.I. of the sets CPT (δ̂PTn ) and Cs(δ̂sn)

α

∆ SE 0.1 0.15 0.20 0.25 0.30 0.35

0 1.094 1 1 1 1 1 1
1 1.050 1.051 1.047 1.043 1.038 1.032 1.026

1.65 0.9293 1.055 1.054 1.053 1.052 1.051 1.049
2.58 0.8803 0.8597 0.9131 0.9467 0.9698 0.9866 0.9994
2.69 0.8782 0.8937 0.9403 0.9688 0.9882 1 1.012
2.80 0.8772 0.9178 0.9590 0.9839 1 1.012 1.021
2.93 0.8761 0.9489 0.9828 1.003 1.015 1.024 1.031
3.09 0.8755 0.9706 0.9989 1.015 1.025 1.032 1.037
3.30 0.8749 1 1.020 1.031 1.038 1.042 1.045
4 0.8744 1.046 1.049 1.052 1.053 1.054 1.054
5 0.8743 1.055 1.055 1.055 1.055 1.055 1.055
6 0.8743 1.055 1.055 1.055 1.055 1.055 1.055
7 0.8743 1.055 1.055 1.055 1.055 1.055 1.055

However, we notice that as n→ ∞

δ̃∗ = c(ν)
Ȳ E
n1

− Ȳ C
n2

σ

σ

sp
P−→

Ȳ E
n1

− Ȳ C
n2

σ
as

sp
σ
a.s−→ 1. (30)

Hence,
lim
n→∞

P{C0(δ̃∗n)} = P{
√
ñ |δ − δ̃n| ≤ zβ/2} = 1− β. (31)

Now, we consider 100(1-β)% confidence interval for δ using PTE, δ̂∗PTn as the Neyman-
Pearson solution

CPT (δ̂∗PTn ) = {δ : |δ − δ̂∗PTn | ≤ zβ/2

√
1

ñ
+

δ̃∗2

2(n − 2)
}. (32)

Let us now consider the limiting coverage probability of CPT (δ̂∗PTn ). First, note that

if ∆2 ≤ z2β/2(1 +
ñδ̃∗2

2(n−2)), we have

lim
n→∞

P{CPT (δ̂∗PTn )} = lim
n→∞

P∆2{ñ(δ − δ̂∗PTn )2 ≤ z2β/2(1 +
ñδ̃∗2

2(n − 2)
)}

= H1(χ
2
1,α;∆

2)I(∆2 < z2β/2)

+ P∆2{−zβ/2 ≤ Z −∆ ≤ zβ/2, |Z| > zα/2}.
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The R.H.S may be written as

= H1(χ
2
1,α;∆

2)I(∆2 < z2β/2) + (1− β)

− Φ[min{zβ/2, zα/2 −∆}]
+ Φ[max{−zβ/2,−(zα/2 +∆)}].

For the 100(1-β)% confidence interval for δ based on SE, δ̂∗sn , we define the Neyman-
Pearson solution as

Cs(δ̂∗sn ) = {δ : |δ − δ̂∗sn | ≤ zβ/2

√
1

ñ
+

δ̃∗2

2(n − 2)
}.

= {∆ :
√
ñ|δ − δ̂∗sn | ≤ zβ/2

√
1 +

ñδ̃∗2

2(n − 2)
}.

Then, the limiting coverage probability of Cs(δ̂∗sn ) is given by

lim
n→∞

P{Cs(δ̂∗sn )} = lim
n→∞

P∆2{ñ(δ − δ̂∗sn )2 ≤ z2β/2(1 +
ñδ̃∗2

2(n− 2)
)}

= 2Φ(d+ zβ/2)− 1− Φ
(
max(d− zβ/2,−∆)

)

+Φ
(
min(−(d− zβ/2),−∆)

)
.

The limiting coverage probabilities are the same as the known variance case and hence
the properties specified therein.

Example 4.1. Suppose that a study with n1 = n2 = 15 yields a sample effect size
value of δ̃∗n = 0.580, δ̂∗PTn = 0, and δ̂∗sn = 0.3284 then the 90% confidence intervals for
δ based on PTE and SE respectively are given by

δ̂∗PTn ± zβ/2

√
1

ñ
+

δ̃∗2n
2(n− 2)

= ±1.65

√
1

7.5
+

(0.580)2

56
= (−0.616, 0.616).

δ̂∗sn ± zβ/2

√
1

ñ
+

δ̃∗2n
2(n− 2)

= 0.3284 ± 1.65

√
1

7.5
+

(0.580)2

56
= (−0.2875, 0.9443).

5 Empirical Bayes Estimators and Comparisons

In this section, we discuss the empirical Bayes methods of effect size estimation due
to Efron (2010). Let the effect size, δ, be distributed with density g(δ) and the
transformed variable z|δ ∼ N(δ, 1) where z = Φ−1(Fν(t)) and Φ(.) is the cdf of stan-
dard normal distribution, Fν(.) is the cdf of central t-distribution with ν D.F. and

t =
Ȳ E
n1

−Ȳ C
n2

sp
. Then, we have the following result:
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Theorem (Efron, 2010)
Let f(z) be the marginal density of z for the model described above, given by

f(z) =

∫
∞

−∞

φ(z − δ) g(δ) dδ where φ(z) =
1√
2π
exp{−z

2

2
}.

Then, the posterior density of δ given z is

g(δ|z) = ezδ−ψ(z)[e−δ
2/2g(δ)],with ψ(z) = log(f(z)/φ(z)).

As a consequence

E(δ|z) = ψ
′

(z) and var(δ|z) = ψ
′′

(z),

where ψ
′

(z) and ψ
′′

(z) are the first and second derivatives of ψ(z). Let ℓ(z) =
log(f(z)), then

E(δ|z) = z + ℓ
′

(z) and var(δ|z) = 1 + ℓ
′′

(z).

Efron uses the R algorithm Ebay to obtain a smooth estimate ℓ̂(z) of ℓ(z). Based on

these results, Efron produced Table 11.2 of the estimators δ̂ of prostate cancer data
(given in his book on page 220). Table 5 gives the computational results corresponding
to Efron’s Table 11.2. Columns 1-3 are the same as Efron’s Table 11.2. Column 4
is our unrestricted estimator it is equal to the preliminary test estimator in this case
and both are based on converted z-values to adjusted t-values. The fifth column is
our shrinkage estimator and is computed based on our formula. The sixth column is
a converted Efron’s estimator δ̂ to adjusted t-values for comparison. It is clear from
the table that our estimators are always higher in magnitude than Efron’s. The last
two columns are the estimated variance of our shrinkage estimator and the variance
of Efron’s estimators, respectively. Our results belong to the case of estimating the
noncentrality parameter, δ of a noncentral t-distribution with ν D.F.

It is evident that our estimators are competitive to the empirical Bayes estimators
and are easy to compute.

6 Conclusion

In this paper, we introduced two new point estimators, namely, the preliminary test
estimator ( PTE ) and shrinkage estimator ( SE ) of effect size, and the related 100(1-
β)% confidence intervals. The PTE as a point estimator has relative efficiency more
than one in the interval 0 ≤ ∆2 ≤ 1, then drops to a minimum depending on the
size of the preliminary test and eventually tending to one as ∆2 → ∞. The shrinkage
estimator, on the other hand, attains relative efficiency more than one in the interval
0 ≤ ∆2 ≤ ln 4, then drops smoothly to a stable minimum (for large sample it is π

π+2).
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Table 5: Computation of UE, PTE and SE using prostate cancer data

step z-value δ̂ δ̃∗n = δ̂∗PTn δ̂∗sn δ̂(z) v̂ar(δ̂∗sn ) v̂ar(δ̂)

1 5.29 4.11 5.6557 4.8578 4.119 0.2030 0.87
2 4.83 3.65 5.1013 4.3034 3.625 0.1725 0.89
3 -4.42 -3.57 -4.6225 -3.8246 -3.5399 0.1487 0.92
4 -4.33 -3.52 -4.5191 -3.7212 -3.4872 0.1439 0.92
5 -4.29 -3.47 -4.4734 -3.6755 -3.435 0.1418 0.93
6 -4.14 -3.30 -4.3029 -3.5050 -3.257 0.1341 0.97
7 4.47 3.24 4.6802 3.8823 3.1943 0.1515 0.91
8 4.40 3.16 4.5995 3.8016 3.1114 0.1476 0.92
...

...
...

...
...

...
...

...
45 -3.38 -2.23 -3.4618 -2.6639 -2.1679 0.1007 1.18
46 3.57 2.22 3.6687 2.8709 2.1579 0.1083 0.97
47 3.56 2.20 3.6578 2.8599 2.1380 0.1079 0.97
48 3.56 2.20 3.6578 2.8599 2.1380 0.1079 0.97
49 -3.33 -2.15 -3.4076 -2.6097 -2.0883 0.0988 1.19
50 3.51 2.15 3.6032 2.8053 2.0883 0.1058 0.97
51 -3.33 -2.14 -3.4076 -2.6097 -2.0783 0.0988 1.19
52 -3.32 -2.12 -3.3968 -2.5989 -2.0585 0.0984 1.19
53 -3.32 -2.12 -3.3968 -2.5989 -2.0585 0.0984 1.19
54 3.47 2.09 3.5595 2.7617 2.0287 0.1042 0.97
55 3.46 2.09 3.5487 2.7508 2.0287 0.1038 0.97

Further, the shrinkage estimator does not depend on the size of the test as does the
PTE. This aspect of the shrinkage estimator together with its high efficiency near
the origin may be attractive to practitioners. Further, among the two estimators, the
shrinkage estimator is comparable to the empirical Bayes estimator proposed by Efron
(2010) and it may have potential use in the large scale inference with micro-array
data. With respect to the performance of the fixed-width 100(1 − β)% confidence
intervals based on PTE, the relative efficiency of the 100(1− β)% is more than one in
the interval [0, zβ/2], and due to discontinuity, drops drastically to a minimum, then
increases to one as ∆ goes to (zβ/2 + zα/2). Finally, the relative efficiency tends to
(1−β/2)
1−β as ∆ → ∞. On the other hand, the relative efficiency of the confidence interval

based on the shrinkage estimator is a continuous function of ∆ and has value more
than one in a shorter interval near the origin than the PTE, then decreases smoothly
to a minimum guaranteed efficiency. The relative efficiency based on the SE near the
origin is more than the efficiency of PTE based confidence interval. The discontinuity
of the efficiency as a function of ∆ for the PTE based confidence interval may have a
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dampening effect on the practitioners and therefore it may be less attractive than the
SE based confidence interval.
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