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Abstract

We consider the problem of testing the null hypothesis of equality of several
normal means when the variances while sharing the same functional forms
are distinct functions of the means. This formulation arises in the context of
using the standardized mean difference as a measure of effect size. Under
the same setup, we also address the problem of drawing inference about
the common normal mean when the null hypothesis holds. Both exact
and approximate solutions as well as a Bayesian solution are developed.
Applications are indicated in the context of effect size estimates with two
data sets.
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1 Introduction

In statistical meta-analysis problems, the notion of effect size is very basic and it is
often necessary to perform appropriate tests for the equality of population effect sizes
arising out of several studies before performing a meta-analysis or pooling of evidence
or data synthesis (Hedges and Olkin, 1985; Hartung, Knapp, and Sinha, 2008). Indeed,
a next reasonable step after the homogeneity hypothesis of the equality of population
effect sizes is accepted is to draw suitable inference about the common effect size.
When the population effect size (θ) is based on standardized mean difference with
respect to a control and a treatment, namely

θ = (µ1 − µ2)/σ, (1)

where µ1, µ2 and σ2 denote, respectively, the control mean, the treatment mean and
the (assumed) common variance, information about θ is typically obtained from ran-
dom samples from the two populations. Thus, if X̄1, X̄2 and S2 denote, respectively,
the two sample means and the pooled sample variance based on a sample of size n1

from control population and size n2 from the treatment population, θ is routinely
estimated by (Cohen’s d, Glass’s ∆, Hedges’s g)

θ̂ = (X̄1 − X̄2)/Spooled (2)

Under the assumption of normality and independence of the two samples, the large
sample distribution of θ̂ can be approximated by

θ̂ ∼ N [θ, a2(b2 + θ2)] (3)

where a and b are functions of the sample sizes n1 and n2. Estimates of θ of the form
θ̂ given above along with some slight variations are popularly known as Cohen’s d,
Glass’s ∆ and Hedges’s g. For expressions for a and b and further details about effect
sizes, we refer to the excellent texts by Hedges and Olkin (1985) and Hartung, Knapp,
and Sinha (2008). Statistical inference associated with equation (3) above is the focus
of this paper.

Assume that there are k independent studies dealing with the same control and
treatment, and all are targeted towards the same common goal of providing informa-
tion about the basic effect size θ. This means that several studies are independently
performed to compare the same pair of control and treatment effects in order to pro-
vide information about the presumably common effect size θ. Of course, a priori, we
cannot assume that the population effects sizes, say θ1, · · · , θk, arising out of the k
studies are the same. A standard approach in statistical meta-analysis is two-fold:

1. Test H0 : θ1 = · · · = θk versus H1 : θi’s unequal

2. Assuming H0 holds, draw suitable inference about the common population effect
size θ.
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To solve the above problems in a natural way, independent estimates of the effect
size parameters are derived from the underlying k studies, resulting in

θ̂i ∼ N [θi, a
2
i (b

2
i + θ2i )], i = 1, · · · , k. (4)

The important point to note here is that usually the constants ai’s and bi’s will
vary with the studies, sometimes quite wildly. For example, when Cohen’s d is used as
θ̂, a2i = (n1+n2)/[2(n1+n2−2)2] and b2i = [2(n1+n2)(n1+n2−2)][n1n2], and there is
no reason to believe that these design constants would remain the same across studies.
In fact, in one of the examples (example 2) analyzed in this paper, these constants
vary substantially.

We address the first problem of testing the equality of the population effect sizes in
Section 2, and the second problem of drawing appropriate inference about the assumed
common effect size in Section 3 where we have provided both the frequentist and the
Bayesian solutions. Two illustrative examples are worked out to explain the suggested
methods.

We conclude this section with the observation that when the distribution of θ̂
defined in (3) is taken as non-central t rather than normal, the corresponding inference
problem is related to the non-centrality parameter of the t distribution, the non-
centrality parameter being a multiple of θ. Under the condition of equality of the
multipliers of θi’s arising out of k studies, which makes the equality of θi’s equivalent
to the equality of non-centrality parameters, the first problem (test of H0) has been
discussed in Miwa (1994, 1996) for k = 2, and in Nagata et al. (2003) for a general k.

2 Test of H0 : θ1 = · · · = θk versus H1 : θi’s unequal

In this section we propose several tests of H0 based on the model (4). We should
mention that when bi’s are all equal, a simple variance-stabilizing transformation can
be used to easily derive a chi-square test of H0 (Hedges and Olkin, 1985).

2.1 Likelihood ratio test and modified likelihood ratio test

Here we describe the likelihood ratio test (LRT). Under H0, denoting the common
effect size by θ, it is easy to verify that the maximum likelihood estimate (MLE) of θ
is obtained by minimizing the expression Q0(θ) given by

Q0(θ) =
k
∑

i=1

(θ̂i − θ)2

a2i (b
2
i + θ2)

+
k
∑

i=1

ln(b2i + θ2). (5)

The unrestricted maximum likelihood estimate of θi, i = 1, · · · , k is obtained by
minimizing the expression Q1(θi) given by
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Q1(θi) =
(θ̂i − θi)

2

a2i (b
2
i + θ2i )

+ ln(b2i + θ2i ). (6)

It is tempting to infer that the unrestricted MLE of θi is θ̂i! However, this is
not the case although they can be quite close (see the applications in a later section).
An explicit solution of (5) and even (6) is difficult to obtain, however it is indeed
possible to provide a numerical solution once we plug in the data, namely, values
of θ̂i’s and the (design) constants ai’s and bi’s. Consequently, it is indeed possible

to numerically compute the value of the LRT statistic. One can also use θ̂i as the
approximate unrestricted MLE of θi, and compute the resultant LRT, which we will
call modified LRT. Obviously, the exact null distribution of the LRT (or modified
LRT) statistic would be quite complicated, and one may take recourse to simulation
to approximate the cut-off point, and hence carry out the test. The null distribution
of the LRT (or modified LRT) being dependent on the unknown common ES θ, an
extensive simulation may be necessary. To study the power of the LRT, one again has
to depend entirely on simulation. Some limited simulation results are reported in this
paper in order to compare the performance of the LRT and modified LRT with those
of the other tests suggested below.

2.2 A new test

In this subsection we provide a new test of H0. The key idea here is to express the
underlying model (3) as a marginal distribution of a suitable joint distribution via a
latent variable X. This is done by introducing the conditional and marginal models
as

θ̂|X ∼ N [θ(1 + aX), a2b2], X ∼ N [0, 1]. (7)

Referring to (4), with the introduction of k independent latent variablesX1, · · · ,Xk,

we now derive a test of H0 based on (θ̂1, · · · , θ̂k), conditional on X = (X1, · · · ,Xk) as
follows. Recall that our model is now

θ̂i|Xi ∼ N [θi(1 + aiXi), a
2
i b

2
i ], Xi ∼ N [0, 1], i = 1, · · · , k. (8)

Hence, conditionally given X, since ai’s and bi’s are known positive constants,
the test of H0, namely, the equality of θi’s is fairly routine, leading to the familiar
chi-square test based on

χ2(X) =

k
∑

i=1

[

θ̂i − (1 + aiXi)

∑k
j=1

θ̂j(1+ajXj)

a2
j
b2
j

∑k
j=1

(1+ajXj)2

a2
j
b2
j

]2
/

a2i b
2
i (9)
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which can be simplified as

χ2(X) =

k
∑

i=1

θ̂2i
a2i b

2
i

−

[

∑k
i=1

θ̂i(1+aiXi)
a2
i
b2
i

]2

∑k
i=1

(1+aiXi)2

a2
i
b2
i

. (10)

It is well known that χ2(X) has a central χ2 distribution with (k − 1) d.f. under H0,
for any fixed X. Since the null conditional distribution of χ2(X) is independent of
X, this is also the unconditional distribution of χ2(X), irrespective of the marginal
distribution of X. One can then reject H0 at level α when χ2(X) exceeds χ2

α;k−1 for
any fixed vector X, thus providing an exact test of H0!

One wonders what would be some meaningful choices of X leading to some inter-
esting tests of H0. Rather than concentrating on a single value of X, we propose just
one test of H0 by the following algorithm:

1. Generate independent Xi ∼ N [0, 1], i = 1, · · · , k.

2. Compute χ2(X).

3. Repeat step 1 and 2 m times leading to χ2(X)1, χ
2(X)2, · · · , χ2(X)m.

4. Take the average: χ̄2(X) =
∑m

i=1 χ
2(X)i/m.

Of course, the null distribution of this test statistic is not central χ2 any more, and is,
in fact, quite complicated. To estimate the null distribution, we use the parametric
bootstrap approach using the MLE under H0 to generate the data according to model
(4) under H0 and then compute χ̄2(X). We reject H0 at level α, if the observed value
of the test statistic is larger than the 100(1 − α)%-bootstrap-quantile of χ̄2(X).

We note in passing that quite interestingly,

Xi|θ̂i ∼ N [
θ(θ̂i − θ)

ai(b2i + θ2)
,

b2i
b2i + θ2

]. (11)

Remark. In some applications it may happen that b1, · · · , bk, arising out of the k
studies, are all equal (= b), reducing our basic model (4) to

θ̂i ∼ N [θi, a
2
i (b

2 + θ2i )], i = 1, · · · , k (12)

Since a2i = O(n−1
i ), following a standard variance-stabilizing argument, we can work

with the modified effect sizes and their asymptotic distributions given by

θ̂∗i = ln (θ̂i +

√

θ̂2i + b2) ∼ N [ln (θi +
√

θ2i + b2), a2i ]. (13)
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It is then obvious that a test for H0 : θ1 = · · · = θk, which is equivalent to

H∗
0 : θ̃1 = · · · = θ̃k, θ̃i = ln (θi +

√

θ2i + b2), i = 1, · · · , k, is obtained by using the test

statistic

χ2
0 =

k
∑

i=1

(θ̂∗i − θ̄∗)2/a2i , θ̄∗ =

∑k
i=1 θ̂

∗
i /a

2
i

∑k
i=1 1/a

2
i

, (14)

the statistic χ2
0 having a null asymptotic chi-square distribution with (k − 1) df.

2.3 Applications

We have proposed several tests of the homogeneity hypothesis H0 in the previous
section. In this subsection, we apply these statistical procedures to two well known
data sets borrowed from Abrams and Sanso (1998), and Kirsch et al. (2008). All
throughout, we have used Hedges’s estimate g as the effect size measure, and the
resultant values of ai and bi.

We recall that Hedges’s g (Hartung, Knapp, and Sinha, 2008) is defined as

g =
X̄1 − X̄2

S∗
,

where the standardized quantity S∗ is also the pooled sample standard deviation de-
fined as S∗ =

√
S∗2 with

S∗2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

The variances of the estimate of θ, in large samples, is given by the following:

σ2(g) = var(g) ≈ n1 + n2

n1n2
+

θ2

2(n1 + n2 − 2)
.

Therefore,

a2 =
1

2(n1 + n2 − 2)
, b2 =

2(n1 + n2)(n1 + n2 − 2)

n1n2
.

2.3.1 Dentifrice Data

The data set is taken from Abrams and Sanso (1998) and concerns a previously pub-
lished meta-analysis which was conducted of all randomized controlled trials comparing
sodium monofluorophosphate (SMFP) to sodium fluoride (NaF) dentifrices (tooth-
pastes) in the prevention of caries; see Johnson (1993). The outcome in each trial was
the change from baseline in the decayed missing (due to caries) filled surface (DMFS)
dental index at three years follow-up. Of 12 studies identified as meeting the inclusion
criteria, 9 considered a straight comparison of NaF and SMFP. Table 1 displays the
data from these 9 studies in terms of mean change in DMFS index for each treatment.
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Table 1: Randomized evidence comparing sodium fluoride (NaF) with sodiummonoflu-
orophosphate (SMFP) dentrifices in terms of differences from baseline in DMFS dental
index

Study N NaF Mean SD N SMFP Mean SD

1 134 5.96 4.24 113 6.82 4.72
2 175 4.74 4.64 151 5.07 5.38
3 137 2.04 2.59 140 2.51 3.22
4 184 2.70 2.32 179 3.20 2.46
5 174 6.09 4.86 169 5.81 5.14
6 754 4.72 5.33 736 4.76 5.29
7 209 10.10 8.10 209 10.90 7.90
8 1151 2.82 3.05 1122 3.01 3.32
9 679 3.88 4.85 673 4.37 5.37

In Table 2 we display the values of θ̂i’s, ai’s, bi’s and the unrestricted MLEs of
θi’s. Note that the design constant bi’s are close together so that the test statistic χ2

0

from (14) may be a valid alternative test.

Table 3 shows the values of exact LRT, modified LRT, and the two suggested
test statistics χ̄2(X) and χ2

0. The test statistic χ̄2(X) is based on the average of
m = 1, 000 individual test statistics χ̄2(X) and the p-value is calculated according
to the parametric bootstrap approach outlined in Section 2.2, where the bootstrap
sample size is t = 300. In the test statistic χ2

0, we replace the design constant b by the
mean of the b2i ’s. It is interesting to observe that all tests lead to the acceptance of
H0. Note that the MLE of θ under H0 is −0.0688.

Table 2: Values of design constants of dentifrice data

Study θ̂ a2 b2 θ̂mle

1 -0.1926 0.0020 7.9930 -0.1922
2 -0.0660 0.0015 7.9942 -0.0659
3 -0.1607 0.0018 7.9432 -0.1604
4 -0.2092 0.0014 7.9574 -0.2089
5 0.0560 0.0015 7.9550 0.0559
6 -0.0075 0.0003 7.9904 -0.0075
7 -0.1000 0.0012 7.9617 -0.0999
8 -0.0596 0.0002 7.9943 -0.0596
9 -0.0958 0.0004 7.9883 -0.0958
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Table 3: Test results of dentifrice data

Tests Test Statistics P-value Conclusion

LRT 6.4259 0.5950 Accept H0

mLRT 6.4259 0.5950 Accept H0

χ̄2(X) 6.4432 0.5950 Accept H0

χ2
0 6.4282 0.5994 Accept H0

2.3.2 Antidepressant Data

The data set used here were obtained by Kirsch et al. (2008) from FDA following
Freedom of Information Act and deal with changes (drug-placebo differences) in the
severity of depression in very severe depressant patients. Kirsch et al. (2008) carried
out a meta-analysis in order to study the relationship between baseline severity and
antidepressant efficacy. Our focus here is to assess the homogeneity of the population
effect sizes. The relevant data from 35 studies for our purpose are given in Table 4.
For each study, we have the mean change from baseline X̄i, i = D,P , the standardized
effect size di, i = D,P , calculated as di = X̄i/sdi and sdi is the standard deviation
in the ith group, as well as the sample size Ni in each group. We readily obtain
sdi = X̄i/di, i = D,P and can then easily compute Hedges’s g for the comparison of

drug and placebo group. The estimated effect sizes for each study θ̂i = gi are given
in Table 5, where also the values of the design constants a2 and b2 as well as the
unrestricted MLE’s of θi can be found.

In Table 6, the results of the homogeneity tests are given. The test statistic and
p-value of χ̄2(X) is calculated following the same lines as in the previous example.
Just for illustrative purpose, we also give the result for χ2

0, replacing again b by the
mean of the b2i ’s, though the design constants b2i substantially vary. Again, all four
tests come to the same conclusion, this time to reject the null hypothesis. Note that
the MLE of θ under H0 is −0.3141 in this example.

2.4 Some simulation results

In a small simulation study, we investigate the properties of the tests discussed in
Section 2.1 and 2.2. We consider the LRT , mLRT, χ̄2(X), and χ2

0 tests like in the
examples above. Additionally, we also include the parametric bootstrap versions of
both the likelihood ratio tests, denoted by LRTb and mLRTn, following the same ideas
as described in Section 2.2 for the χ̄2(X) test. Since we are confident that the tests
will work well if the design constants b2i ’s are less variable like in the first example in
Section 2.3, we concentrate on sample size designs with highly variable constants b2i ’s.

In scenario 1, we consider five experiments with sample sizes (n1i, n2i) = (40, 160),
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Table 4: Studies of antidepressant medications

ID Drug Placebo ID Drug Placebo
X̄D dD ND X̄P dP NP X̄D dD ND X̄P dP NP

1 12.50 1.44 22 5.50 0.63 24 19 10.00 1.34 80 8.90 1.20 78
2 7.20 0.83 18 8.80 1.03 24 20 13.50 1.67 24 10.50 1.30 24
3 11.00 1.15 181 8.40 0.88 163 21 12.30 1.28 51 6.80 0.70 53
4 5.89 1.02 299 5.82 1.05 56 22 10.90 1.23 36 5.80 0.66 34
5 8.82 1.13 297 5.69 0.72 48 23 9.70 0.93 33 7.20 0.69 33
6 11.20 1.37 231 6.70 0.82 92 24 12.70 1.87 36 7.60 1.12 38
7 13.90 1.77 64 9.45 1.20 78 25 10.80 1.60 40 4.70 0.69 38
8 11.90 1.16 65 8.88 0.87 75 26 8.00 1.14 40 6.20 0.88 40
9 10.10 1.27 69 9.89 1.24 79 27 9.90 1.18 41 10.00 1.19 42

10 11.00 1.34 227 9.49 1.15 75 28 10.40 1.33 37 6.70 0.86 37
11 14.20 1.45 46 4.80 0.43 47 29 10.00 0.99 40 4.10 0.41 42
12 9.57 1.15 101 8.00 0.92 52 30 9.10 1.11 39 3.00 0.37 37
13 8.90 1.17 153 8.90 1.17 77 31 9.10 1.28 403 8.20 1.14 51
14 11.40 1.41 156 9.50 1.17 75 32 6.00 0.97 19 6.20 0.83 22
15 10.00 1.31 74 9.84 1.27 70 33 9.10 1.23 19 6.70 0.86 10
16 12.30 1.42 175 9.80 1.11 47 34 8.80 0.80 20 4.50 0.49 21
17 10.80 1.36 57 8.20 1.03 57 35 13.10 1.20 13 10.90 0.99 12
18 12.00 1.51 86 8.00 1.01 90

(70, 130), (100, 100), (130, 70), and (160, 40) leading to the design constants b2i =
12.375, 8.7033, 7.92, 8.7033, and 12.375.

In scenario 2, we consider ten experiments with sample sizes (n1i, n2i) = (42, 57),
(45, 57), (33, 33), (43, 48), (57, 43), (37, 67), (53, 52), (34, 34), (26, 60), and (61, 62)
leading to the design constants b2i = 8.0226, 7.9532, 7.7576, 7.8479, 7.9967, 8.5583,
7.8483, 7.7647, 9.2615, and 7.8704.

In scenario 3, we consider 25 experiments with sample sizes (n1i, n2i) = (16, 14),
(26, 25), (27, 15), (30, 30), (14, 10), (18, 30), (24, 30), (29, 12), (26, 17), (26, 25), (18, 10),
(11, 22), (19, 23), (19, 23), (25, 21), (15, 25), (30, 14), (28, 30), (20, 10), (28, 22), (21, 15),
(29, 23), (10, 10), (14, 21), and (28, 27) leading to design constants b2i between 7.2 and
9.1897

Note that in all the three scenarios, the total sample size is N =
∑

n1i+n2i = 1000.

In the three scenarios, the true common effect sizes are chosen as θ = 0 and
θ = 1. The first parameter value reflects no difference between the two groups, while
the second on stands for strong superiority of the treatment group compared to the
control group.

Each estimated actual size of the six homogeneity tests is based on 10,000 simu-
lation runs. The nominal level of the tests is α = 0.05. The results for the estimated
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Table 5: Values of design constants of antidepressant medications data

ID θ̂ a2 b2 θ̂mle ID θ̂ a2 b2 θ̂mle

1 -0.8040 0.0114 7.6667 -0.7950 19 -0.1478 0.0032 7.9000 -0.1474
2 0.1861 0.0125 7.7778 0.1838 20 -0.3713 0.0109 7.6667 -0.3673
3 -0.2721 0.0015 7.9753 -0.2717 21 -0.5692 0.0049 7.8491 -0.5664
4 -0.0122 0.0014 14.9683 -0.0122 22 -0.5778 0.0074 7.7778 -0.5736
5 -0.4003 0.0015 16.6014 -0.3997 23 -0.2396 0.0078 7.7576 -0.2378
6 -0.5505 0.0016 9.7575 -0.5497 24 -0.7513 0.0069 7.7895 -0.7461
7 -0.5658 0.0036 7.9647 -0.5638 25 -0.8997 0.0066 7.8000 -0.8938
8 -0.2952 0.0036 7.9262 -0.2941 26 -0.2560 0.0064 7.8000 -0.2544
9 -0.0264 0.0034 7.9281 -0.0263 27 0.0119 0.0062 7.8084 0.0118

10 -0.1837 0.0017 10.6432 -0.1834 28 -0.4740 0.0069 7.7838 -0.4708
11 -0.8946 0.0055 7.8289 -0.8897 29 -0.5871 0.0062 7.8095 -0.5835
12 -0.1858 0.0033 8.7978 -0.1852 30 -0.7481 0.0068 7.7949 -0.7430
13 0.0000 0.0022 8.9025 -0.0000 31 -0.1264 0.0011 19.9687 -0.1263
14 -0.2347 0.0022 9.0426 -0.2342 32 0.0290 0.0128 7.6507 0.0286
15 -0.0208 0.0035 7.8950 -0.0207 33 -0.3187 0.0185 8.2421 -0.3129
16 -0.2875 0.0023 11.8760 -0.2868 34 -0.4253 0.0128 7.6143 -0.4200
17 -0.3270 0.0045 7.8596 -0.3255 35 -0.2007 0.0217 7.3718 -0.1964
18 -0.5042 0.0029 7.9132 -0.5027

actual sizes are displayed in Table 7.

Generally, all the six homogeneity tests maintain the nominal level. The actual size
of LRT and mLRT are nearly identical so that the effort of calculating the unrestricted
MLE does not yield a real advantage. Thus, the use of mLRT can be recommended.
LRT and mLRT maintain the nominal level quite well, the bootstrap versions of both
test tend to be a little bit liberal. The χ̄2(X) behave similar to the bootstrap likelihood
ratio test.

Despite the variability of the design constants b2i in all three scenarios, the test χ2
0

yields surprisingly good results; the estimated actual size of χ2
0 is close to the estimated

Table 6: Test results of antidepressant medications data

Tests Test Statistics P-value Conclusion

LRT 62.5495 0.0017 Reject H0

mLRT 62.5442 0.0017 Reject H0

χ̄2(X) 64.0876 0.0016 Reject H0

χ2
0 61.5898 0.0026 Reject H0
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Table 7: Estimated actual sizes of six homogeneity tests given a nominal level of
α = 0.05

Scenario θ LRT LRTb mLRT mLRTb χ̄2(X) χ2
0

1 0 0.0457 0.0491 0.0457 0.0491 0.0487 0.0478
1 0.0502 0.0545 0.0502 0.0545 0.0547 0.0523

2 0 0.0483 0.0526 0.0483 0.0526 0.0523 0.0474
1 0.0482 0.0537 0.0484 0.0537 0.0535 0.0481

3 0 0.0472 0.0566 0.0471 0.0566 0.0565 0.0449
1 0.0460 0.0530 0.0456 0.0530 0.0520 0.0453

actual sizes of LRT and mLRT. Note that under model (13), the test based on χ2
0 is

the most powerful invariant test (Lehmann, 1986). It turns out that even when the
assumption of model (13) is not strictly satisfied, the χ2 test based on this model
performs rather well.

There is no obvious dependence of the size of the test with the true underlying
common efect size. In scenario 2 and 3, the differences can be clearly explained via
Monte Carlo error. The largest differences occur in scenario 1, the scenario with the
largest range of design constants b2i .

Further results of our simulation study reveal that the power of the six homogeneity
tests are rather similar. We omit the details here.

3 Inference about common effect size θ

In this section we discuss statistical inference about the common effect size θ, assuming
that H0 holds, based on the independent effect size estimates θ̂i, distributed as

θ̂i ∼ N [θ, a2i (b
2
i + θ2)], i = 1, · · · , k. (15)

3.1 Frequentist solution

As a point estimate of θ, we propose the MLE θ̂mle(H0) which has been described

earlier. Of course, one can also use the simple weighted unbiased estimate θ̂w and also
the asymptotically unbiased estimate θ̃w defined as

θ̂w =

∑k
j=1

θ̂j
a2
j
b2
j

∑k
j=1

1
a2
j
b2
j

. (16)
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and

θ̃w =

∑k
i=1

θ̂i
a2
i
(b2

i
+θ̂2

i
)

∑k
i=1

1
a2
i
(b2

i
+θ̂2

i
)

. (17)

The second estimate mentioned above is the traditional estimated variance inverse-
weighted estimate of the common effect size (see Hartung, Knapp, and Sinha, 2008).
To compare the three estimates asymptotically, we note that the asymptotic variance
of the MLE of θ can be derived from the following calculations.

A. ∂ lnL(θ|data)
∂θ = −∑k

i=1
θ

b2
i
+θ2

+
∑k

i=1
(θ̂i−θ)

(b2
i
+θ2)a2

i

+
∑k

i=1
(θ̂i−θ)2θ

(b2
i
+θ2)2a2

i

B. ∂2 lnL(θ|data)
∂θ2

= −∑k
i=1

1
b2
i
+θ2

+
∑k

i=1
2θ2

(b2
i
+θ2)2

−∑k
i=1

1
(b2

i
+θ2)a2

i

+
∑k

i=1
(θ̂i−θ)2

(b2
i
+θ2)2a2

i

−∑k
i=1

4θ2(θ̂i−θ)2

(b2
i
+θ2)3a2

i

+ other terms whose mean is 0

C. E[−∂2 lnL(θ|data)
∂θ2

] =
∑k

i=1
1

(b2
i
+θ2)a2

i

+
∑k

i=1
2θ2

(b2
i
+θ2)2

leading to

var(θ̂mle) ∼
1

∑k
i=1

1
(b2

i
+θ2)a2

i

+
∑k

i=1
2θ2

(b2
i
+θ2)2

(18)

On the other hand, a direct computation yields

var(θ̂w) =
1

∑k
j=1

1
a2
j
b2
j

+ θ2 ×

∑k
j=1

1
a2
j
b4
j

[
∑k

j=1
1

a2
j
b2
j

]2
(19)

and

var(θ̃w) ∼
1

∑k
j=1

1
a2
j
(b2

j
+θ2)

(20)

Hence, it follows that the MLE of θ has a smaller asymptotic variance than θ̃w. A
comparison between the MLE of θ and θ̂w naturally depends on the unknown value
of the common effect size θ. It is easy to show that the relative efficiency of θ̂w relative
to θ̂mle lies between the bounds

1 ≤ RE ≤
[
∑k

i=1
1
a2
i

+ 2k][
∑k

i=1
1

a2
i
b4
i

]

[
∑k

i=1
1

a2
i
b2
i

]2
(21)

Interestingly enough, the upper bound of RE is nearly 1 in most applications, implying
that the traditional estimated variance inverse-weighted common effect size estimate
which is readily computable can be used in practice.

Large sample tests for H†
0 : θ = 0, a common null hypothesis value in the context of

standard meta-analysis, as well as large sample confidence intervals for θ can be based
on θ̂mle(H0), θ̂w and θ̃w in the usual fashion, based on their standardized versions,
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replacing θ in their asymptotic variances by their respective estimates. The LRT

statistic for testing H†
0 : θ = 0 on the other hand can be readily computed as

−2 ln(LRT ) =

k
∑

i=1

θ̂2i
a2i b

2
i

+

k
∑

i=1

ln(b2i )−
k
∑

i=1

(θ̂i − θ̂mle(H0))
2

a2i (b
2
i + θ̂mle(H0)2)

−
k
∑

i=1

ln(b2i + θ̂mle(H0)
2), (22)

and the test rejects H†
0 when −2 ln(LRT ) ≥ χ2

1;α.

Remark. When b1 = · · · = bk, since testing H†
0 : θ = 0 is equivalent to testing

H⋆
0 : θ∗ = g(θ) = ln b, an optimum test is based on

z = (θ̄∗ − θ∗)

√

√

√

√

k
∑

i=1

1/a2i

where θ̄∗ is defined in equation (14).

3.2 Bayesian solution

We now turn our attention to a Bayesian solution of the above inferential problem
about θ. Assume we have a flat prior for the common effect size θ, which implies that
(15) is also the posterior distribution of θ, given the data (sample effect size estimates).
Inspite of the fact that this posterior distribution is rather complicated, that is,

π(θ|data) ∝
k
∏

i=1

(

b2i + θ2
)−1/2

exp

(

−1

2

k
∑

i=1

(θ̂i − θ)2

a2i (b
2
i + θ2)

)

(23)

we can readily use the familiar MCMC algorithms implemented in the software pack-
ages WinBUGS or OpenBUGS to generate samples of θ values and hence compute
the posterior mean and credible interval of θ. It may also be possible to use (8) and
(11) recursively to generate posterior distribution of θ. However, our approach on (23)
is direct. We present in the next section the results for the Dentifrice data used in
Section 2.3.

3.3 An application

Table 8 provides the estimates and their associated 95% confidence intervals for the
Dentifrice data for which the null hypothesis of a common effect size is accepted. The
MLE estimate under H0 as well as θ̂w and θ̃w are nearly identical in this example as
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well as the 95%-confidence intervals. In all three cases, zero is not included in the
intervals. Inference under the Bayes solution is based on the posterior mean and the
credible interval. The posterior distribution of θ is graphically displayed in Figure 1.
The 95% credible interval does not include zero. The programming code for the Bayes
analysis is provided in the Appendix.

Applying the LRT from (22) to the data set, we obtain the value of the test

statistic as LRT = 0.0150 which leads to rejection of H†
0 since the cut-off point is

exp(−χ2
1;α/2) = 0.1489.

For this data set, the bi’s being nearly equal, the mean of the b2i ’s is 7.9752 with
standard deviation 0.0205. So, we have used the estimate based on the transformed
version of θ̂∗ and the test based on z with constant b2 = 7.9752. The estimate θ̂∗

is 1.014 leading to z = −2.8976 and two-sided p-value of 0.0038, again leading to

rejection of H†
0.

Based on the above results, we conclude that there is a significant difference be-
tween the control and the treatment effects for Dentifrice.

Table 8: Estimates and 95% intervals in the Dentifrice example

θ̂mle(H0) θ̂w θ̃w Bayes

-0.0689 -0.0688 -0.0687 -0.0625
(-0.1154, -0.0223) (-0.1155, -0.0223) (-0.1154, -0.0222) (-0.1141, -0.0103)

−0.15 −0.10 −0.05 0.00 0.05

0
5

1
0

1
5

 

Figure 1: Posterior distribution of effect size θ in the Dentrifrice example



Knapp, Xu and Yu: On Some Aspects of Inference 73

Acknowledgment

We would like to thank Prof. Bimal Sinha for his valuable comments during this
research project.

References

[1] Abrams, K. and Sanso, B. (1998). Approximate Bayesian inference for random
effects meta-analysis, Statistics in Medicine, 17, 201-218.

[2] Hartung, J., Knapp, G., and Sinha, Bimal K. (2008). Statistical Meta-Analysis
with Applications, Wiley, New York.

[3] Hedges, L. and Olkin, I. (1985). Statistical Methods for Meta-Analysis, Academic
Press, Boston.

[4] Kirsch, I, Deacon, B. J., Huedo-Medina, T. B., Scoboria, A., Moore, T. J.,
and Johnson, B. T. (2008). Initial severity and antidepressant benefits: a meta-
analysis of data submitted to the Food and Drug Administration, PLOS medicine,
5, 0260-0268.

[5] Lehmann, E. L. (1986). Testing Statistical Hypotheses, 2nd Edition, Springer, New
York.

[6] Li, Y., Shi, L., and Roth, H. D. (1994). The bias of the commonly used estimate of
variance in meta-analysis, Communications in Statistics—Theory and Methods,
23, 1063-1085.

[7] Miwa, T. (1994). Statistical inference on non-centrality parameters and Taguchi’s
SN ratios, Proceedings on International Conference, Statistics in Industry, Science
and Technology, 66-71.

[8] Miwa, T. (1996). A variance-stabilizing transformation of non-central F distri-
bution, Proceedings of 18th Symposium, Japanese Society of Applied Statistics,
81-85.

[9] Nagata, Y., Miyakawa, M., and Yokozawa, T. (2003). A test of the equality of
several SN ratios for the systems with dynamic characteristics, Journal of the
Japanese Society for Quality Control, 33, 83-92.



74 International Journal of Statistical Sciences, Vol. 11s, 2011

Appendix: Programming code for the Bayes analysis

The R package BRugs has been used for the Bayes analysis. The programming code
reads as follows

library(BRugs)

# Check the model

modelCheck("effect_size_model.txt")

# Load the data

modelData("dentifrice_data.txt")

# Compile and number of chains

modelCompile(numChains=2)

# Set seed for reproducing the results

modelSetSeed(2923)

# Initial value of chain 1

# Here: Initial value 0

modelInits("initial_values_chain1.txt", chainNum=1)

# Initial value of chain 2

# Here: Initial value 0.5

modelInits("initial_values_chain2.txt", chainNum=2)

# Set the parameter

samplesSet("theta")

# Update the model

modelUpdate(100000)

# Statistcs; set the length of the burn-in period

# The length of the burn-in period is 5000 here

samplesStats("*", beg=5000)

# Plot the posterior density

plotDensity("theta", xlab=expression(theta), lwd=2)

The code for the model is:

model { for(i in 1:N){

g[i] ~ dnorm(mu[i], tau[i])

mu[i] <- theta

tau[i] <- 1 / (a[i] * ( b[i] +pow( theta, 2 ) ) ) }

theta ~dnorm(0, 1.0E-10)

}


