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Abstract

Mahalanobis’s famous paper on Fractile Graphical Analysis introduced
a plethora of new statistical concepts and techniques [see Mahalanobis
(1960)]. The method was originally proposed to compare two regression
functions. We discuss and re-interpret some of his work, highlighting his
contributions and some of the difficulties encountered. We develop a boot-
strap based hypothesis test to compare the fractile regression curves based
on their isotonized estimators. The proposed procedure does not depend on
the choice of any tuning parameter and is computationally simple. Through
an extensive simulation study, we illustrate the finite sample performance of
our procedure. We also discuss three real data applications that illustrate
the scope of the methodology.
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1 Introduction

Fractile Graphical Analysis (FGA) was proposed and investigated by Prasanta Chan-
dra Mahalanobis in a series of papers and seminars during the period 1950-70 as a
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method to compare two regression functions. The procedure is graphical in nature
and can be thought of as the regression of the response variable on the ranks of the
predictor using non-parametric techniques; and thus the name FGA.

1.1 A Brief History of Fractile Graphical Analysis

Mahalanobis’s famous paper “A method of fractile graphical analysis” first appeared
in a special issue of Econometrica [see pages 325-351 in volume 35 of the journal,
published in the year 1960] that was brought out in honour of Ragnar Frisch, joint
winner of the first Nobel Prize in Economics, in the year of his sixty-fifth birthday.
The stage was indeed grand, and the issue had contributions from other real stars
in economics including Nobel laureates like Jan Tinbergen, Paul Samuelson, Kenneth
Joseph Arrow and Robert Merton Solow. Mahalanobis in his paper provided “some
examples of the use of fractile graphical analysis”, which he described as “a new
method for the comparison of economic data relating to the same population over time
or to any two populations that differ as to geographical region or in any other way”.
The paper instantly created a sense of excitement among statisticians in India and
abroad. Sankhyā in 1961 reprinted Mahalanobis’s original article along with a series
of other papers on this topic by Takeuchi (1961), Sethuraman (1961), Parthasarathy
and Bhattacharya (1961). The paper also generated some controversy – Subramanian
Swamy [see Swamy (1963)] wrote a paper in Econometrica criticizing Mahalanobis’s
approach, and later Iyengar and Bhattacharya (1965) published an article responding
to Swamy’s paper. A nice summary of the developments on FGA can be found in a
collection of articles by Mahalanobis that was edited by P. K. Bose and published in
1988 [Mahalanobis (1988)].

Although a somewhat forgotten statistical tool now, the developments made by
Mahalanobis in this area remain extremely relevant as it can be said to have led to
the inception of modern nonparametrics. We mention here some of his contributions
in nonparametrics and allied areas. (a) FGA is one of the earliest works on nonpara-
metric regression. In fact Watson’s (1964) seminal paper on nonparametric kernel
regression cited and discussed fractile graphs. (b) Mahalanobis (1960) also provided
some guidelines for formally testing the equality of two regression curves nonparamet-
rically. (c) FGA used one of the earliest forms of resampling (subsampling) techniques
for carrying out statistical tests [see Hall (2003)]. (d) Mahalanobis (1988) provides
one of the earliest versions of a multivariate fractile/quantile transformations. But the
emphasis and “the aim of the method (FGA) is rather to produce distribution-free
tests” to compare the fractile graphs than to accurately (nonparametrically) estimate
the regression curves, as pointed out by Watson (1964) in his seminal paper. We
maintain the same spirit in our discussion, and investigate nonparametric tests for the
formal comparison of the fractile graphs.

Mahalanobis initially developed and used FGA to study the economic condition of
rural India on the basis of data collected on household consumption and expenditure
over two different time periods: the 7th (October 1953 to March 1954) and the 9th
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(May to November 1955) rounds of the National Sample Survey of India. It is obviously
of great importance to policy makers of a country like India to understand the economic
condition of the rural community. They would also like to ascertain whether their
policies have been able to improve the economic condition of the rural population over
a period of time. As a measure of the economic well-being of the rural community,
one may consider the fraction of total expenditure that is spent on food articles to
the total expenditure incurred. It is expected that lower this proportion, the greater
is the possibility of the rural community being better off.

Let X be the total expenditure per capita per 30 days in a household and Y
be the fraction of total expenditure on food articles per capita per 30 days in the
household. Mahalanobis wanted to perform a regression analysis of Y on X and was
interested in comparing the regression functions at two different time points. But due
to inflation, the total expenditure (per capita per 30 days) for the two time points
are not comparable. Just comparing the regression functions for the two populations
did not make much sense. In fact, Mahalanobis was aware that the comparative
study that he was interested in will be inadequate even if one uses inflation adjusted
figures for expenditures at the two different time points. So, he chose to compare the
means of the Y -variable in different fractile (rank) groups corresponding to the X-
variable. This approach leads to a novel way of standardizing the covariate X so that
comparison of the two regression functions over two different time periods can be done
in a more meaningful way. More precisely, FGA does this required standardization by
considering F (X) instead of X as the regressor, where F is the distribution function
of X.

Recently there has been a renewed interest in FGA, and several papers have been
written highlighting the usefulness and applicability of FGA in diverse settings; see e.g.,
Nordhaus (2006), Hertz-Picciotto and Din-Dzietham (1998), Montes-Rojas (2010),
Bera and Ghosh (2006), Sen (2005) and Sen and Chaudhuri (2010). Nordhaus (2006)
shows fractile plots of key geographic variables (temperature, precipitation, latitude,
etc.) against the fractiles of log of “output density” while trying to explore the linkage
between economic activity and geography. Hertz-Picciotto and Din-Dzietham (1998)
compare the infant mortality using a “percentile based method” of standardization
for birthweight or gestational age. Their motivation underlying the percentile-based
method of standardization is that comparable health for two population groups will be
expressed as equal rates of disease or mortality at equal percentiles in the distributions
of either birthweight or gestational age. Montes-Rojas (2010) considers nonparametric
estimators of average and quantile treatment effects, in applications arising in econo-
metrics, using ideas from FGA. Bera and Ghosh (2006) discuss FGA with some histor-
ical perspectives and consider some relevant applications in Economics and Finance.
The estimation and formal testing of fractile graphs using smooth nonparametric esti-
mators is considered in Sen (2005). Sen and Chaudhuri (2010) investigate FGA when
the covariate can be multi-dimensional.

Our contribution goes beyond the aforementioned papers in the following ways.
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We develop tests of hypotheses for the comparison of the fractile regression curves
using isotonized nonparametric estimators. As mentioned before, this comparison is a
central issue in FGA, and Mahalanobis himself did not have very clear results in this
direction. In the process, we review and re-interpret some of the main ideas of FGA.
Although Sen (2005) addressed this comparison, the paper was restricted to the use of
smooth regression estimators. His approach, although conceptually simple, made the
formal comparison of the fractile regressions very ad-hoc as it depended on the choice
of many tuning parameters. In this paper, we propose tests of hypotheses that do
not depend on the choice of tuning parameters, and illustrate, through an extensive
simulation study, the remarkable finite sample properties of the method. The proposed
procedure can be implemented easily, and is computationally fast.

In Section 2, we define and study some properties of the population version of
fractile regression. In Section 3, we introduce the nonparametric estimators of frac-
tile regression to be considered in the paper. In particular, we motivate the define
the isotonized estimators. The formal comparison of the fractile regression curves is
considered in Section 4. The finite sample performance of our method is investigated
in Section 5. Section 6 discusses application of FGA in three different examples. We
end with some concluding remarks, mentioning some of the open research problems in
this area and discuss possible extensions in Section 7.

2 Fractile Regression

In precise mathematical terms, FGA can be described as follows: consider two bivariate
random vectors (X1, Y1) and (X2, Y2) and the associated regression functions µ1 and
µ2 where µ1(x) = E(Y1|X1 = x) and µ2(x) = E(Y2|X2 = x). Then the fractile
regression functions are defined as

m1(t) = E{Y1|F1(X1) = t} and m2(t) = E{Y2|F2(X2) = t}

for t ∈ (0, 1), where F1 and F2 are the distribution functions of X1 and X2 respectively
[see Mahalanobis (1960)]. Mahalanobis’s goal was to test the equality of the fractile
regression curves m1 and m2 nonparametrically. Note that the comparison of m1(t)
and m2(t) amounts to comparing the means of the responses Y1 and Y2 at the t-th
quantile of the covariates rather than the same value of the covariates, as is done in
usual regression.

Notice that the transformed covariates F1(X1) and F2(X2) both have a uniform
distribution on (0, 1). This achieves a distribution-free nonparametric standardization
of the covariates. The uniform distribution of the transformed covariate also yields op-
timality properties of the estimated fractile regression function; see Sen and Chaudhuri
(2010). This standardization makes the fractile regression functions invariant under
all strictly increasing transformations of the covariate. In other words, suppose that
(X1, Y ) is a continuous bivariate random vector and if X2 = φ(X1), where φ is any
strictly increasing transformation, then E{Y |F1(X1)} = E{Y |F2(X2)}, where F1 and
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F2 are the distribution functions of X1 and X2 respectively. This is a crucial property
and can be interpreted in the following way: the fractile transformation makes the
regression functions comparable even when the covariate in the second population is
any increasing transformation of that of the first population.

In fact, it can be shown that if any transformation of the covariate achieves in-
variance of the regression functions under the group of all strictly increasing functions
of the covariate then it must be a function of the fractile transform X1 7→ F1(X1).
Furthermore, if we impose the additional assumption of uniformity of the transformed
covariate distribution, then the fractile transformation is the only choice; see Sen and
Chaudhuri (2010) for a discussion and a proof of the results. This property is very im-
portant while comparing regression functions, where the distributions of the covariates
are very different for the two populations under comparison.

3 Estimation of Fractile Regression

Before we describe our procedure, let us first introduce Mahalanobis’s ideas. Consider
a random sample {(Xi, Yi)}ni=1 from a bivariate population, where X1 ∼ F . Suppose
that the data points are ranked in the ascending order of X. The n data points are
divided into g fractile groups each of equal size n′ = n/g. On the x-axis, g equidistant
points 1, 2, . . . , g are marked to represent the g fractile groups, and the corresponding
means of the y-variable, labeled as y′1, y

′
2, . . . , y

′
g, are plotted. Each pair of adjoining

points y′i and y′i+1 for i = 1, 2, . . . , g− 1 are joined by straight lines to get a polygonal
curve called the fractile graph.

In this paper, we consider two kinds of nonparametric estimation techniques for
the fractile regression function

m(t) = E{Y1|F (X1) = t} for t ∈ [0, 1].

The first method uses smoothing techniques, whereas the second method relies heavily
on known “shape” constraints on the regression function (e.g., increasing, decreasing).
Sen (2005) considered the estimation of fractile regression using kernel smoothing
methods in great detail, and we just summarize the main ideas below.

A general class of smoothed nonparametric estimators of fractile regression, called
linear smoothers [as proposed by Stone (1977)], can be expressed in the form:

m̂S
n(t) =

n∑

i=1

YiWn,i(t),

where Wn,i(t) is a proper weight function depending on the input data, preferably
satisfying

∑n
i=1Wn,i(t) = 1, for all t ∈ [0, 1]. If we use nonparametric kernel regression

procedures [see e.g., Muller (1988), Härdle (1990), Wand and Jones (1995), Fan and
Gijbels (1996)], the weight function can depend on the smoothing bandwidth and can
take the form Wn,i(t) = Wn,i(t, hn, Fn(X1), Fn(X2), . . . , Fn(Xn)), 1 ≤ i ≤ n, where Fn
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Figure 1: (a) The scatter plot with the true regression function, (b) the fractile re-
gression function (in dashed black) along the smoothed (in solid red) and the shape
constrained increasing (in solid blue) nonparametric estimators.

is the empirical distribution function of {Xi}ni=1 (i.e., Fn(x) =
1
n

∑n
i=1 1{Xi≤x} for x ∈

R), and hn is the smoothing bandwidth based on a sample of size n. Note that as we
are regressing Y on the ranks of X, in a sense, we can pretend that our observations are
{(F (Xi), Yi)}ni=1, where F is the distribution function of X1. But as the distribution
function F is not known, we work with the empirical distribution function Fn, and it
is used in the weight functions for the fractile regression estimators.

Fractile regression can also be obtained as a transformation of the usual regression
function [see Bhattacharya and Muller (1993)] by observing that

mi(t) = µi ◦ F−1
i (t), for i = 1, 2.

This provides an alternative way of estimating fractile regression: first estimate the
usual regression function and then estimate the distribution function of the covariate to
obtain the final estimator. But this requires a smooth estimation of the distribution
function of the covariate, making it more difficult to implement; and in fact, our
simulations showed that it had worse finite sample properties. Thus, we do not explore
this further.

The choice of the smoothing bandwidth hn is of crucial importance in the above
smoothing procedures. Although there are several methods proposed in the literature
[e.g., see Rice (1984), Härdle (1990), Wand and Jones (1995), Fan and Gijbels (1996)]
for choosing the optimal bandwidth, in practice, the performance of most bandwidth
selectors is far from satisfactory. This motivates the use of “shape” constrained non-
parametric estimators that are completely automated, and do not need the choice of
any tuning parameter.

Suppose that the usual regression function is known to be increasing (or decreas-
ing). In that case the fractile regression function m(·) will also be increasing (or
decreasing). As we will see, in most of the real applications considered in this pa-
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per, such shape restrictions arise naturally. Representing the transformed data set as
{(i/n, Y[i:n])}ni=1, where Y[i:n] denotes the concomitant of the i-th order statistic of X,
we can now define the isotonic (increasing) estimator of m as

m̂I
n = argmin

f∈C

n∑

i=1

{
Y[i:n] − f (i/n)

}2
(1)

where C denotes the class of all increasing real valued functions on [0, 1]; see Brunk
(1970) and Robertson et al. (1988). Thus, the isotonic estimator is obtained by
minimizing the least squares criterion over all increasing functions. A unique solution
to problem (1) exists and can be expressed as [see Robertson et al. (1988), page 24]

m̂I
n (k/n) = max

i≤k
min
j≥k

Y[i:n] + . . .+ Y[j:n]

j − i+ 1
,

for k = 1, . . . , n. The estimator can be easily computed using the pool adjacent
violators algorithm (PAVA); see Barlow et al. (1972). If skillfully implemented, PAVA
has a computational complexity of O(n) [see Grotzinger and Witzgall (1984)]. There is
quite a large literature on isotonic regression. Barlow et al. (1972) is a classic reference
along with Robertson et al. (1988). A recent paper by de Leeuw at al. (2009) gives
an overview of the problem’s history and computational aspects.

Note that m̂I
n is only defined at the x-values i/n, but it can be defined on the

entire interval [0, 1] using a piece-wise constant (or linear) interpolation. The main
advantage of the isotonized estimator m̂I

n is that it avoids the specification of any
tuning parameter, and as we will see later, drastically simplifies the testing problem
considered in Section 4.

As an example of fractile regression, we demonstrate the smooth kernel based
estimator, the shape constrained (increasing) estimator in Figure 1 along with the true
fractile regression curve. We generated a random samples of size n = 100 from the
population Y = 1.0+X + ǫ where ǫ ∼ N(0, 0.09) and X ∼ Exp(1). Although the two
estimators are quite similar, the kernel based method produces a very wiggly function
(a consequence of the chosen optimal bandwidth being too small). For our smooth
estimator, we have used the Nadaraya-Watson type weight function [see Sen (2005)]
with the standard normal kernel and optimal bandwidth obtained by the method of
least squares cross validation.

4 Comparison of Estimated Fractile Regression Functions

Suppose that we have data {(X1i, Y1i)}n1

i=1 and {(X2i, Y2i)}n2

i=1 from two populations,
and we want to test the hypotheses

H0 : m1 = m2 vs. HA : m1 6= m2, (2)
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where m1(t) = E(Y1i|F1(X1i) = t) and m2(t) = E(Y2i|F2(X2i) = t), and F1 and F2 are
the continuous strictly increasing distribution functions of X1i and X2i respectively.

Much effort has been devoted to the problem of comparing nonparametric regres-
sion curves in the recent literature [e.g., see Delgado (1993); Munk and Dette (1998);
Neumeyer and Dette (2003)]. These authors considered the testing problem

H0 : g1 = g2 vs. HA : g1 6= g2, (3)

where g1 and g2 are the usual regression curves corresponding to two different pop-
ulations. Most authors concentrated on equal design points to develop tests for (3).
Kulasekera (1995) proposed a test for the hypotheses in (3) using quasi-residuals which
is applicable under the assumption of different design points for both the samples. Ku-
lasekera and Wang (1997) considered the selection of smoothing parameters to obtain
optimal power in tests of regression curves. Munk and Dette (1998), Neumeyer and
Dette (2003) considered the problem of the comparison of nonparametric regression
curves under a very general set-up. Delgado (1993), Kulasekera (1995) and Kulasek-
era and Wang (1997) considered marked empirical processes to develop tests for the
hypotheses in (3).

All the above procedures use nonparametric smoothing techniques that involve the
choice of a number of tuning parameters and an optimal choice in finite samples is
indeed very difficult. In this section, we outline a resampling (bootstrap) based hy-
pothesis testing procedure that does not involve the choice of any tuning parameter
and is completely automated. Our method is applicable in situations when the fractile
regression function is known to obey “shape” restrictions like monotonicity (decreas-
ing/increasing). Also, none of the above mentioned authors address the problem of
possible effects of transformations on the covariate for the two populations. Further,
some of the usual methods for comparison of the regression curves do not generalize
in a straight forward manner in our setup as in fractile regression the covariate Xi is
replaced by Fn(Xi), and the Fn(Xi)’s are not independent even if the Xi’s are so.

4.1 Mahalanobis’s Idea for Comparing two Fractile Graphs

The first sample of size n1 is obtained from the first bivariate population by drawing
two independent (“interpenetrating”) random half-samples each of size n1/2. The
first half-sample is then considered, and the fractile graph G(1) is constructed from
it [see Section 3 for Mahalanobis’s construction of the fractile graphs]. The second
half-sample is used to get the second fractile graph G(2). Clearly, the two half-sample
fractile graphs G(1) and G(2) have identical statistical distributions.

Mahalanobis’s idea was to mix the two half-samples to form the combined sample
of size n1 from the first population. The combined sample is again ranked according to
the X-values and divided into g fractile groups each containing n′

1 (n′
1 = n1/g) units.

The y-averages of the corresponding fractile groups are plotted to get the combined
fractile graph G(1, 2). The “error area” a(1, 2) associated with the combined sample
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is defined as the area bounded between the two half-sample fractile graphs G(1) and
G(2) (i.e., a(1, 2) =

∫
|G(1) −G(2)|).

The second bivariate population is considered next from which a pair of indepen-
dent (“interpenetrating”) half-samples are drawn. The second set of fractile graphs
G′(1), G′(2) and G′(1, 2) are computed from the half-samples obtained from the sec-
ond population. The area bounded between G′(1) and G′(2) is called the second
“error area” associated with the second population and is denoted by a′(1, 2) (i.e.,
a′(1, 2) =

∫
|G′(1) − G′(2)|). The area between the two combined fractile graphs

G(1, 2) and G′(1, 2) is called the “separation area” and is denoted by S(1, 2) (i.e.,
S(1, 2) =

∫
|G(1, 2) − G′(1, 2)|). The statistical error E to be associated with the

“separation area” S(1, 2) is defined by the formula E =
√

a2(1, 2) + a′2(1, 2). The
significance of the observed value of S(1, 2) is tested by considering the test-statistic
S2(1, 2)/E2 , which Mahalanobis thought would be distributed approximately like a
chi-square random variable. However, there does not appear to be any mathematical
validity for this result. Interested readers are referred to Takeuchi (1961), Mitrofanova
(1961) and Mahalanobis (1988) for some of the statistical properties of the “error area”
in FGA. Sethuraman (1961) introduced other measures of divergence between fractile
graphs and investigated their limit distributions.

The distribution of the test-statistic S2(1, 2)/E2 is not in general chi-square. The
implementation of the method also requires the choice of the “group” size g, a tun-
ing parameter. Mahalanobis’s idea of using the subsamples to approximate the null
distribution can, in light of modern developments in bootstrap and other resampling
techniques, be improved. In the following we propose a bootstrap based test that uses
the essential ideas of Mahalanobis and discuss its implementation.

4.2 A Resampling Based Test

After obtaining the estimates of fractile regression, m̂1,n1
and m̂2,n2

, for the two pop-
ulations, to test the hypotheses in (2), we might use the test statistic

T (p)
n1,n2

=

∫ 1

0
|m̂1,n1

(t)− m̂2,n2
(t)|pdt (4)

where p ≥ 1. When p = 1 this gives us the “separation area” between the two fractile
regression functions. Under the null hypothesis, we expect the test statistics to be
small, whereas large values of the test statistics would support the alternative hypoth-
esis. For mathematical and computational tractability, we recommend taking p = 2,
and use it in our data analysis. A major technical barrier in using the test statistic

T
(p)
n1,n2

is that its sampling distribution is analytically intractable. But recently there
has been progress in this direction, and Durot (2007) shows that under appropriate
conditions, when we use the shape restricted nonparametric estimators,

n
1/6
1

{
n
p/3
1

∫ 1

0
|m̂1,n1

(t)−m1(t)|pdt−mp

}
→d N(0, σ2

p),
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where mp and σp are unknown constants that depend in a complicated way on the
regression function and the error distribution. A similar result would also hold for
the estimator for the second sample. The use of the asymptotic normal distribution
is difficult as that involves estimating the nuisance parameters mp and σp. But this
suggests that an appropriate bootstrap [see e.g., Hall (1992) and Efron and Tibshirani
(1993)] based test may provide good approximation for the P-value of testing the
hypotheses in (2). In light of this, we propose a resampling based procedure to test
the hypotheses in (2). A complete theoretical justification of our method is beyond
the scope of the present paper, and will be the topic of future research.

We describe below the steps involved in computing the bootstrap estimates of the

P-values when Tn1,n2
≡ T

(2)
n1,n2

is used as the test statistic.

• We transform the covariate X into its quantiles, i.e., we transform the data
set into {(i/n1, Y1[i:n1])}n1

i=1 and {(i/n2, Y2[i:n2])}n2

i=1, where Y1[i:n1] denotes the
concomitant of the i-th order statistic of X for the first sample [see e.g., David
and Nagaraja (2003)].

• After transforming the covariate, we obtain the estimated isotonized fractile re-
gression functions m̂1,n1

and m̂2,n2
for the two samples as explained in Section 3.

We compute Tn1,n2
from the data. Note that we use the piece-wise constant

extension of m̂1,n1
and m̂2,n2

on the interval [0,1] which drastically simplifies the
computation of Tn1,n2

.

• To test the significance of the observed value of Tn1,n2
, we first compute the

pooled estimate of fractile regression m̂(·) combining the two data sets. This is
accomplished by defining

m̂ = argmin
f∈C

n1+n2∑

i=1

{
y[i:n1+n2] − f (i/(n1 + n2))

}2
wi (5)

where y[i:n1+n2] is the concomitant of the i-th order statistic of X for the pooled
sample, and wi = 1/n1 or 1/n2 depending on whether the i-th data point is
from the first or second sample. Note that (5) is the weighted version of isotonic
regression, and slightly different from (1). But invoking the PAVA algorithm on
the n1 + n2 response values in the pooled sample gives the solution. From the
definition of the weights wi, it is clear that the sum of the weights for each sample
is 1, and this ensures that both the samples get equal weightage in calculating the
pooled estimator, even though their sample sizes might be different. Under the
null hypothesis, m̂ acts as the surrogate for the true fractile regression function.

• We compute the residual at each i/nj for 1 ≤ i ≤ nj and j = 1, 2 using the
pooled estimate m̂(·), i.e.,

ǫ̂ji = Yji − m̂(i/nj).



Sen and Chaudhuri: Mahalanobis’s Fractile Graphs 27

To construct the bootstrap samples of sizes n1 and n2, we draw from the distri-
bution of the residuals, to construct the bootstrap response values. If we assume
homoscedastic errors, this could be achieved by drawing a simple random sam-
ples with replacement {ǫ∗ji : i = 1, 2, . . . , nj; j = 1, 2} from the residuals {ǫ̂ji},
and then defining

Y ∗
j[i:nj]

= m̂(i/nj) + ǫ∗ji, for i = 1, 2, . . . , nj ; j = 1, 2.

To take care of heteroscedasticity, we use wild bootstrap to generate ǫ∗ji = ǫ̂jiVji,
where V11, . . . , V1n1

, V21, . . . , V2n2
are zero mean i.i.d. random variables that are

independent from the two samples [see e.g., page 257 of Mammen (1993)]. In this
paper we consider the Vji’s as i.i.d. random variables with masses (

√
5+1)/(2

√
5)

and (
√
5 − 1)/(2

√
5) at the points (1 −

√
5)/2 and (1 +

√
5)/2 (note that this

distribution satisfies E(Vji) = 0;E[V 2
ji] = E[V 3

ji] = 1).

• Let T ∗, the bootstrap version of the test statistic, be defined as in (4), with
p = 2, based on the bootstrapped fractile regression curves obtained from the
bootstrapped samples {Y ∗

j[i:nj]
}. These computations are repeated N times (we

have used N = 2000 in our numerical studies) to yield {T ∗
i }Ni=1.

• We compare the observed difference between the fractile regressions (i.e., Tn1,n2
)

with the empirical distribution of the test statistic T ∗
i . The bootstrap estimate

of the P-value is the proportion of times T ∗
i exceeds the observed value of Tn1,n2

.

5 Simulation Study

To investigate the finite sample properties of our testing procedure, we consider two
samples obtained from the two regression models:

Y1i = µ1(X1i) + ǫ1i, and Y2i = µj(X2i) + ǫ2i,

for j = 2, 3, 4. We study three kinds of increasing regression functions – one linear
and two non-linear – with homoscedastic and heteroscedastic errors. We consider the
following regression models with X1i

iid∼ Exp(1), X2i
iid∼ Exp(1), and ǫ1i

iid∼ N(0, 0.09)
for sample sizes (n1, n2) = (25, 25), (25, 50), (25, 50), (50, 25), (50, 50), (50, 100):

1. µ1(x) = µ2(x) = 1; µ3(x) = 1 + 0.5x; µ4(x) = 1 + 2.0x; ǫ2i
iid∼ N(0, 0.09).

2. µ1(x) = µ2(x) = 1; µ3(x) = 1 + 0.5x; µ4(x) = 1 + 2.0x; ǫ2i ∼ N(0, 0.09X2i).

3. µ1(x) = µ2(x) = e−x; µ3(x) = e−1.5x; µ4(x) = e−2.0x; ǫ2i
iid∼ N(0, 0.09).

4. µ1(x) = µ2(x) = e−x; µ3(x) = e−1.5x; µ4(x) = e−2.0x; ǫ2i ∼ N(0, 0.09X2i).
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n2 25 50 100 25 50 100 25 50 100

n1 Model µ1 vs. µ2 µ1 vs. µ3 µ1 vs. µ4

25 1 0.044 0.044 0.058 0.595 0.695 0.767 0.796 0.887 0.937
50 1 0.053 0.048 0.046 0.697 0.773 0.837 0.871 0.931 0.966
25 2 0.043 0.033 0.022 0.478 0.560 0.649 0.762 0.852 0.918
50 2 0.043 0.035 0.036 0.615 0.678 0.788 0.857 0.924 0.964

25 3 0.042 0.047 0.066 0.153 0.188 0.250 0.319 0.435 0.547
50 3 0.052 0.046 0.050 0.182 0.237 0.303 0.417 0.567 0.697
25 4 0.054 0.040 0.034 0.069 0.071 0.079 0.150 0.183 0.259
50 4 0.081 0.046 0.034 0.107 0.089 0.081 0.220 0.261 0.330

25 5 0.037 0.050 0.061 0.347 0.432 0.530 0.815 0.921 0.947
50 5 0.051 0.052 0.060 0.432 0.589 0.687 0.926 0.978 0.988
25 6 0.050 0.036 0.029 0.184 0.201 0.236 0.581 0.698 0.773
50 6 0.068 0.043 0.030 0.238 0.272 0.335 0.724 0.782 0.865

Table 1: Rejection probabilities of a wild bootstrap version of the test for various
sample sizes and the regression functions when the nominal level is α = 0.05.

5. µ1(x) = µ2(x) =
√
x+ 1.0; µ3(x) =

√
x+ 1.5; µ4(x) =

√
x+ 2.0; ǫ2i

iid∼
N(0, 0.09).

6. µ1(x) = µ2(x) =
√
x+ 1.0; µ3(x) =

√
x+ 1.5; µ4(x) =

√
x+ 2.0; ǫ2i ∼

N(0, 0.09X2i).

We use the wild bootstrap methodology to generate the bootstrap samples (as dis-
cussed in Section 4). Table 1 shows the rejection probabilities of the wild bootstrap
version of the test (i.e., the power of the statistical test) for various sample sizes and
the three different regression functions when the nominal level of the test (α) is fixed
at 0.05. We see that for testing µ1 versus µ2, the estimated rejection probabilities
are quite close to 0.05, and as we move further away from the null hypothesis, the
probabilities very rapidly move towards 1. Note that as the regression functions in
models 3 and 4 are quite similar the power of the test is comparatively low. Table 2
shows the rejection probabilities of the test for the same models when α = 0.01. The
test seems to be slightly conservative as most of the rejection probabilities are less
than 0.01 when the null hypothesis is true, but this could also be an artifact of the
relatively small number of replications consider. Note that to construct both the ta-
bles we generate 2000 bootstrap samples per data set (to compute the cut-off value for
the test statistic) and repeat the analysis for 2000 data sets to compute the rejection
probabilities.
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n2 25 50 100 25 50 100 25 50 100

n1 Model µ1 vs. µ2 µ1 vs. µ3 µ1 vs. µ4

25 1 0.005 0.008 0.010 0.345 0.472 0.624 0.645 0.781 0.8720
50 1 0.004 0.004 0.009 0.568 0.698 0.781 0.790 0.882 0.952
25 2 0.002 0.003 0.002 0.211 0.286 0.391 0.558 0.698 0.831
50 2 0.004 0.004 0.004 0.391 0.517 0.644 0.720 0.847 0.933

25 3 0.006 0.008 0.012 0.037 0.068 0.084 0.120 0.204 0.298
50 3 0.010 0.005 0.009 0.060 0.096 0.149 0.188 0.357 0.505
25 4 0.006 0.006 0.007 0.011 0.007 0.022 0.035 0.068 0.117
50 4 0.011 0.006 0.007 0.024 0.019 0.022 0.078 0.090 0.145

25 5 0.005 0.010 0.014 0.126 0.191 0.303 0.601 0.786 0.882
50 5 0.005 0.008 0.011 0.199 0.330 0.492 0.808 0.930 0.975
25 6 0.004 0.004 0.003 0.054 0.067 0.082 0.365 0.461 0.586
50 6 0.012 0.006 0.005 0.070 0.105 0.136 0.503 0.620 0.737

Table 2: Rejection probabilities of a wild bootstrap version of the test for various
sample sizes and the regression functions when the nominal level is α = 0.01.

6 Some Real Data Illustrations

In this section, we describe three examples involving real data that illustrate the scope
and usefulness of FGA. We analyze the data sets as par the methodology developed in
the paper using isotonic methods to estimate the fractile regression functions. See Sen
and Chaudhuri (2010) for more details and another analysis of these examples using
smooth estimates of fractile regression.

Example 1: The Household Expenditure and Income Data for Transitional Economies
(HEIDE) database contains data from household survey maintained by the World
Bank Group; and it includes four countries in Eastern Europe and the former So-
viet Union (see http://www.worldbank.org/ for more information). It was created
as part of a project analyzing poverty and existing social assistance programs in the
transitional economies. What immediately arrests attention is the startling drop in
income and increase in inequality accompanying the transition of these countries to
market economies. We investigate this inequality in income and compare the economic
condition of the transitional economies.

A simple measure of the economic well-being of a population can be taken as the
proportion of expenditure on food as a fraction of total expenditure per capita per
household (in USD). This proportion would be quite small for rich and wealthy people,
but for the poor it would be close to one. Thus it is known a priori that the regression
functions are decreasing. And by regressing this proportion on the total expenditure,
we can get a fair idea of the inequality in income and the economic condition of the
populations.
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Figure 2: (a) Usual regression curves, and (b) the estimated fractile regression func-
tions, for proportion of expenditure on food on total expenditure for Poland (in red,
solid line) and Bulgaria (in black, dashed line).

We consider data sets for two countries from the HEIDE database, namely Poland
(with 16051 data points) and Bulgaria (with 2466 data points), and estimate the
regression functions. Figure 2 shows the estimates of the usual regression functions
and that of the fractile regression curves with proportion of expenditure on food as the
response and total expenditure per capita per household (in USD) as the predictor.
Both the regression curves in Figure 2a clearly show the decreasing trend as expected.
The ranges of the covariates are somewhat different in the two populations even though
both of them are measured in USD. This might be partly because the data for the
two populations were collected at different time points (Jan-Jun 1993 for Poland and
Jan-Jun 1995 for Bulgaria). It might also be partly due to the disparity in purchasing
powers of 1 USD in the two countries at two different time points. The crossing of
the two regression functions for large covariate values is also disturbing. To make the
regression curves comparable, we need some standardization of the covariates.

We would really like to compare the mean proportion of food expenditure for
the poor (or the rich) in one population with that of the poor (or the rich) in the
other population. The fractile curves accomplish exactly this, enabling us to compare
the mean response values for fixed percentiles of total expenditure. The transformed
covariate values close to 0 correspond to the very poor people and values close to 1
correspond to the richest people in the populations if we take total expenditure as
a measure of economic condition. In Figure 2b, the two fractile regression functions
are properly aligned and it appears that the condition of households in Poland is
uniformly economically better than those of Bulgaria. A formal test of hypothesis
using the resampling procedure outlined in Section 4 yields a P-value very close to 0.

Example 2: The Reserve Bank of India keeps data on the sales (in Indian rupees)
and profit (as a fraction of sales) for non-government, non-financial public limited
companies in India over different years. The Reserve Bank of India is interested in
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Figure 3: (a) Usual regression curves, and (b) the estimated fractile regression func-
tions, for profit (as a fraction of sales) against sales for the years 1997 (in dashed
black) and 2003 (in solid red).

comparing the profitability of the companies against sales, at two time points. This
gives rise to a regression problem where one regresses profit (as a fraction of sales)
against sales. One would like to compare the two regression functions corresponding
to two time points. But the comparison of usual regression functions is not meaningful
as, due to inflation and other economic changes over time, the covariate values at two
different time points happen to differ by several orders of magnitude. Figure 3a shows
the usual regression functions for the year 1997 (dashed black) and 2003 (red solid) with
944 and 1243 data points respectively while Figure 3b shows the corresponding fractile
regression functions. The uneven covariate distribution leads to data sparsity in certain
regions of the covariate space. Besides, the large difference in the covariate values for
the years 1997 and 2003 makes the two regression functions virtually incomparable
in Figure 3a. The estimated fractile regression functions clearly show that the two
functions are not equal and the P-value obtained is 0.001.

Example 3: The usefulness of FGA is not only restricted to financial/economic
data as is illustrated in this example. Data were collected on 258 individuals from
the Bhutia tribe and 305 individuals from the Toto tribe in India on blood pressure
and weight by the scientists of the Human Genetics Unit at Indian Statistical Insti-
tute, Kolkata. It is of interest to compare the relationship of blood pressure with the
weight of an individual for the two populations. For example, a biologist might want
to compare the mean blood pressure for the two tribes with median weight for the
two populations. Such comparisons involving the notion of quantiles can be accom-
plished by studying the fractile regression functions. We know from various scientific
considerations that the regression functions will be increasing in this case, and the
shape restricted function estimators for the two populations are plotted in Figure 4a.
The two usual regression functions are not comparable as the covariates have very
different distributions in the two populations. In fact, the ranges of the covariates are
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Figure 4: (a) Usual regression curves, and (b) the estimated fractile regression func-
tions, for blood pressure against weight for the Bhutia (in dashed black) and Toto (in
solid red) tribes.

quite different. The crossing of the two regression functions is also disturbing. But
the fractile regression functions in Figure 4b adequately resolve these comparability
issues. From the fractile regression function, it can be easily seen that for the Bhutia
tribe, blood pressure remains almost constant over the entire domain of the weight
variable, a feature not very apparent in Figure 4a. A formal comparison of the two
fractile regression functions yields a P-value very close to 0.

7 Concluding Remarks

The comparison of two regression functions, when the distribution of the covariates in
the two populations are different, arises quite often in statistics, and is the central issue
of FGA. In this paper, we have developed resampling based hypothesis testing proce-
dures to compare the fractile regression curves using their isotonized nonparametric
estimators. Our procedure does not depend on the choice of any tuning parameter,
which is a major disadvantage of most of the earlier methods available in the literature.
In course of our research, we revisit some of Mahalanobis’s results and provide a brief
history of FGA. Our approach can also be extended to compare k fractile regression
curves, for k ≥ 2. We end with a brief discussion on some open problems in this area.

The proposed procedure is computationally simple and has satisfactory finite sam-
ple performance. But the theoretical validity of the method is not investigated ad-
equately in the paper, although some heuristics are provided in Section 4. Indeed,
it is mathematically challenging and beyond the scope of the present article. It will
be a topic of future research. Throughout this paper we assumed that there is prior
knowledge on the shape (increasing/decreasing) of the regression function. This helped
us to use the isotonized estimators that are free from tuning parameters. In certain
applications, such restrictions might not be known, and also might not be very ap-
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propriate. In such situations, the comparison of the fractile curves is problematic and
requires further investigation. Sen (2005) discusses some of the issues in this setup,
and proposes hypothesis testing procedures that depend on certain tuning parameters.
A thorough theoretical study of the performance of these proposed tests is unknown,
and would be an interesting problem for future research.

A natural extension of Mahalanobis’s ideas is to investigate FGA when the di-
mension of the covariate can be greater than one. Such an extension is not immediate
because there is no unique concept of rank or quantile in multi-dimension. Mahalanobis
(1988) provided some ideas in this direction. Sen and Chaudhuri (2010) consider this
problem in greater detail and discuss examples that arise in diverse applications. But
they focus mainly only on the estimation of fractile regression. A formal comparison
of the fractile functions in such a setup is an open problem and deserves attention.
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