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Abstract

In the context of modeling dose-response data for continuous outcomes, a
common procedure is to summarize the data based on sample means and
sample variances, and fit a suitable model for the means, µ(d), as a function
of dose (d), assuming either a constant variance model or a power model
for variance such as σ2 = α[µ(d)]ρ. However, in some cases the standard
deviation is neither constant nor well modeled using a power function of the
mean, and we find that practical inference for the benchmark dose can be
based on a model with mean and standard deviation as distinct functions
of dose. Herein, we explore the idea of fitting µ(d) and σ(d) as separate
functions of dose d, and use them to infer the benchmark dose (BMD)
and its lower confidence limit (BMDL). We present several examples to
demonstrate that this alternative approach has advantages over the existing
practice in some particular cases.
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Introduction

This report considers problems that arise occasionally when fitting dose-response mod-
els to continuous response data and when it is assumed that variance is functionally
related to the mean. While there are many reasonable choices for modeling the mean
as a function of dose d, σ is often taken as either a constant or a suitable power of the
mean rather than a direct function of dose (Filipsson et al., 2003; USEPA, 2006) in
dose-response modeling. In what follows, we compare models for σ that are functions
of dose with the customary model, σ2 = α[µ(d)]ρ, using data sets that were not well
described by the customary model.

For modeling a continuous response Y recorded at a given dose d, it is generally
assumed that Y ∼ N [µ(d|θ), σ2(µ|ψ)]. The underlying likelihood based on the assumed
normal data is used to compute the maximum likelihood estimates (MLEs) of the
parameters θ and ψ, and subsequently to infer the benchmark dose (BMD, also denoted
herein by d∗).

The likelihood function (apart from a constant, and here with σ a function of dose
d) is given by

L(θ, ψ|data) ∼ [

k∏

i=0

σψ(di)
−ni ]e−

1

2

∑k
i=0

[ni(ȳi−µθ(di))
2+(ni−1)s2i ]/σ

2

ψ
(di). (1)

While for special cases (e.g., constant variance) the parameters can be obtained by
least squares, in general for nonlinear models the maximum likelihood solution must
be obtained iteratively.

The nature of data for a continuous dose-response model is as follows. At the dose
level di, ni observations are recorded: yij, j = 1, · · · , ni, i = 1, · · · , k, along with a
set of n0 observations recorded at the control dose 0. Often instead of the raw data,
summary statistics such as sample means ȳ0, · · · , ȳk and sample standard deviations
s0, · · · , sk are reported. As mentioned before, normality of the data observed at dose
di with mean µ(di) and standard deviation σ(di) is usually assumed. Herein, we use
the conventional definition of sample standard deviation (sd) such that (n−1)(sd)2 ∼
σ2 × χ2

n−1.
While a rich variety of models (power, Hill, exponential, polynomial; Slob, 2002;

Filipsson et al., 2003; USEPA, 2006) has been developed for modeling µ(d), the current
practice is to model the standard deviation σ as either a constant or a power of the
mean µ(d). This may not work properly in some dose-response scenarios, and hence a
choice of the direct functional relationship between σ(d) and d may be advantageous.
Following common statistical practice, the sample means [ȳ0, · · · , ȳk] and the sample
standard deviations [s0, · · · , sk], observed at different dose levels, should be used to
shed some light on the relation between µ and σ and their dependence on the dose
rather than assuming à priori that σ is either a constant or a power of the mean µ(d).

Towards this end, a first step is to plot the sample means against dose and also the
sample standard deviations against dose. For most reasonable sample sizes, the sample
mean and the sample standard deviation being consistent estimates of the population
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mean and population standard deviation, respectively, these graphs should suggest the
nature of their dependence on the dose, albeit with sampling fluctuations. We have
also plotted the logarithm of the sample standard deviation against the logarithm of
the sample mean. The familiar power law: σ2 = α[µ(d)]ρ can be justified only if this
plot reveals a linear relationship at least approximately.

The BMD d∗ may be defined2 as the solution of the equation: µ(d∗) = µ(0)±σ(0)
with a positive (negative) slope of µ(d) at 0. Naturally, d∗ is unknown, being a function
of the parameters involved in the functions µ(d) and σ(d). Here d = 0 corresponds to
the control dose.

Our procedure is to draw inference about the BMD as follows. Assume

µ(d) = µ(d|θ), σ(d) = σ(d|ψ) (2)

where θ and ψ are two distinct sets of unknown parameters. Therefore, the func-
tions µ(d) and σ(d) can be specified using a variety of available models. The normal
likelihood, coupled with the parametric forms of µ(d|θ) and σ(d|ψ), is then used for
estimation of θ and ψ. The ordinary least squares method can be used to obtain initial
estimates of the model parameters. Having obtained MLEs for the model parameters,
we next solve for the BMD, d∗, from its defining equation:

µ(d∗) = µ(0|θ)± σ(0|ψ) (3)

resulting in d∗(θ, ψ). In the above, + or − is used depending on whether µ(d) is
increasing or decreasing in d at d = 0.3 A point estimate of d∗(θ, ψ) is then readily
obtained as ̂[d∗(θ, ψ)] = d∗(θ̂, ψ̂). (4)

The familiar Wald method (Rao, 1973) could be used to derive symmetric confi-
dence intervals for BMD. However, we will use the preferred method based on profile
likelihood (Crump and Howe, 1985). The lower confidence limit of BMD is denoted
BMDL. In what follows, we always use the 90% (2-sided) profile confidence interval,
and treat the BMDL as having nominal 1-sided coverage 0.95 (Crump and Howe, 1985;
USEPA, 2006).

2This is only one of several useful ways to define the BMD (USEPA, 2006). Here we specify the
benchmark response as the control mean, µ(0), plus or minus the control standard deviation, σ(0).

3There may be more than one solution when µ(d) is not monotone in d
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Examples

In this section we present several data sets and explain our suggested procedure. For
all of these data sets, both Bartlett’s test and the BMDS likelihood ratio test ”Test
2” indicated heterogeneous variances. We assumed normality; this assumption was
not tested because only grouped data (i.e., dose-group sample means and standard
deviations) were available. In all cases, parameters of µ(d) were unconstrained (in
BMDS, it is customary to constrain means model parameters to be either non-negative
or non-positive).

DATA SET 1

This data set came from George et al. (1986), who studied the effects of trichloroethy-
lene (TCE) on reproduction and fertility in F344 rats. The rats were exposed to TCE
in their feed for 18 weeks; dose has units mg/(kg-day). Table 1a gives summary statis-
tics for litter sizes produced by the female rats.4 The pattern of variation is complex.
There was variation of litter size among litters within a female and among females;
females differed in number of litters, number of litters declined with dose, and there
is some indication that litter size varied with number of litters.

Table 1a. Mean litter size for female rats exposed to TCE in feed

dose (d) 0 72 186 389

sample size 39 20 20 20

sample mean 10.36 10.09 9.39 8.66

sample sd 2.248 1.52 1.565 2.862

Figure 1 shows plots of the sample means versus dose, sample standard deviations
versus dose, and log(sd) versus log(ȳ). It is clear from these figures that the standard
deviation does not seem to be either a constant or to follow the routinely used power
law. On the other hand, a quadratic model seems to fit σ quite well. Either a quadratic
or linear model can describe µ well; based on parsimony, one would select a linear
model. The quadratic model for the means is also shown to illustrate the sort of
tradeoff (between fitting µ and σ) that can occur when σ is modeled as a function of
µ and when the power law does not hold (compare upper and lower rows in Figure 1).

The quadratic model is

µ(d) = θ0 + θ1d+ θ2d
2 (5)

σ(d) = ψ0 + ψ1d+ ψ2d
2.

Using the normal likelihood given by (4), the MLEs of the parameters θ and ψ can

4The mean litter size was determined for each female rat. Females bore 1-5 litters during the study.
The mean and standard deviation of these per-female means were reported by George et al. (1986)
for each dose level.
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Figure 1: Quadratic (top row) and linear (bottom row) models for the means. Solid
line: BMDS model, with power model for σ(µ). Dashed line: New model, with
quadratic model for σ(d). Error bars show 95% confidence intervals.

be readily obtained. The BMD d∗ which is a solution of (3) is given by

d∗ =
−θ1 − [θ21 − 4θ2ψ0]

1/2

2θ2
. (6)

The MLE of d∗ is obtained by plugging in the MLEs of the relevant parameters. The
BMD for the linear model is -ψ0/θ1.
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Here are the maximum likelihood estimates and related quantities under the quadratic
means model:

θ̂0 = 10.400, θ̂1 = −0.00610, θ̂2 = 4.0402e − 06, (7)

ψ̂0 = 2.1500, ψ̂1 = −0.008800, ψ̂2 = 2.7106e − 05,

BMD = 561, BMDL = 270, AIC = 248.

The maximum likelihood estimates and related quantities under the linear means
model are:

θ̂0 = 10.3500, θ̂1 = −0.0044606, (8)

ψ̂0 = 2.1500, ψ̂1 = −0.008800, ψ̂2 = 2.7106e − 05,

BMD = 459, BMDL = 327, AIC = 246.

To infer a lower confidence bound for the BMD d∗ under the profile likelihood method,
upon substitution of θ1 by−ψ0

d∗ −θ2d∗, thus reducing the effective number of parameters
from six to five, we rewrite the likelihood function (4) and maximize it with respect to
the remaining parameters, obtaining the log-likelihood value, LLd∗ . The constrained
maximization was carried out for various values of d∗, to find a close approximation
to the root5 of LLd∗ − LLmle − 0.5χ2

1,0.90.

Table 1b. Comparison of models

Models for µ and σ AIC BMD BMDL P(V) P(M)

BMDS: quadratic(d), power(µ) 253 414 282 0.017 0.546

BMDS: quadratic(d), constant 254 514 233 0.010 0.809

NEW: quadratic(d), quadratic(d) 248 561 270 0.418 0.749

BMDS: linear(d), power(µ) 252 422 262 0.017 0.530

BMDS: linear(d), constant 252 470 305 0.010 0.949

NEW: linear(d), quadratic(d) 246 459 327 0.418 0.922

Observation 1.1. First, we compare our results with those obtained using the
power model for σ from the BMDS software (Table 1b). The P-values for the new
models are based upon the likelihood ratio tests (LRTs) used in BMDS, with Test 3
and Test 4 (corresponding to P(V) and P(M)) being tests of fit for the variance and
means models, respectively. The observed standard deviations are not well described
by either model provided in BMDS (Fig.1, Table 1b) and require a non-monotonic
model (a quadratic function of either dose or µ would serve in this case).

Observation 1.2. This data set illustrates how some data sets (having a non-
monotone relation between sample mean and sd) may force an undesirable compromise

5We used the univariate root-solver, uniroot, in R
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between fitting µ and σ when σ is modeled as a monotone function of µ. Referring
to Figure 1 (top row), there was a pronounced distortion in the fit of the quadratic
model for the means when σ was modeled as a function of µ; a slightly better fit for σ
was obtained at the cost of a worse fit for µ. A similar effect for µ has been seen with
a few other data sets.

Observation 1.3. When σ is modeled as a function of µ, the BMDS models might
be rejected because the variance is not adequately fitted (based upon the LRTs, Table
1b), yet a linear dose-response relation fits the means well (Fig. 1). This problem is
illustrated below for two more data sets. This points to the need for a more flexible
approach to modeling the variance, such as that illustrated above.

DATA SET 2

This data set (Schlosser et al., 2003, Table II) represents a measure of cell proliferation
in the nasal tissues of rats exposed to formaldehyde by inhalation. The ”dose” in Table
2a is average concentration in the air inhaled, in ppm. The index of cell proliferation
is termed ULLI (for unit length labeling index).

The design used 6 rats at each combination of exposure concentration and expo-
sure duration. The eight exposure durations ranged from one day to 78 weeks. For
each rat, the index was measured at 6 nasal sites and averaged. Indices at the four
earliest exposure durations were adjusted by the authors to account for a difference of
measurement method. A time-weighted average of the per-rat values was constructed
by the authors using exposure durations, producing the means and standard devia-
tions in Table 2a. The labeling index (at each nasal site within each rat) consisted of a
count of number of radio-labeled cells divided by length of basal membrane examined
microscopically (the count data are not reported). Thus, there is reason to expect the
variance to increase with the mean, but the sources of variation are evidently complex.

Table 2a. Cell proliferation index ’ULLI’ in nasal tissues of rats

dose (d) 0 0.7 2 6 10 15

n 48 46 47 48 48 47

mean 10.9 8.2 7.7 15.0 43.8 70.7

sd 3.2 2.3 2.7 15.6 17.6 19.4

Figure 2 shows the plots of the sample means versus dose, sample standard de-
viations versus dose, and log(sd) versus log(ȳ). For the means, a cubic model fit
substantially better than quadratic or linear models (based upon AIC). For the stan-
dard deviations, it seems that the power law between µ(d) and σ(d) may hold (see
Figure 2, right panel), but with large deviations owing to the nearly constant and low
sd for the first three doses, and the high sd for the highest three doses.

We tried two additional models for σ, as follows. Our first alternative was to fit
a two-component (piecewise-constant) variance model for σ(d) with a cubic model for
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Figure 2: Two alternative models for σ(d): a two-component model (top row) and
Hill model (bottom row). A cubic model for µ is used in both cases. Solid line:
BMDS model (µ cubic, σ(µ) = αµρ). Dashed line: new model. Error bars show 95%
confidence intervals.

µ(d) as described below and shown in Figure 2 (top row):

µ(d) = θ0 + θ1d+ θ2d
2 + θ3d

3 (9)

σ(d) = σ1 for doses ≤ 2, σ2 for doses > 2.
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The MLEs of the above six parameters, with related quantities, are

θ̂0 = 10.671, θ̂1 = −3.5171, θ̂2 = 1.00615, θ̂3 = −0.033603 (10)

σ̂1 = 2.7582, σ̂2 = 17.539,

BMD = 1.145, BMDL = 0.819, AIC = 1401.

The BMD d∗ is a root of 0 = θ1d
∗ + θ2d

∗2 + θ3d
∗3 − σ(0). There are two solutions,

1.145 and 2.753, and we take the smaller as the BMD.

To infer a lower confidence bound for the BMD d∗ under the profile likelihood

method, we substitute θ1 by σ(0)−θ2d∗2−θ3d∗3

d∗ , thus reducing the effective number of
parameters from six to five. We next rewrite the likelihood function (4) and maximize
it with respect to the remaining parameters. Carrying this out for various values of
d∗, using a univariate root-solver, results in the BMDL = 0.819.

As a second approach to modeling the unusual relation of σ to µ, we applied the
Hill model (USEPA, 2006; Filipsson et al., 2003),

σ(d) = g +
v ∗ dm
km + dm

, (11)

in which parameters g, v, m and k are all positive.

The MLEs of the eight parameters and related quantities are

θ̂0 = 10.678, θ̂1 = −3.5020, θ̂2 = 0.99020, θ̂3 = −0.032587, (12)

ĝ = 2.7604, v̂ = 15.612, m̂ = 10.618, k̂ = 5.1589,

BMD = 1.145, BMDL = 0.821, AIC = 1404.

Observation 2.1. None of the dose-response models we evaluated fit especially
well according to the likelihood ratio tests we used (Table 2b), although one fits ’ade-
quately’ by the criterion P ≥ 0.10. Data Set 2 exhibits an abrupt increase in variance
that could well be related to the (unknown) details of measurement and design, re-
quiring either a piecewise-constant or an abruptly sigmoidal model.

Observation 2.2. Data Set 2 presents an interesting exception to taking the
sign of the dose-response curve slope at d = 0 to find the BMD. In the case of the
quadratic model for µ, no real solution exists when the BMR is taken to be one
standard deviation below the control response. In the case of the cubic model for µ,
there are two solutions for BMD. For a non-monotonic dose-response function, two
solutions, µ(0) ± σ(0), must be evaluated, and the smallest real solution should be
accepted.
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Table 2b. Comparison of Models

Models for µ and σ AIC BMD BMDL P(V) P(M)

BMDS: quadratic(d), constant 1748 6.443 5.528 < 0.001 < 0.001

BMDS: quadratic(d), power(µ) 1539 3.998 3.321 < 0.001 < 0.001

NEW: quadratic(d), Hill(d) 1424 5.76 5.13 0.063 < 0.001

NEW: quadratic(d), σ1 & σ2 1424 5.723 1.502 0.119 < 0.001

BMDS: cubic(d), constant 1731 7.260 6.644 < 0.001 0.310

BMDS: cubic(d), power(µ) 1484 4.294 3.926 < 0.001 0.006

NEW: cubic(d), Hill(d) 1404 1.145 0.821 0.063 0.080

NEW: cubic(d), σ1 & σ2 1401 1.145 0.819 0.119 0.099

DATA SET 3

This data set comes from a study of reproductive toxicity of butyl benzyl phthalate
(BBP) in rats (Tyl et al., 2004). BBP was administered in the feed at 0, 750, 3750,
and 11,250 ppm to 30 rats per sex per dose group; dose in Table 3a has units mg/(kg-
day). Rats were exposed to BBP for 10 weeks (pre-breeding period), through a 2-week
breeding period, then through gestation and lactation. After weaning, the females were
necropsied and organ weights were recorded.

Table 3a. Ovary weight as a percentage of final body weight in rats

dose (d) 0 50 250 750

n 30 30 30 30

mean 0.0495 0.0480 0.0460 0.0400

sd 0.001095 0.007120 0.004930 0.03834

Figure 3 shows the plots of the sample means versus dose, sample standard devia-
tions versus dose, and log(sd) versus log(ȳ). It seems unclear whether sigma is better
represented by a linear or quadratic function of dose, so we used a linear model for
µ(d) and compared quadratic and linear models for σ(d):

µ(d) = θ0 + θ1d, and (13)

σ(d) = ψ0 + ψ1d versus σ(d) = ψ0 + ψ1d+ ψ2d
2.

The MLEs and related quantities for the quadratic σ(d) model are

θ̂0 = 0.049, θ̂1 = −0.0000118, (14)

ψ̂0 = 0.0103, ψ̂1 = −0.0000524, ψ̂2 = 0.00000012,

BMD = 397.8, BMDL = 18.27, AIC = −1012.
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Figure 3: Solid line: BMDS model. Dashed line: new model (linear models for both
µ and σ). Error bars show 95% confidence intervals.

The expression for the BMD d∗ from (2) is given by

d∗ = −ψ0

θ1
(15)

and its MLE is d̂∗ = 397.8. To infer the BMD d∗ under the profile likelihood method,
we substitute −ψ0

d∗ for θ1, reducing the effective number of parameters from five to
four. We next rewrite the normal likelihood function (4) and maximize it with respect
to the remaining parameters. Carrying out the constrained maximization for various
values of d∗ yields the solution BMDL = 18.27.

Similar results after fitting linear models for both µ(d) and σ(d) are

θ̂0 = 0.04944, θ̂1 = −0.00001622, (16)

ψ̂0 = 0.001475, ψ̂1 = −0.00005703,

BMD = 90.90, BMDL = 53.1, AIC = −1026.

Observation 3.1. Our results are compared with those obtained from BMDS software
in Table 3b. The model with constant variance is obviously inappropriate and was
rejected by the likelihood ratio tests provided by BMDS. Once again, we see that
modeling σ as a power of µ leads to acceptance of the variance model and rejection
of the means model by the LRTs. Modeling σ as a polynomial of dose leads to the
reverse: rejection of the variance model and acceptance of the means model. The
quadratic model for σ(d) over-estimates σ(0) (0.0051 vs. observed sd = 0.0011) while
the linear model estimate (0.0015) for σ(0) is closer to the observed sd; perhaps this,
and the quadratic function shape, account for the low BMDL of 18 for this model. The
model with lowest AIC, linear in dose for both µ and σ, provided the best fit. Despite
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the LRTs, it appears reasonable to infer BMD and BMDL from the model linear for
µ and σ, because these models agree well with the observations near the BMD and at
the control dose. As shown later, the 2nd BMDS model in Table 3b also fits the means
adequately.

Table 3b. Comparison of Models

Models for µ and σ AIC BMD BMDL P(V) P(M)

BMDS: linear(d), constant -821 1594 879 < 0.001 0.984

BMDS: linear(d), power(µ) -1019 277 172 0.227 < 0.001

NEW: linear(d), quadratic(d) -1012 398 18.3 < 0.001 0.787

NEW: linear(d), linear(d) -1026 90.9 53.1 < 0.001 0.655

DATA SET 4

This data set also comes the study of reproductive toxicity of butyl benzyl phthalate
(BBP) in rats by Tyl et al. (2004). These data represent testis weight in grams for
male offspring of the adult rats exposed to BBP. Dosage is expressed as mg/(kg-day).

Table 4a. Testis weight in F1 offspring of rats exposed to BBP

dose (d) 0 50 250 750

n 30 29 28 28

mean 3.598 3.649 3.623 2.858

sd 0.2739 0.2531 0.6032 0.9472

Figure 4 shows the plots of the sample means versus dose, sample standard devi-
ations versus dose, and log(sd) versus log(ȳ). Based upon comparisons of AIC and
graphics, a quadratic model for µ(d) and a linear model for σ(d) were selected:

µ(d) = θ0 + θ1d+ θ2d
2, σ(d) = ψ0 + ψ1d. (17)

The MLEs and related quantities for this model are

θ̂0 = 3.6055, θ̂1 = 6.7988e − 04, θ̂2 = −2.2439e − 06, (18)

ψ̂0 = 0.25289, ψ̂1 = 0.001020119,

BMD = 520, BMDL = 362, AIC = −63.5.

Observation 4.1. Our results are compared with those from BMDS software in
Table 4b. Modeling σ as a power of µ leads to rejection of the means model by
the LRTs, while in this case the power model for variance is also rejected. In our
alternative approach, modeling σ as a linear function of dose leads to a marginally
acceptable (P = 0.123) variance model and acceptance of the means model. The
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Figure 4: Solid line: BMDS model. Dashed line: new model (linear models for σ).
Quadratic models are used for the means. Error bars show 95% confidence intervals.

BMDS quadratic means model is accurate when variance is constant, but then the
estimated SD is 0.575, much larger than that observed for the control and first dose
(0.274, 0.253), resulting in a overly high BMD and BMDL (678 and 542). When
variance is modeled as a power of µ, the BMDS quadratic means model is wide of the
mark, but this is corrected when σ as modeled as a linear function of dose (Fig. 4).

Table 4b. Comparison of models

Models for µ and σ AIC BMD BMDL P(V) P(M)

BMDS: quadratic(d), constant -4.3 678 542 < 0.0001 0.858

BMDS: quadratic(d), power(µ) -55.2 380 170 0.013 0.017

NEW: quadratic(d), linear(d) -63.5 520 362 0.123 0.735

Discussion

In the BMDS software (USEPA, 2006) and more generally (Filipsson et al., 2003), dose-
response models for continuous responses employ one of two models for the variance:
(1) constant variance common to all groups, or (2) variance as a power of the predicted
group mean. In our experience, these models provide an adequate fit in the great
majority of cases. Occasionally, however, one encounters data sets for which the
variance is not constant (as determined by a LRT) and is also not well described by
a power of the mean, sometimes not even as a monotonic function of dose. We show
a few such data sets and explore alternative models for σ as a function of the dose
rather than µ, uncoupling µ̂ from σ̂.

These examples demonstrate the utility of examining a log-log plot of the sample
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mean vs. standard deviation to evaluate the suitability of the power model σ2 = αµρ,
and, when appropriate, modeling µ(d) and σ(d) separately as a function of the dose
d rather than tying σ to µ. When it is necessary to use such data for dose-response
modeling, these alternative models can provide acceptable and workable descriptions
of the data.

In some cases, the likelihood ratio tests (LRT) for goodness of fit employed by
BMDS indicate a conflict or trade-off: the model for means fits adequately when
variance is constant, but a constant variance model is ill-fitting (and rejected by the
LRT); however when variance is modeled (adequately, according to the LRT) as a
power of the mean, the model for the means is rejected by a LRT. In these cases,
graphical examination may show that there is indeed a trade-off between fitting models
for mean vs. variance. There are other cases, without an apparent trade-off, in which
the mean can be fitted adequately by some model, but the variance is not modeled
adequately by the two ’standard’ choices. Practitioners then might be lead to reject
the data as not amenable to modeling (using the available choices provided in BMDS).
However, the LRT ”Test 4” can be misleading in this case and the model for the means
may be adequate, as explained below.

Alternative models for variance

Carroll and Ruppert (1988) provide a much more comprehensive discussion of ap-
proaches to variance modeling that might be applied in the context of dose-response
models. We used simple functions of dose and chose quadratic and linear models for
σ as a matter of convenience. When there are more than four dose groups, it may be
useful to consider 4-parameter models for σ such as the ’exponential’ models (USEPA,
2006) of Slob (2002), the Hill model (illustrated above using Data Set 2), or a mod-
ification of the ”multistage” model having an asymptote term, i.e., a∗[1 - exp(−q0
−q1 ∗ d −q2 ∗ d2)]. It is also possible to model σ as a power of dose rather than µ,
using a third parameter, e.g., σ(d) = ρ[d + γ]η. If desired, all of these models can
be made monotone with suitable restrictions on parameters. Non-monotonic variance
models may be reasonable if variance heterogeneity is confirmed, the model fits well,
and one does not extrapolate beyond the observed doses. One would prefer to have a
clear explanation of the pattern of variation in terms of sources of variation and how
these relate to means and doses, but that is seldom possible.

Generally for dose-response modeling of continuous endpoints, variance should be
bounded away from zero (in particular, at the control, unless the control response is
known to be identically zero). If a polynomial model fits well, it will necessarily pre-
dict positive variances over the region of interest; however, the profile likelihood search
would need to incorporate lower bounds to the parameter space or a nonlinear con-
straint to maintain σ(0) > 0. The other models just mentioned require ’background’
parameters that insure σ(0) > 0, but other parameters can vary freely in a profile
likelihood search.
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Non-proportionality between variance and mean

Practical experience with hundreds of data sets and various lines of reasoning suggest
that variance should be proportional to the mean for many types of biological response
variables (endpoints) that are subject to dose-response modeling. Thus, when variance
is not well described as a power of the mean, it seems plausible that the exceptions are
likely related to issues of design, measurement error, or how the endpoint is quantified.
Data sets 1 and 2 have endpoints that were constructed as averages of random variates
that have moderately complex hierarchical structure. Also, individuals differ in tol-
erance to dosage, so the proportion of individuals responding adversely may increase
with dosage, causing increased variability at intermediate or higher doses (depending
on the range of doses used). In data set 3, the endpoint, organ weight as a fraction
of body weight, may not change proportionally to the mean because both organ and
body weight are changing with dosage. In data set 4, the abrupt increase in variance
of organ weight could perhaps be explained if individuals responded divergently at
the two higher doses. In other cases, measurement error might obscure the inherent
biological relation between variance and mean, resulting in a non-monotonic relation
or a monotone relation not well described by a power of the mean. In the event of
non-proportionality, it may be necessary to consider models for the variance other
than the customary ones, including non-monotonic models.

Without detailed knowledge about the processes producing the observed variances,
choice of a smooth model, either monotonic or non-monotonic, is merely an expedient,
albeit often a necessary one. A similar expedient is exercised in fitting models to
the mean responses: usually, a variety of models are fitted and a selection is made
based upon various goodness of fit statistics and other criteria (Filipsson et al., 2003;
USEPA, 2006). 6

Goodness of Fit to the Means

Lastly, we address the problem with the likelihood ratio test for goodness of fit of the
means model that was illustrated above for Data Set 4. ”Test 4” reported in BMDS
consists of the LRT

−2[LL(A3) − LL(fit)] > χ2(1− α, (dfA3 − dffit)), (19)

where LL(fit) is the log-likelihood for the user-selected, or fitted model, and LL(A3)
is the log-likelihood for Model A3, in which means are unique to groups and variance
is a power of those means. When the variances are indeed a power of the means,

6Model shapes for the mean response are generally constrained by a toxicological presumption that
the response curve is monotonic, and for some responses, that biological principles require an upper
bound or asymptote (Filipsson et al., 2003; USEPA, 2006). This may also apply to variances when
the design and sources of variation are simple and measurement error is relatively small. However,
monotonicity of variances in relation to doses or means may not always hold, as we have found.
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Model A3 should provide a reasonable reference model for goodness of fit to means
of the user-selected model. Using sample statistics for the means (ȳi) and standard
deviations (si), indexed by dose groups (i = 0, 1, ..., k), these log-likelihoods are both
described by

2LL = −
k∑

i=0

ni log(σ̂
2
i )−

k∑

i=0

(ni − 1)s2i
σ̂2i

−
k∑

i=0

ni(ȳi − µ̂i)
2

σ̂2i
(20)

with σ̂2i = α(µ̂i)
ρ for both models. In Model A3, the means are estimated uniquely for

each dose group by (µ̂0, ..., µ̂i, ..., µ̂k). In the user-selected or ’fitted’ model, the means
are modeled by some function µ(d) = f(d, θ). Estimation is by maximum likelihood
and in general there is no explicit closed-form solution.

LRT Test 4 can be partitioned into contributions from lack of fit to variance and
mean:

−2[LL(A3) − LL(fit)] =

+
k∑

i=0

ni
[
log(σ̂2i,fit)− log(σ̂2i,A3)

]
+

k∑

i=0

(ni − 1)s2i

[
1

σ̂2i,fit
− 1

σ̂2i,A3

]
(21)

+
k∑

i=0

1

σ̂2i,fit
(ȳi − µ̂i,fit)

2 −
k∑

i=0

1

σ̂2i,A3
(ȳi − µ̂i,A3)

2

Evidently, Test 4 is not a test of goodness of fit for the means alone, unless the
variance estimates under the fitted model and Model A3 are very nearly the same; it
can be inflated by lack of fit to the variances.

When variance is modeled as a constant, the variance-related terms on the first
line of Eq. 21 vanish; Model A3 is replaced by Model A2, in which the means and
variances are estimated uniquely for each dose group by their MLEs (i.e., µ̂i = ȳi, and
σ̂2i = ((ni − 1)/ni)s

2). When variance is modeled as a function of dose, the MLEs for
variance and mean are not functionally tied together, making it easier to achieve a
good fit using an appropriate model. In contrast, when variance is modeled as a power
of the mean but that model does not fit well, Test 4 can be misleading.

The lack of fit of the variance model σ2 = αµρ in our examples illustrates how σ̂2i,fit
may differ from s2i , inflating the LR for Test 4. In Table 5, details are shown for Data
Set 3: log-likelihoods are shown for model A3 and the fitted model, and the variance
and mean components are shown for the Test 4 statistic. The first component, related
to variance estimates, dominates when σ2 is modeled as a power of µ for these data,
resulting in P (M) < 0.001.
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Table 5. Components of LR Test 4 for Models of Data Set 3

µ σ 2LLA3 2LLfit LRT4 P(M)

linear(d) constant 413.528 413.512 0.0322 = 0+ + 0.0322 0.984

linear(d) power(µ) 550.4 513.6 73.7 = 76.3 − 2.6 < 0.001

linear(d) linear(d) 517.3841 516.9625 0.843 = 0+ + 0.843 0.656

An approximate F-test for goodness of fit of the means model is discussed by Seber
and Wild (1989, particularly p. 82, Section 2.8.6). Applied to the three models in
Table 5, it results in p-values of 0.984, 0.735, and 0.664, respectively. The second
P-value contradicts the result in the middle row of Table 5 for LRT4, which was
dominated by a contribution from lack of fit to the variances. The F-test consists of

(QH −Q)/(k′ − p)

Q/(N − k′)
∼ Fk′−p,N−k′ (22)

with k′ = k + 1,

QH =

k∑

i=0

ni∑

j=0

ŵi(yij − µ̂i)
2, Q =

k∑

i=0

ni∑

j=0

ŵi(yij − ȳi)
2, and N = (

k∑

i=0

ni). (23)

The estimated weights are ŵi = 1/σ̂2i . The equation for QH expands into

QH =
k∑

i=0

ni∑

j=0

ŵi(yij − ȳi)
2 +

k∑

i=0

ŵini(ȳi − µ̂i)
2. (24)

so that the term (QH − Q) in the F-ratio becomes
∑k

i=0 ŵini(ȳi − µ̂i)
2, while the

denominator is obviously Q =
∑k

i=0 ŵi(ni − 1)s2i .

These quantities can be calculated using the estimated standard deviations (σ̂2i )
and scaled residuals (ri) reported by BMDS. (QH − Q) is given by

∑
r2i , because

ri = (ȳi− µ̂i)/(σ̂i/
√
ni). Q is obtained by

∑
wi(ni− 1)s2i =

∑
(1/σ̂2i )(ni− 1)s2i . From

the nominal d.f. for Q, N-k’, we would subtract one to account for the power parameter
used in the model for variances.

Having determined that the means model fits adequately, while the variance is not
well described by the BMDS models, a user might go on to apply an alternative model
for variances. For the data sets we have presented, this F-test, applied to models fitted
in BMDS (using the power law for variances), yielded P > 0.10 for Data Sets 1 and 3
but not Date Sets 2 and 4.
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