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Abstract

In this paper, a Bayesian analysis of generalized geometric series distribution
(GGSD) under different types of loss functions have been studied.
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1 Introduction

The probability function of generalized geometric series distribution (GGSD) was given
by Mishra [4] by using the results of the lattice path analysis as

1 1
P(X=z) = 3 + Bx < Zﬂx>9x(1 — o) 1 =0,1,2,..., 00,
0<60<1, |08 <1, (14 Bz) is an integer,
= 0; otherwise. (1)

It can be seen that at 8 = 1, the model (1) reduces to a simple geometric distribution
and is a particular case of Jain and Consul’s [1] generalized negative binomial distri-
bution which is same as the geometric distribution is a particular case of the negative
binomial distribution.

The various properties and estimation of (1) have been discussed by Mishra [4],
Mishra and Singh [5]. However, Hassan et. al. [2] discussed the Bayesian analysis
under non-informative and conjugate priors.
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The purpose of this paper is to estimate the parameter of generalized geometric
series distribution (GGSD) in a Bayesian approach under different loss functions.

2 Main Results

Let us consider the case of estimating the single parameter 8 of the generalized geomet-
ric series distribution (GGSD) in the model (1), assuming S is known. The likelihood
function of (1) is given by

l(@]az) = H { 1 <1 + ﬁiﬂz) }92?—1 ml(l B H)n—l—ﬁ Do Ty g T

Py 1+ Bx; T;
= Kk OY(1—0) TPy, (2)
where /-i:il;ll {1+5$i< —foﬂ)} and yzzz::ltz
The maximum likelihood estimator of # is —%—, where y is defined above. It is noted

that when ( is known, the part of the hkehhooéj function which is relevant to Bayesian
inference on the unknown parameter 6 is #Y(1 — )" +5Fy=v,

A mathematically convenient prior density for the problem under consideration is
conjugate prior given by

(@) x P11 -0 0<h<1, p>0,¢g>0, (3)

which is simply a member of the beta family of distributions. The advantage of taking
the prior distribution to be conjugate lies in the fact that the likelihood function [(0|x),
the prior density 7(#) and the posterior density 7 (f|z) are all of the same functional
form, thus ensuring mathematical tractability.

In this paper, estimation of the parameter 6, assuming [ is known, considered in a
Bayesian approach under the prior distribution (3) and the following loss functions :

i. L1(6,0) =c(d—0)% ¢>0.

ii. Ly(0,0) = (0 —0)2/62; ¢ > 0.
iii. Ls(0,0) = (V0 — VB)?

iv. Lu(6,0) = (VO —VB)?2/0; ¢>0

0 if|f—0 <0
1 otherwise
where 0 is a small known quantity.

v. Ls(0,0) =
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0 ifd <0—6<0d,
vi. Lg(0,0) =<1 if 6—0<8
1 if 6—6>d
where 0; and §y are two small known quantities, and

Vi, L7(9A,0):w[<g)v—’yln (g) —1}; N0, @ > 0.

Combining (2) and (3), the posterior distribution of # for the given sample
x = (x1,T2,...,2,) I8

PO|z) o 1(f]z)m(0)

= P(f|lz) o OvPTi(1—g)ntPy—yta-l (4)
This implies that the posterior distribution of 6 for the given sample x = (21, z2, ..., Zy)
is
1

P(0|z) = guiP=l(1 —g)ntPyvttlo<g <1, (5)

B(y+p,n+By—y+aq)
which follows that 6 ~ Beta(y +p, n+ By —y + q).

y+p

The mean of the posterior distribution is E(f|x) = 5.

Different shapes and existence of mode of the posterior distribution Beta(p’,q’) in
(5), when p’ =y +p and ¢ = n + By — y + ¢ are given below;

e Case I : For p) = ¢’ = 1, the beta distribution simply becomes a uniform
distribution between zero and one.

e Case II : For p’ =1 and ¢’ = 2 or vice versa, we get triangular shaped distri-
butions.

e Case III : For p’ = ¢’ = 2, we obtain a distribution of parabolic shape.

e Case IV : For p/ = ¢’ > 3, we obtain distributions of symmetrical and bell-
shape.

e Case V : If p/ and ¢/ both are greater than one, the distribution has a unique

mode at 6 = % and is zero at the end points.

e Case VI : If p’ and/or ¢ is less than one f(0) — oo and/or f(1) — oo and the
distribution is said to be J— shaped.

In above, the mode of the posterior distribution in (5) does not exist in case of I and
VI. In case of II, with vertex 0 (or 1) the mode will be attained at 0 (or 1). The

mode is 0.5 in case of III and I'V. In case of V, the mode is at 6 = (pgi;l_)m if pf > 1,
qg > 1.
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Hence, more generally, the mode of the posterior distribution in (5) is

_ y+p—1
n+pBy+p+q—2

My

if (y 4+ p) and (n + Sy — y + q) both are greater than or equal to one.

3 Bayes’ Estimation

In this section, we provide the Bayes’ estimators of the parameter of generalized geo-
metric series distribution (GGSD) using above seven different loss functions.

The first four loss functions i, ii, iii and iv considered in section 2, are particular
cases of the form

. N
L(0,0) = b (9 - 9) , (6)
where c is a positive constant, a and b are known quantities.

For the loss function given by (6), the Bayes’ estimator 6 is

O /) Gt )
Ep(0%]x)
s E0(9a+b|$) %
~i = Sl @

where Ey(0|x) is the posterior expectation with respect to parameter 6, if exists.
Therefore, using (7), the Bayes’ estimator  under the loss function (6) is given by

1
b
_ F(y+p+a+b)F(”+5y+p+Q+“)] , if exists. (8)
Fy+p+a)l(n+py+p+qg+a+b)

D5

(a) Substituting a = 0 and b = 1, the loss function (6) becomes L1 (6, #) and the Bayes’
estimator under the loss function L; using (8) is given by

5 y+p

= —
Yt By+p+a

which is the mean of the posterior distribution.

(b) Substituting @ = —2 and b = 1, the loss function (6) becomes Ly(6,0) and the
Bayes’ estimator under the loss function Ly using (8) is given by
5 y+p—2
0o = )
n+py+p+q—2
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(c) Substituting @ = 0 and b = £, the loss function (6) becomes L3(0,0) and the Bayes’
estimator under the loss function L3 using (8) is given by

2
T(y+p+3)Ln+By+p+q)

Fy+pl(n+By+p+q+3)

A~

(d) Substituting @ = —1 and b = 3, the loss function (6) becomes L4(0,0) and the

Bayes’ estimator under the loss function L4 using (8) is given by

A~

T(y+p— 0+ By+p+q-1)]"
Fy+p—I(n+By+p+qg—3)|

Remarks 3.1. If the expression (8) does not exist in general for the chosen super
parameters and the specific observed data then the Bayes’ estimation is not possible.
In particular, for example, in case of a = =2, b=1, if y+p—11is < 0, the Bayes’
estimator does not exist.

(e) The Bayes’ estimator for the zero-one type of loss function Lj is the mode of
the posterior distribution (5) if it is symmetrical. The posterior distribution (5) will
be symmetrical when p’ = ¢’ > 2 (in case of III and IV) where p' = y +p, ¢ =
n + By — y + q and the mode is My = 0.5 in the symmetrical family of posterior
distributions (5).

Hence, 95 = My = 0.5.

Otherwise, in case of IT and V, when both p’ and ¢’ are greater than or equal to
one the Bayes’ estimator is My, the mid-point of the interval I of length 26 which
maximizes the posterior distribution P(fel|x) in (5).

(f) The Bayes’ estimator for the special zero-one type of loss function Lg is

01 + 02

5 (9)
where My is the mode of the posterior distribution, if it is symmetrical. The posterior
distribution (5) will be symmetrical when p’ = ¢’ > 2 (in case of III and IV) where
p=y+p, ¢ =n+By—y+qand the mode is My = 0.5 in the symmetrical family
of posterior distributions (5). Here, §; and Jy are two small known quantities.

06 = My +

Otherwise, in case of IT and V, when both p’ and ¢’ are greater than or equal to
one, My will be the mid-point of the interval I of length 26 which maximizes the pos-
terior distribution P(fel|x) in (5).

(g) The Bayes’ estimator for the loss function L7 is

é7 = [Eg(@‘yla:)] T,
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Here,
y+p—7)T(n+By+p+q)
F'y+p)Tn+By+p+q—7)

1
Ep(0~|z) = /0 0= P(0]2)d6 — (1)

From (10), using (11) gives,

b — [F(y+p—'y)F(n+ﬂy+p+q) K
Ply+pTn+py+p+a—7)]

4 Discussion

It has been seen that as 1 = —d2, the Bayes’ estimators 0 and 05 are identical. If we
put v = —1, the Bayes’ estimators 67 and 6; are also identical.

It has been also found that as 8 = 1, the above estimators are the Bayesian
estimators of the parameter of simple geometric distribution under the above loss
functions L1, Lo, L3, L4, Ly, Lg and L7 respectively.
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