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Abstract

We present results pertinent to estimation of a normal mean µ with known coefficient of
variation [CV]. Although unbiased estimators of µ based on both the sample mean and
the sample sd have been widely discussed, there is an inherent problem with the sample
mean when µ is assumed to be positive. We suggest and introduce a sign correction to
the sample mean to rectify this problem. Again, if the population mean varies in an
unrestricted parameter space in either direction (excluding the value 0), then the sample
sd suffers from natural acceptability as an estimator of the population mean. There again,
we suggest a similar sign correction. Next, we provide an unbiased estimator for the mean
based on the sample sd, adjusted by the sign function of the sample mean and its variance.
This is an exact result. We construct a combined unbiased estimator based on the sample
mean and the sign-corrected sample sd. We also establish its asymptotic normality and
study its behavior for small samples. Lastly we take up the problem of confidence interval
estimation and, following Stein, we address the problem of determination of a two-stage
procedure with fixed width as well. A result based on the decomposition of sum of squares
is used to provide an elegant solution to this problem.
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1 Introduction and Preliminaries

Estimation of mean of a normal population based on a random sample of size n is
easily accomplished by taking the sample mean, which is an unbiased estimator for
the population mean. It is always desirable to reduce the effects of sampling variation
in estimates. When Coefficient of Variation (CV) is known, there is information on
normal mean in the variance of the population. It is natural to search for estimators
that utilize this information on the coefficient of variation and to produce an estimator
that is better than the conventional estimator, i.e. the sample mean.

There is an extensive literature on this topic. Searls (1964) proposed an estimator,
which under the assumption of known CV, is biased but more efficient than X̄ . Khan
(1968) considered the problem of estimating the mean µ based on a sample from
the population N(µ, σ2), where σ = kµ, k known, k > 0, µ > 0 and obtained the
best unbiased estimator in the sense of minimum variance among all linear unbiased
estimators in terms of the sample mean and the sample standard deviation. Gleser and
Healy (1976) went a step further and obtained the uniformly minimum risk estimator
under the squared error loss. Sen (1979) proposed a biased but simple and consistent
estimator and proved it to be more efficient than the MVUE among a typical class of
unbiased estimators derived by Khan (1968). Soofi and Gokhale (1991) considered the
same problem, when the coefficient of variation is known, as a constrained optimization
of the Kullback-Leibler discrimination information function. Following Kunte (2000),
Guo and Pal (2003) derived the expression for the MLE of µ, assumed to be non-zero,
and characterized the class of equivariant estimators under the group of scale and
direction transformations.

We start with the set-up of a N(µ, σ2) population with σ2 = k2µ2, k is known
coefficient of variation, k > 0, µ > 0. However, note that even for µ > 0, there is a
nontrivial probability that the sample mean is negative, viz., P (X̄ < 0) = 1−Φ(

√
n/k).

Therefore, in case X̄ < 0, its acceptability as an estimator of µ is under question. One
way to rectify this would be to use conventional truncated estimator, that is, µ̃ = 0
if X̄ < 0; µ̃ = X̄ if X̄ > 0. However, as is well known, this turns out to be a biased
estimator. Below we suggest a sign correction to X̄ for obtaining an unbiased estimator
of µ. Let

µ̂n =

{

anX̄ if X̄ > 0
bnX̄ if X̄ < 0

(1)

where bn < 0 < an, and, set

s1(n) = k√
2πn

exp{− n
2k2

}+Φ(
√
n/k)

s2(n) = − k√
2πn

exp{− n
2k2

}+ (1− Φ(
√
n/k))

t1(n) = k√
2πn

exp{− n
2k2

}+ n+k2

n Φ(
√
n/k)

t2(n) = − k√
2πn

exp{− n
2k2

}+ n+k2

n (1− Φ(
√
n/k))

an = s1(n)/t1(n)
s1(n)2/t1(n)+s2(n)2/t2(n)

bn = s2(n)/t2(n)
s1(n)2/t1(n)+s2(n)2/t2(n)

(2)
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In Appendix A, the following results are established. For such choice of an and bn
and for every n ≥ 1,

1. E(µ̂n) = µ, 0 < µ < ∞,

2. V (µ̂n) is the least uniformly in µ > 0, for each n among all such unbiased
estimators of the form (1).

It follows that an > 0, lim
n→∞

an = 1, and bn < 0, lim
n→∞

bn = −∞.

Remark 1. If µ > 0, unless the sample size n is large, P (X̄ < 0) > 0. It is thus
necessary to do the sign correction only for small values of n. This aspect of restricted
parameter space is not pursued further in this paper. Henceforth, the parameter space
under discussion is Ω∗ = {−∞ < µ < ∞, µ 6= 0}. If µ = 0, X is degenerate at µ = 0.

Two unbiased estimators for µ are given in Sections 2 and 3. Asymptotic results
and small sample behaviors of the estimator proposed in Section 3 are given in Section
4. Confidence intervals for µ of fixed sample is discussed in Section 5. A proposed
two-stage procedure to construct confidence interval for µ and its comparisons with
Stein’s procedure are presented in Section 6.

We will skip some derivations for brevity. For technical details, we refer to Zhang
(2007: Unpublished doctoral dissertation (Chapter 3), UIC, Chicago).

2 Unbiased Estimator for µ

We start with the setup of X ∼ N(µ, k2µ2). Let X1,X2, . . . ,Xn be a random sample
from this population with X̄ as the sample mean, and S2 = 1

n−1

∑n
i=1(Xi − X̄)2 as

the sample variance. This time, as explained before, X̄ is readily acceptable as an
estimator of µ. However, since E(S) ∝ |µ|, a sign correction is needed to S towards
providing an acceptable and yet unbiased estimator for µ. The following result will be
used in the sequel.

Lemma 2.1. An unbiased estimator of µ for µ ∈ Ω∗ in terms of S and the sign of X̄

is h(S, X̄) = sgn(X̄)AnS
√
n−1

kg(n−1) , where g(n− 1) =
√
2Γ(n

2
)

Γ(n−1
2

)
, and An = 1/[2Φ(

√
n/k)− 1].

Proof. We know from Johnson (1994) that
√
n−1S
k|µ| ∼ χ(n−1), E(

√
n−1S
k|µ| ) = g(n−1)

and hence, E(S) = k|µ|g(n−1)√
n−1

. Note further that X̄ ∼ N(µ, k2µ2/n) and that X̄ and

S are independent. We now consider the estimator h defined in the statement of the
lemma, i.e., explicitly written,

h(S, X̄) =

{

An
S
√
n−1

kg(n−1) if X̄ > 0

−An
S
√
n−1

kg(n−1) if X̄ < 0
(3)

Since X̄ and S are independent, if µ > 0



162 International Journal of Statistical Sciences, Vol. 11s, 2011

E[h(S, X̄)] = P{X̄ > 0}[Anµ
kg(n−1)√

n−1

√
n−1

kg(n−1) ] + P{X̄ < 0}[(−An)µ
kg(n−1)√

n−1

√
n−1

kg(n−1) ]

= Anµ[P{X̄ > 0} − P{X̄ < 0}]
= µ.

(4)
Again, if µ < 0,

E[h(S, X̄)] = P{X̄ > 0}[(−µ)An
kg(n−1)√

n−1

√
n−1

kg(n−1)

+P{X̄ < 0}[(−An)(−µ)kg(n−1)√
n−1

√
n−1

kg(n−1) ]

= Anµ[P{X̄ < 0} − P{X̄ > 0}] = µ.

(5)

This establishes the claim. �
Next we compute the variance of h(S, X̄). We will conveniently skip the suffix n

from An below. Note that

V [h(S, X̄)] = V1(E2) + E1(V2) (6)

But,

E2 = E[h(S, X̄)|X̄ ] =

{

A|µ| if X̄ > 0
−A|µ| if X̄ < 0.

(7)

Then

V1(E2) = E{E[h(S, X̄)|X̄ ]}2 − {E[E[h(S, X̄)|X̄ ]]}2 = A2µ2 − µ2 = µ2(A2 − 1).
(8)

Next,

V2 = V [h(S, X̄)|X̄ ] = V [sgn(X̄)AS
√
n−1

kg(n−1) ] =
A2(n−1)
[kg(n−1)]2

V (S). (9)

Since
√
n−1S
k|µ| ∼ χ(n− 1), V (S) = k2µ2

n−1 {(n − 1)− [g(n − 1)]2}, then

V2 = A2µ2(
n− 1

[g(n − 1)]2
− 1) (10)

Since V2 is a constant, E1(V2) = V2. Therefore,

V [h(S, X̄)] = µ2(A2 − 1) +A2µ2( n−1
[g(n−1)]2

− 1) = µ2( A2(n−1)
[g(n−1)]2

− 1). (11)

3 Unbiased Estimator for µ in Terms of h(S, X̄) and X̄

X̄ is an unbiased estimator of µ with variance k2µ2

n . Another unbiased estimator for
µ, h(S, X̄), is derived from Section 2. Next we construct the best linear unbiased
estimator for µ in terms of X̄ and h(S, X̄).
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Lemma 3.1. If a random variable X follows normal distribution with mean µ and

variance σ2, then E|X| = σ
√

2
πe

−µ2

2σ2 + µ[2Φ(µσ )− 1].

Proof.

E[|X|] =
∫∞
0

x√
2πσ

e−
(x−µ)2

2σ2 dx+
∫ 0
−∞

−x√
2πσ

e−
(x−µ)2

2σ2 dx, (let x−µ
σ = t),

=
∫∞
−µ

σ
(σt+ µ) 1√

2π
e

−t2

2 dt+
∫ −µ

σ
−∞(−σt− µ) 1√

2π
e

−t2

2 dt

= σ
√

2
πe

−µ2

2σ2 + µ[2Φ(µσ )− 1].�

The value for µ = 0 follows immediately from the above general result, E(|X|) =
σ
√

2
π . The following result is well-known and is stated without proof.

Lemma 3.2. Random variables X and Y are dependent with the correlation coef-
ficient ρ. Both have the same mean θ and variances σ2

1 and σ2
2, respectively. Then

the best linear unbiased estimator of θ in terms of X and Y involving ρ, σ2
1 and σ2

2 is

Z = aX + bY , where a =
σ2
2−ρσ1σ2

σ2
1+σ2

2−2ρσ1σ2
and b =

σ2
1−ρσ1σ2

σ2
1+σ2

2−2ρσ1σ2
.

The following result is now immediate.

Lemma 3.3. Based on a sample of size n from N(µ, k2µ2), the best linear unbiased
estimator of µ in terms of X̄ and h(S, X̄) is

µ∗ = cnh(S, X̄) + (1− cn)X̄ (12)

where cn =
k2

n
−Ak

√

2
πn

e−n/2k2

A2(n−1)

[g(n−1)]2
−1+ k2

n
−2Ak

√

2
πn

e−n/2k2
.

Proof.

E[µ∗] = E[cnh(S, X̄) + (1− cn)X̄ ] = cnE[h(S, X̄)] + (1− cn)E(X̄) = µ. (13)

Further, the covariance between h(S, X̄) and X̄ is computed as

cov[h(S, X̄), X̄ ] = E[h(S, X̄)X̄]− E[h(S, X̄)]E(X̄)

=
∫∞
0 Ak|µ|x̄f(x̄)dx̄+

∫ 0
−∞−Ak|µ|x̄f(x̄)dx̄− µ2

= Ak|µ|E|X̄ | − µ2 = µ2Ak
√

2
πne

−n/2 (By Lemma 3.1)

(14)
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The correlation coefficient between h(S, X̄) and X̄ is

ρ =
cov[h(S, X̄), X̄ ]

√

V [h(S, X̄)]V (X̄)
=

A
√

2
πe

−n/2

√

A2(n−1)
[g(n−1)]2

− 1
. (15)

The relationship between ρ and sample size n is shown in Figure 1. For a fixed k, as
sample size gets larger, the correlation coefficient between h(S, X̄) and X̄ gets smaller.
Furthermore,

lim
n→∞

cov[h(S, X̄), X̄ ] = lim
n→∞

µ2Ak

√

2

πn
e−n/2 = 0. (16)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n

ρ

k2=0.1

k2=0.2

k2=0.5

k2=1

k2=1.5

k2=2

Figure 1: The relationship between ρ and n for different values of k2

By Lemma 3.2, the coefficient of the best linear unbiased estimator of µ in terms of

X̄ and h(S, X̄) is cn =
k2

n
−Ak

√

2
πn

e−n/2k2

A2(n−1)

[g(n−1)]2
−1+ k2

n
−2Ak

√

2
πn

e−n/2k2
, upon simplification. �

We may compute the variance of µ∗ as

V (µ∗) = c2nV [h(S, X̄)] + (1− cn)
2V (X̄) + 2cn(1− cn)cov[h(S, X̄), X̄ ] = v(n)µ2

(17)

where v(n) = c2n[
A2(n−1)
[g(n−1)]2

− 1] + (1− cn)
2 k2

n + 2cn(1− cn)Ak
√

2
πne

−n/2.
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Lemma 3.4. (Anis, 2008)

1. lim
n→∞

αn = 1, lim
n→∞

n(1− αn) =
1

4
, lim
n→∞

n(1− α2
n) =

1

2
.

where αn =
Γ(n

2
)

Γ(n−1
2

)

√

2
n−1 = g(n−1)√

n−1
.

The ratio of the coefficients of the best linear unbiased estimator of µ in terms of
h(S, X̄) and X̄ is

cn
1− cn

=

k2

n −Ak
√

2
πne

−n/2k2

A2(n−1)
[g(n−1)]2

− 1−Ak
√

2
πne

−n/2k2
(18)

As n → ∞, cn
1−cn

→ 2k2. The proof is given in the following. By Lemma 3.4 (1)
and (3),

lim
n→∞

cn
1− cn

= lim
n→∞

k2

n −Ak
√

2
πne

−n/2

A2(n−1)
[g(n−1)]2

− 1−Ak
√

2
πne

−n/2
= lim

n→∞
k2α2

n

n(1− α2
n)

= 2k2.(19)

4 Asymptotic Normality and Small Sample Behavior of

The BLUE

As we discuss in Section 3, µ∗ = cnh(S, X̄) + (1 − cn)X̄ is the best linear unbiased
estimator(BLUE) for µ. It is natural to consider the properties of this estimator. Then
we could base statistical inference on it. First note that µ∗ is asymptotically normally
distributed as proved in Appendix B.

Since lim
n→∞

cov[h(S, X̄), X̄ ] = 0 and V [h(S, X̄)] = µ2

2n +O( 1
n2 ), it is asymptotically

normal with asymptotic variance µ2

2n . Then the asymptotic variance of µ∗ is k2µ2

n(1+2k2) .

The variance ratio of h(S, X̄)] and X̄ is 1
1+2k2

asymptotically. As for its behavior of
small samples, it is examined in Table 1. Further, it is shown in Appendix C that
P{| µ∗−µ√

V (µ∗)
| ≤ z} is independent of µ. Then in Table 1, µ = 1 is taken for illustration.

10,000 samples from N(µ, k2µ2) are drawn for small and moderate sample size for
k2 = 0.1, 1, and 2. Vide, Zhang (2007) for other values of k. When k ≤ 1, the
simulated probabilities are close to the probabilities according to the standard normal
distribution. As for higher values of z which are often used in constructing confidence
intervals and hypothesis testings, P{| µ∗−µ√

V (µ∗)
| ≤ z} are very close to the probability

according to the standard normal distribution even for small sample size. When k = 2,
the P{| µ∗−µ√

V (µ∗)
| ≤ z} is very close to the probabilities according to the standard normal

distribution for large value of n(≥ 50).
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Table 1: P{| µ∗−µ√
V (µ∗)

| ≤ z}, k2 = 0.1

z n = 5 10 15 20 25 30 2Φ(z)− 1

0.5 0.378 0.384 0.386 0.381 0.375 0.379 0.383
1 0.679 0.685 0.681 0.687 0.675 0.676 0.683
1.5 0.863 0.864 0.867 0.871 0.860 0.865 0.866
1.96 0.948 0.949 0.950 0.950 0.947 0.946 0.950
2 0.952 0.953 0.954 0.955 0.951 0.951 0.954
2.5 0.988 0.986 0.987 0.988 0.987 0.986 0.988
2.58 0.990 0.989 0.989 0.990 0.990 0.989 0.990
3 0.997 0.997 0.998 0.998 0.997 0.997 0.997

P{| µ∗−µ√
V (µ∗)

| ≤ z}, k2 = 1

z n = 5 10 15 20 25 30 2Φ(z)− 1

0.5 0.431 0.391 0.387 0.381 0.383 0.384 0.383
1 0.746 0.696 0.687 0.678 0.685 0.689 0.683
1.5 0.910 0.877 0.872 0.860 0.867 0.869 0.866
1.96 0.968 0.958 0.952 0.952 0.947 0.950 0.950
2 0.970 0.960 0.957 0.951 0.954 0.954 0.955
2.5 0.984 0.988 0.987 0.987 0.990 0.989 0.988
2.58 0.985 0.992 0.990 0.992 0.991 0.991 0.990
3 0.988 0.997 0.997 0.997 0.998 0.997 0.997

P{| µ∗−µ√
V (µ∗)

| ≤ z}, k2 = 2

z n = 20 30 40 50 60 70 2Φ(z)− 1

0.5 0.503 0.461 0.426 0.395 0.382 0.383 0.383
1 0.823 0.781 0.729 0.704 0.685 0.686 0.683
1.5 0.950 0.932 0.901 0.883 0.868 0.868 0.866
1.96 0.982 0.981 0.967 0.959 0.953 0.947 0.950
2 0.982 0.982 0.971 0.963 0.957 0.951 0.954
2.5 0.987 0.995 0.993 0.991 0.989 0.987 0.988
2.58 0.987 0.995 0.995 0.993 0.992 0.990 0.990
3 0.987 0.997 0.998 0.998 0.997 0.996 0.997
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5 Confidence Interval for µ for A Fixed Sample

5.1 The Estimators under Study

Traditionally, the confidence interval for the mean µ of a normal distribution is con-
structed based on t distribution with degrees of freedom n− 1, that is,

X̄ ± S√
n
t(1− α/2, n − 1). (20)

where t(1 − α/2, n − 1) is the lower 1 − α/2 percentage point of the t distribution of
n− 1 degrees of freedom. The length of this confidence interval is

L1 = 2t(1 − α/2, n − 1)
1√
n
S. (21)

The expected length of this confidence interval is

E(L1) = 2t(1− α/2, n − 1)
1√
n

g(n− 1)√
n− 1

k|µ|. (22)

When the sample is from N(µ, k2µ2), L1 does not utilize the information of µ in

the population variance. Another statistic
∑n

i=1(Xi−X̄)2

k2µ2 utilizes this information and

it follows χ2 distribution with degrees of freedom n − 1. Based on this statistic, the
confidence interval for |µ| is

(

√
n− 1S

k
√

χ2(1− α/2, n − 1)
,

√
n− 1S

k
√

χ2(α/2, n − 1)
) (23)

where χ2(α,m) is the lower α percentage point of the χ2 distribution of m degrees of
freedom. An adjustment for the confidence interval of µ is, if X̄ > 0,

1

kΦ(
√
n/k)

(

√
n− 1S

√

χ2(1− α/2, n − 1)
,

√
n− 1S

√

χ2(α/2, n − 1)
); (24)

and if X̄ < 0,

1

kΦ(
√
n/k)

(−
√
n− 1S

√

χ2(α/2, n − 1)
,−

√
n− 1S

√

χ2(1− α/2, n − 1)
). (25)

Next we justify that this proposed confidence interval provides 100(1−α)% confi-
dence.
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If µ > 0, confidence coefficient is computed as

1

kΦ(
√
n/k)

P (X̄ > 0)P (

√
n− 1S

√

χ2(1− α/2, n − 1)
< µ <

√
n− 1S

√

χ2(α/2, n − 1)
)

+
1

kΦ(
√
n/k)

P (X̄ < 0)P (−
√
n− 1S

√

χ2(α/2, n − 1)
< µ < −

√
n− 1S

√

χ2(1− α/2, n − 1)
)

=
1

Φ(
√
n/k)

P (X̄ > 0)P (
√

χ2(α/2, n − 1) <

√
n− 1S

kµ
<

√

χ2(1− α/2, n − 1))

=
1

Φ(
√
n/k)

P (X̄ > 0)(1 − α) = 1− α.

(26)

Again, if µ < 0, the same is computed as

1

kΦ(
√
n/k)

P (X̄ > 0)P (

√
n− 1S

√

χ2(1− α/2, n − 1)
< µ <

√
n− 1S

√

χ2(α/2, n − 1)
)

+
1

kΦ(
√
n/k)

P (X̄ < 0)(−
√
n− 1S

√

χ2(α/2, n − 1)
< µ < −

√
n− 1S

√

χ2(1− α/2, n − 1)
)

(27)

Interestingly enough, the length of this confidence interval is the same for µ > 0
or for µ < 0 and is given by

L2 =
1

kΦ(
√
n/k)

(

√
n− 1S

√

χ2(α/2, n − 1)
−

√
n− 1S

√

χ2(1− α/2, n − 1)
). (28)

The expected length of this confidence interval is

E(L2) =
g(n − 1)

Φ(
√
n/k)

(
1

√

χ2(α/2, n − 1)
− 1

√

χ2(1− α/2, n − 1)
)|µ|. (29)

Now we compare the expected lengths of the confidence intervals based on t dis-
tribution and the one based on χ2 distribution respectively. Define,

R21(n) =
E(L1)

E(L2)
=

2kt(1− α/2, n − 1)√
n(n−1)

Φ(
√
n/k)

( 1√
χ2(α/2,n−1)

− 1√
χ2(1−α/2,n−1)

)
(30)

From Johnson (1994), by Fisher (1922)’s approximation,

χ2(α, ν) ≃ 1

2
(Uα +

√
2ν − 1)2 (31)
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Table 2: R21 for small and moderate sample size, α = 0.05
n k2 = 0.1 0.2 0.5 1 1.5 2

5 0.345 0.488 0.771 1.078 1.292 1.456
10 0.398 0.562 0.889 1.256 1.532 1.756
15 0.414 0.586 0.927 1.311 1.604 1.848
20 0.423 0.598 0.945 1.337 1.637 1.889
25 0.428 0.605 0.956 1.353 1.657 1.913
30 0.431 0.610 0.964 1.363 1.669 1.927

where Uα is the lower α percentage point of the standard normal distribution. ν is
the degrees of freedom of the χ2 distribution. By Peiser(1943),

t(α, ν) ≃ Uα +
U3
α + Uα

4ν
(32)

lim
n→∞

R21(n) = lim
n→∞

2kt(1− α/2, n − 1)√
n(n−1)

Φ(
√
n/k)

( 1√
χ2(α/2,n−1)

− 1√
χ2(1−α/2,n−1)

)

= lim
n→∞

k(1 +
U2
1−α/2

+1

4(n−1) )

1
√

2(n−1)
n

− 1√
2n(n−1)

−
U2
1−α/2√
2n(n−1)

)

=
√
2k (33)

So the expected length of L1 is
√
2k of the expected length of L2 asymptotically.

L2 has shorter length than L1 even for small and moderate sample size n and k > 1
as shown in Table 2.

5.2 An Unbiased Estimator for µ: a New Perspective

Now we consider another unbiased estimator for µ based on the sum of squares de-
composition. The total sample of size n is divided into two parts with n0 and n1

observations, respectively. Let

SSn =
∑n

i=1(Xi − X̄n)
2, SS0 =

∑n0
i=1(Xi − X̄0)

2,
W =

∑n
i=n0+1(Xi − X̄1)

2 + n0n1
n (X̄0 − X̄1)

2, X̄n =
∑n

i=1 Xi/n,

X̄0 =
∑n0

i=1 Xi/n0, X̄1 =
∑n

i=n0+1Xi/n1,

n = n0 + n1.
(34)

The sum of squares of the whole sample, SSn is decomposed as SSn = SS0+W . Then

SSn

k2µ2
∼ χ2(n− 1),

SS0

k2µ2
∼ χ2(n0 − 1),

W

k2µ2
∼ χ2(n1). (35)
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It is easy to see that SS0 and W are independent; X̄n and W are independent. We
now propose an unbiased estimator for µ in terms of X̄n and W , viz.,

h(W, X̄n) =
sgn(X̄n)A

√
W

kg(n1)
(36)

where g(n1) =
√
2Γ(

n1+1
2

)

Γ(
n1
2
)

, and A = 1/[2Φ(
√
n/k)−1]. By Lemma 3.4, it is an unbiased

estimator for µ . By Lemma 3.3, the best linear unbiased estimator of µ in terms of
X̄n and h(W, X̄n) is

µ̂∗ = dnh(W, X̄n) + (1− dn)X̄n (37)

where dn =
k2

n
−Ak

√

2
πn

e−n/2

A2n1
[g(n1)]

2−1+ k2

n
−2Ak

√

2
πn

e−n/2
. Its variance is

V (µ̂∗) = d2nV [h(W, X̄n)] + (1− dn)
2V (X̄n) + 2dn(1− dn)Cov[X̄n, h(W, X̄n)]

= v(n, n1)µ
2

(38)

where v(n, n1) = d2n[
A2n1

[g(n1)]2
− 1] + (1− dn)

2 k2

n + 2dn(1− dn)Ak
√

2
πne

−n/2.

5.3 Confidence Interval for µ Based on µ̂∗

For given n0, n1 goes to the infinity as n goes to the infinity. Therefore, µ̂∗ is asymp-
totically normally distributed as µ∗ in Section 3. Since W and SS0 along with X̄n and
SS0 are independent,

tµ̂∗ =

µ̂∗−µ√
v(n,n1)µ2

√

SS0
k2µ2(n0−1)

=
(µ̂∗ − µ)k

√

v(n, n1)S0

(39)

follows asymptotically t distribution with degrees of freedom n0 − 1, where S0 =
√

SS0

n0 − 1
. The confidence interval based on tµ̂∗ is thus given by

µ̂∗ ± t(1− α/2, n0 − 1)
√

v(n, n1)
S0

k
. (40)

The expected length of this confidence interval is

E(L3) = 2t(1− α/2, n0 − 1)
√

v(n, n1)g(n0 − 1)/
√
n0 − 1|µ|. (41)

To compare expected length of confidence intervals (22), (29) and (41), define

R13(n) =
E(L3)
E(L1)

=
t(1−α/2,n0−1)

√
v(n,n1)/kg(n0−1)/

√
n0−1

t(1−α/2,n−1) 1√
n
g(n−1)/

√
n−1

(42)
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Table 3: R13

k2 = 0.1 k2 = 0.2 k2 = 0.5 k2 = 1 k2 = 1.5 k2 = 2
n n0 R13 n0 R13 n0 R13 n0 R13 n0 R13 n0 R13

10 9 1.008 9 1.000 7 0.948 6 0.849 6 0.797 6 0.782
15 14 1.000 11 0.983 8 0.900 7 0.782 7 0.708 7 0.676
20 16 0.996 12 0.969 9 0.872 8 0.749 8 0.667 8 0.619
25 18 0.991 14 0.958 10 0.854 9 0.728 9 0.644 8 0.588
30 19 0.987 15 0.950 11 0.841 10 0.713 9 0.629 9 0.570
40 22 0.978 17 0.937 13 0.822 11 0.693 11 0.609 10 0.549
50 25 0.974 19 0.928 15 0.809 13 0.679 12 0.596 12 0.537
60 27 0.970 21 0.927 16 0.800 14 0.669 13 0.586 13 0.528
70 29 0.967 22 0.916 17 0.793 15 0.662 14 0.579 14 0.521

Table 4: R23

k2 = 0.1 k2 = 0.2 k2 = 0.5 k2 = 1 k2 = 1.5 k2 = 2
n n0 R23 n0 R23 n0 R23 n0 R23 n0 R23 n0 R23

10 9 0.401 9 0.562 7 0.843 6 1.067 6 1.222 6 1.373
15 14 0.415 11 0.576 8 0.834 7 1.025 7 1.136 7 1.250
20 16 0.421 12 0.579 9 0.825 8 1.001 8 1.092 8 1.170
25 18 0.424 14 0.580 10 0.817 9 0.984 9 1.067 8 1.125
30 19 0.425 15 0.579 11 0.810 10 0.972 9 1.049 9 1.098
40 22 0.426 17 0.577 13 0.800 11 0.953 11 1.026 10 1.069
50 25 0.426 19 0.575 15 0.792 13 0.940 12 1.009 12 1.050
60 27 0.426 21 0.572 16 0.786 14 0.929 13 0.997 13 1.037
70 29 0.426 22 0.571 17 0.781 15 0.922 14 0.988 14 1.026

and

R23(n) = E(L3)
E(L2)

=
2t(1−α/2,n0−1)g(n0−1)/

√
n0−1

√
v(n,n1)

g(n−1)
Φ(

√
n/k)

( 1√
χ2(α/2,n−1)

− 1√
χ2(1−α/2,n−1)

)
(43)

Tables 3 and 4 show R13 and R23 for different values of n. The value of n0 for
each fixed n give the smallest value of R13 and R23. The expected length of L3 is less
than or very close to the expected length of L1 for different values of coefficient of
variation. When k2 < 1, the expected length of L3 is shorter than that of L2. When
k2 > 1, the expected length of L3 is longer than that of L2. When k2 = 1, n ≥ 25, the
expected length of L3 is shorter than that of L2; n < 25 , the expected length of L3 is
close to that of L2. Therefore, according to the expected length, L2 is recommended
to construct the 100(1 − α)% confidence interval for µ when k2 is greater than 1; L3

is recommended to construct the 100(1−α)% confidence interval for µ when k2 is less
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than or equal to 1 and sample size is large; when k2 is extremely small, there is trivial
difference between L1 and L3. From the perspective of simplicity, L1 is recommended.

Another statistic
∑n

i=1(Xi−µ)2

k2µ2 follows χ2 distribution with degrees of freedom n.

The confidence interval based on this statistics cannot be expressed in a closed form
to give rise to a closed interval and the quadratic equations derived for the confidence
interval may not have real roots. It cannot be used to construct the confidence interval

for µ. Another reason that
∑n

i=1(Xi−µ)2

k2µ2 is not utilized is that there is trivial difference

between degrees of freedom for n and n− 1 as n → ∞.

6 Fixed Width Confidence Interval for µ

6.1 Stein’s Procedure

Stein (1945) proposed a two-stage procedure to construct a fixed width (2d) confidence
interval for µ. It is also summarized in Ghosh, Mukhopadhyay, and Sen (1997). Let
Xi(i = 1, 2, · · · ) be independent normal variables with mean µ and variance σ2 (un-
known). Take a sample of size n0 observations X1, · · · ,Xn0 and compute the sample
variance give by

S2
0 =

1

n0

n0
∑

i=1

(Xi − X̄0)
2. (44)

Take additional observations Xn0+1, · · · ,Xn, and let X̄n =
∑n

i=1 Xi
n . Then

T ′ =
(X̄n − µ)

√
n

√

S2
0

(45)

follows t distribution with degrees of freedom n0−1. The total sample size n is chosen
as

n = max{[t
2(1− α/2, n0 − 1)S2

0

d2
] + 1, n0} (46)

A 100(1 − α)% confidence interval for µ of specified length 2d is then given by

(X̄ − d, X̄ + d) (47)

6.2 Proposed Procedure

When a 100(1 − α)% confidence interval is constructed for µ based on a sample from
N(µ, k2µ2), the information on µ in the variance can be utilized. As discussed in
Section 5.3, tµ̂∗ in Equation (39) follows asymptotic t distribution with degrees of
freedom n0 − 1. The confidence interval based on µ̂∗ is

µ̂∗ ± t(1− α/2, n0 − 1)
√

v(n, n1)
S0

k
(48)
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Similarly to the Stein’s procedure, a two-stage procedure to construct a fixed width
(2d) confidence interval is based on Equation (48). The total sample size is chosen as

follows: if n0 ≥ [ t(1−α/2,n0−1)S0

d ]2, then no more observations will be taken, the total
sample size is n = n0; otherwise, the total sample size n is chosen such that

d = t(1− α/2, n0 − 1)
√

v(n, n1)
S0

k
(49)

holds. The confidence interval for µ based on µ̂∗ is

(µ̂∗ − d, µ̂∗ + d) (50)

From Seelbinder(1953), the expected sample size Es(n) of Stein’s procedure is

Es(n) = [n0 −
t2(1− α/2, n0 − 1)

c2
]F (χ2

0) +
t2(1− α/2, n0 − 1)

c2
(1 +K) (51)

where,

c = d
kµ , χ2

0 = c2n0(n0−1)
t2(1−α/2,n0−1)

,

F (χ2
0) = I(

χ2
0√

2(n0−1)
, (n0−1

2 − 1)), I(u, p) =
∫ u

√
p+1

0
e−ννp

Γ(p+1)dν,

ν = x2

2 , x ∼ χ2(n0 − 1),

p = n0−1
2 − 1, u =

χ2
0√

2(n0−1)
,

K =
(
χ2
0
2
)(n0−1)/2

n0−1
2

Γ(
n0−1

2
) exp(

χ2
0
2
)
.

Procedures (47) and (50) construct the 100(1−α)% confidence intervals of same width
2d. Then the relationship between the expected sample sizes of Stein’s procedureEs(n)
and proposed procedure Ep(n) is

v(Ep(n), n1) =
k2

Es(n)
(52)

The comparison of the expected sample sizes of the two procedures for α = 0.05 is
given in Table 5. The blank space left thereafter in the table of expected sample sizes
will remain equal to n0. As the asymptotic normality and small sample behavior are
discussed in Section 4, n0 is assumed to take values larger or equal to 50 for k2 = 2.
n0 starts from 10 for other values of k2. For given n0, the expected sample size from
the proposed procedure is less than that from Stein’s procedure. For the moderate
c(≥ 0.2), as n0 gets bigger, the expected sample sizes of the two procedures are the
same eventually. When c takes small values, say 0.01, or 0.05, there is huge expected
sample size gain by the proposed procedure.
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Table 5: Expected Sample Size Comparison of the Two Procedures

k2=0.1

c = 0.01 c = 0.05 c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6 c = 0.7 c = 0.8
n0

∗Es
∗Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep

10 51174 354 2047 354 512 354 128 109 57 50 32 29 21 20
20 43807 364 1752 364 438 364 110 95 49 44 28 27
30 41830 374 1673 374 418 354 105 93 47 45
40 40913 384 1637 384 409 348 102 92
50 40384 394 1615 394 404 345 101 93
60 40040 404 1602 404 400 344 100 94
70 39798 414 1592 414 398 344 100 95
80 39619 424 1585 424 396 344 100 97
90 39481 434 1579 434 395 345 101 100
100 39371 444 1575 444 394 345
120 39208 464 1568 464 392 347
240 38807 584 1552 584 388 364
∗Es = Es(n),∗Ep = Ep(n)

k2=1

c = 0.01 c = 0.05 c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6 c = 0.7 c = 0.8
n0 Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep

10 51174 354 2047 354 512 178 128 50 57 26 32 18 21 14 15 12 12 11
20 43807 364 1752 364 438 160 110 51 49 30 28 23
30 41830 374 1673 374 418 160 105 56 47 36
40 40913 384 1637 384 409 164 102 61 47 43
50 40384 394 1615 394 404 169 101 68 52 51
60 40040 404 1602 404 400 174 100 74
70 39798 414 1592 414 398 180 100 81
80 39619 424 1585 424 396 186 100 87
90 39481 434 1579 434 395 192 101 94
100 39371 444 1575 444 394 199 105 102
120 39208 464 1568 464 392 211
240 38807 584 1552 584 388 290

k2=2

c = 0.01 c = 0.05 c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6 c = 0.7 c = 0.8
n0 Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep Es Ep

50 40384 394 1615 364 404 121 101 61 52 51
60 40040 404 1602 369 400 129 100 69
70 39798 414 1592 375 398 136 100 77
80 39619 424 1585 382 396 144 100 85
90 39481 434 1579 389 395 152 101 93
100 39371 444 1575 396 394 159 105 102
120 39208 464 1568 410 392 175
240 38807 584 1552 503 388 270
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Appendix A

Sign correction of unbiased estimator X̄ when X ∼ N(µ, k2µ2), µ > 0.
We will conveniently drop the suffix n from an, bn, s1(n), s2(n), t1(n), and t2(n)

in (2). Let

µ̂ =

{

aX̄ if X̄ > 0
bX̄ if X̄ < 0

(A.1)

be an unbiased estimator of µ, where b < 0 < a. First note that,

E(µ̂) = a
∫∞
0 x̄ 1√

2πk2µ2/n
exp{− (x̄−µ)2

2k2µ2/n
}dx̄

+b
∫ 0
−∞ x̄ 1√

2πk2µ2/n
exp{− (x̄−µ)2

2k2µ2/n
}dx̄

(A.2)

E(µ̂2) = a
∫∞
0 x̄2 1√

2πk2µ2/n
exp{− (x̄−µ)2

2k2µ2/n
}dx̄

+b
∫ 0
−∞ x̄2 1√

2πk2µ2/n
exp{− (x̄−µ)2

2k2µ2/n}dx̄
(A.3)

Upon substituting u = (x̄−µ)
√
n

kµ , we obtain

E(µ̂) = a[

∫ ∞

−√
n/k

u
kµ√
n

1√
2π

exp{−u2

2
}du+ µΦ(

√
n/k)]

+b[

∫ −√
n/k

−∞
u
kµ√
n

1√
2π

exp{−u2

2
}du+ µ(1− Φ(

√
n/k))]

= µa[
k√
2πn

exp{− n

2k2
}+Φ(

√
n/k)] + bµ[− k√

2πn
exp{− n

2k2
}+ (1− Φ(

√
n/k))]

= µ(as1 + bs2) (A.4)
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Therefore, the choices of a and b are restricted to as1 + bs2 = 1 such that b < 0 < a,
where s1 and s2 are as defined in (2). Next, we compute

V (µ̂) = E(µ̂2)− µ2

= a2[

∫ ∞

0
[(x̄− µ)2 + 2(x̄− µ)µ+ µ2]

1
√

2πk2µ2/n
exp{− (x̄− µ)2

2k2µ2/n
}dx̄]

+b2[

∫ 0

−∞
[(x̄− µ)2 + 2(x̄− µ)µ+ µ2]

1
√

2πk2µ2/n
exp{− (x̄− µ)2

2k2µ2/n
}dx̄]− µ2

= µ2{a2[ k√
2πn

exp{− n

2k2
}+ n+ k2

n
Φ(

√
n/k)]

+b2[− k√
2πn

exp{− n

2k2
}+ n+ k2

n
(1− Φ(

√
n/k))] − 1}

= µ2(a2t1 + b2t2 − 1) (A.5)

By Cauchy-Schwarz Inequality,

(t1a
2 + t2b

2)(
s21
t1

+
s22
t2
) ≥ (as1 + bs2)

2

i.e. (t1a
2 + t2b

2) ≥ 1

(
s2
1

t1
+

s2
2

t2
)

(A.6)

”=” holds iff
√
t1a = c s1√

t1
and

√
t2b = c s2√

t2
with c a constant. This leads to the

choices of a and b for minimum V (µ̂) as

a = s1/t1
s21/t1+s22/t2

b = s2/t2
s21/t1+s22/t2

(A.7)

where a > 0. Next we show below that b < 0 which establishes our claim. For given
k, let l(x) = k√

2πx
exp{− x

2k2}+Φ(
√
x/k), x ∈ R

+. Since

l′(x) = k√
2π
[(−1

2)x
−3/2 exp{ −x

2k2
}+ 1√

x
(− 1

2k2
) exp{ −x

2k2
}] + k√

2π
exp{−x

2 }( 1
2k )x

−1/2

= − k√
2π
(12)x

−3/2 exp{−x/2} < 0

(A.8)
l(x) is a decreasing function. In addition, lim

x→∞
l(x) = 1. Therefore, then l(x) ≥ 1.

Hence, for any positive integer n, s2 = 1 − l(n) < 0. Additionally, t2 > 0; therefore,
b < 0. �

lim
n→∞

s1(n) = lim
n→∞

k√
2πn

exp{− n

2k2
}+Φ(

√
n/k) = 1 (A.9)

Note that lim
n→∞

an = 1, and lim
n→∞

bns2(n) = 0.
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Appendix B

Proof of the claim that the proposed estimator µ∗ follows asymptotic normal distri-
bution.

We know that
√
n−1S
k|µ| ∼ χ(n− 1), then

E(S) =
k|µ|g(n − 1)√

n− 1
. (B.1)

V (S) =
k2µ2

n− 1
{(n − 1)− [g(n − 1)]2} (B.2)

where g(n − 1) =
√
2Γ(n

2
)

Γ(n−1
2

)
. Then

Zn =
S − k|µ|g(n−1)√

n−1

k|µ|
√

1− [g(n−1)]2

n−1

∼
asym N(0, 1) (B.3)

S can be written as

S = k|µ|[Zn

√

1− [g(n − 1)]2

n− 1
+

g(n− 1)√
n− 1

] (B.4)

where Zn ∼ N(0, 1). Then h(S, X̄) can be written as

h(S, X̄) = sgn(X̄)AS
√
n−1

kg(n−1)

=
sgn(X̄)A|µ|[Zn(

√
n−1−[g(n−1)]2)+g(n−1)]

g(n−1)

(B.5)

Let
Z∗
n = µ∗−µ√

v(n)|µ|

= cnh(S,X̄)+(1−cn)X̄−µ√
v(n)|µ|

= βnsgn(X̄)Zn + γnsgn(X̄) + δnX̄ + θn

(B.6)

where,

βn =
cnA

√
n−1−[g(n−1)]2

g(n−1)
√

v(n)
γn = cnA√

v(n)

δn = 1−cn√
v(n)|µ|

= δ∗n
|µ| θn = − µ√

v(n)|µ|
= θ∗nµ

|µ|
(B.7)

where δ∗n = 1−cn√
v(n)

, and θ∗n = − 1√
v(n)

. By Lemma 2.1,

lim
n→∞

{n − [g(n)]2} =
1

2
, lim
n→∞

{g(n)√
n
} = 1, lim

n→∞
cn =

2k2

2k2 + 1
(B.8)
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lim
n→∞

{β2
n + δ2nk

2µ2/n} = lim
n→∞

{[cnA
√

n− 1− [g(n − 1)]2

g(n− 1)
√

v(n)
]2 + [

1− cn
√

v(n)|µ|
]2
k2µ2

n
}

= lim
n→∞

{ c2n(
1
2)

c2n(
1
2) + (1− cn)2k2

+
(1− cn)

2k2

c2n(
1
2) + (1− cn)2k2

} = 1

(B.9)
If µ > 0,

lim
n→∞

{−γn − θn − δnµ} = lim
n→∞

{−γn − θ∗n − δ∗n}

= lim
n→∞

{− cnA
√

v(n)
+

1
√

v(n)
− 1− cn

√

v(n)
}

= lim
n→∞

{
1√
2π
e−n/2k2 1

2kn
−1/2

−1
2n

−3/2
} = 0

(B.10)

If µ < 0, lim
n→∞

{γn − θn − δnµ} = lim
n→∞

{γn + θ∗n + δ∗n} = 0. (B.11)

For any real number z,

P{Z∗
n ≤ z} = P{βnsgn(X̄)Zn + γnsgn(X̄) + δnX̄ + θn ≤ z}

= P{X̄ > 0}P{βnZn + γn + δnX̄ + θn ≤ z|X̄ > 0}
+P{X̄ < 0}P{−βnZn − γn + δnX̄ + θn ≤ z|X̄ < 0}

(B.12)

If µ > 0 ,

P{Z∗
n ≤ z} = P{X̄ > 0}P{βnZn + γn + δnX̄ + θn ≤ z|X̄ > 0}

+P{X̄ < 0}P{βnZn + γn + δnX̄ + θn ≤ z|X̄ < 0}
−P{X̄ < 0}P{βnZn + γn + δnX̄ + θn ≤ z|X̄ < 0}
+P{X̄ < 0}P{−βnZn − γn + δnX̄ + θn ≤ z|X̄ < 0}

= Φ[
z − γn − θn − δnµ
√

β2
n + δ2nk

2µ2/n
] + P{X̄ < 0}{−P [βnZn + γn + δnX̄ + θn ≤ z|X̄ < 0]

+P [−βnZn − γn + δnX̄ + θn ≤ z|X̄ < 0]} (B.13)

Since lim
n→∞

P{X̄ < 0} = lim
n→∞

1 − Φ(
√
n/k) = 0, and −P [βnZn + γn + δnX̄ + θn ≤

z|X̄ < 0]
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+ P [−βnZn − γn + δnX̄ + θn ≤ z|X̄ < 0] is bounded,

lim
n→∞

P{Z∗
n ≤ z} = lim

n→∞
Φ[

z − γn − θn − δnµ
√

β2
n + δ2nµ

2/n
]

+ lim
n→∞

P{X̄ < 0}{−P [βnZn + γn + δnX̄ + θn ≤ z|X̄ < 0]

+P [−βnZn − γn + δnX̄ + θn ≤ z|X̄ < 0]}
= Φ(z) (B.14)

If µ < 0,

P{Z∗
n ≤ z} = P{X̄ > 0}P{βnZn + γn + δnX̄ + θn ≤ z|X̄ > 0}

+P{X̄ < 0}P{−βnZn − γn + δnX̄ + θn ≤ z|X̄ < 0}
+P{X̄ > 0}P{−βnZn − γn + δnX̄ + θn ≤ z|X̄ > 0}
−P{X̄ > 0}P{−βnZn − γn + δnX̄ + θn ≤ z|X̄ > 0}

= Φ[
z + γn − θn − δnµ
√

β2
n + δ2nk

2µ2/n
] + P{X̄ > 0}{P [βnZn + γn + δnX̄ + θn ≤ z|X̄ > 0]

−P [−βnZn − γn + δnX̄ + θn ≤ z|X̄ > 0]} (B.15)

Since lim
n→∞

P{X̄ > 0} = lim
n→∞

1−Φ(
√
n/k) = 0, and P [βnZn+ γn+ δnX̄+ θn ≤ z|X̄ >

0]− P [−βnZn − γn + δnX̄ + θn ≤ z|X̄ > 0] is bounded,

lim
n→∞

P{Z∗
n ≤ z} = lim

n→∞
Φ[

z + γn − θn − δnµ
√

β2
n + δ2nk

2µ2/n
]

+ lim
n→∞

P{X̄ > 0}{P [βnZn + γn + δnX̄ + θn ≤ z|X̄ > 0]

−P [−βnZn − γn + δnX̄ + θn ≤ z|X̄ > 0]}
= Φ(z) (B.16)

Therefore, lim
n→∞

P{Z∗
n ≤ z} = Φ(z).�
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Appendix C

Establishing the claim that the probability P (| µ∗−µ√
v(n)|µ|

| ≤ z) is independent of µ.

Assume µ > 0. Let, for given k, Y = X−µ
kµ . Then X = µY + kµ and Y ∼ N(0, 1).

Z∗
n+ =

µ∗ − µ
√

v(n)µ

=
cnh(S, X̄) + (1− cn)X̄ − µ

√

v(n)µ

=
cn · sgn(Ȳ + k)ASY

√
n−1

kg(n−1) + (1− cn)(Ȳ + k)− 1
√

v(n)

=
cn[sgn(Ȳ + k)ASY

√
n−1

kg(n−1) − 1] + (1− cn)(Ȳ + k − 1)
√

v(n)
(C.1)

where Ȳ =
∑n

i=1 Yi

n and SY = 1
n−1

∑n
i=1(Yi − Ȳ )2. The distribution of Z∗

n+ is indepen-
dent of µ when µ is positive. If µ < 0,

Z∗
n− =

µ∗ − µ
√

v(n)(−µ)

=
cnh(S, X̄) + (1− cn)X̄ − µ

√

v(n)(−µ)

=
cn · sgn[µ(Ȳ + k)]A(−µ)SY

√
n−1

kg(n−1) + (1− cn)(Ȳ + k − 1)µ − µ
√

v(n)(−µ)

=
−cn[sgn(Ȳ + k)ASY

√
n−1

kg(n−1) − 1]− (1− cn)(Ȳ + k − 1)
√

v(n)
(C.2)

The distribution of Z∗
n− is independent of µ when µ is positive. Therefore,

P{|Z∗
n+| ≤ z} = P{|

cn[sgn(Ȳ + k)ASY
√
n−1

kg(n−1) − 1] + (1− cn)(Ȳ + k − 1)
√

v(n)
| ≤ z}

= P{|Z∗
n−| ≤ z}.� (C.3)


