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Abstract

In this paper the limiting distribution of the jackknife statistics of canonical correlation

coefficient has been studied when the parent population is nonnormal with finite fourth

moments. The limiting distribution of the jackknife statistic of a function of the sample

canonical correlations is also derived.
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1 Introduction

This paper is concerned with limiting distributions of jackknife statistics of canonical
correlation coefficients for a sample from a nonnormal distribution having finite fourth
moments.

Canonical correlation analysis is used to study the relationship between two ran-
dom vectors U1 = (x1, · · · , xp)′ and U2 = (xp+1, · · · , xp+q)

′, (p ≤ q). Let 1 > ρ21 ≥
· · · ≥ ρ2p ≥ 0 be the characteristic roots of the matrix Σ−1

11 Σ12Σ
−1
22 Σ21, where

Var(U1) = Σ11, Var(U2) = Σ22, Cov(U1, U2) = Σ12 = Σ′
21. (1)
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Their positive square roots 1 > ρ1 ≥ · · · ≥ ρp ≥ 0 are the population canonical
correlation coefficients. It is well-known that ρ1 is the maximum correlation be-
tween two linear functions y11 = a′1U1 and y12 = b′1U2 subject to the condition that
Var(y11) = Var(y12) = 1. Also ρ2 is the maximum correlation between y21 = a′2U1 and
y22 = b′2U2 subject to the conditions that y21 and y22 are uncorrelated with both y11
and y12, and have unit variances and so on. The variables yi1, yi2 are the ith canonical
variables (i = 1, · · · , p). Let the (p + q) × 1 vectors X1, · · · ,XN denote a random
sample from a (p+ q)-variate nonnormal distribution with mean µ = (µ1, · · · , µp+q)

′,
covariance matrix Σ and finite fourth moments, where

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

. (2)

The sample canonical correlation coefficients 1 > r1(S/n) ≥ · · · ≥ rp(S/n) > 0 are the
positive square roots of the characteristic roots of S−1

11 S12S
−1
22 S21, where n = N − 1.

The S11(p × p), S22(q × q) and S12 = S′
21(p × q) are the submatrices of S partitioned

in the same manner as (2) of Σ. That is,

S =

N
∑

a=1

(Xa − X̄)(Xa − X̄)′ =

(

S11 S12

S21 S22

)

, (3)

where X̄ = (x̄·1, · · · , x̄· p+q)
′ = N−1

∑N
a=1 Xa, and x̄·j = N−1

∑N
k=1 xkj, (j = 1, 2, · · · ,

p + q). The main purpose of this paper is to derive the limiting distribution of the
jackknife statistic of r2j (S/n). The jackknife statistic was originally defined by Que-
nouille [13] to reduce the bias of an estimate. Then Tukey [15] proposed the general
use of this technique to obtain approximate confidence intervals for problems where
standard statistical procedures may not exist or are difficult to apply. This paper is
related to Tukey’s confidence interval or testing hypothesis rather than Quenouille’s
bias reduction.

A nice review has been written by Miller [7]. Also Parr and Schucany [12] and
Frangos [5] have given a list of references on jackknife statistics. It seems that the
jackknife statistics which deal with eigenvalue problems of covariance matrices have
not been studied by many authors. Dempster [4] derived the bias correction of the
canonical correlation under the multivariate normal distribution. More than 20 years
ago, Nagao [9], [10], and [11] gave the limiting distribution of eigenvalue problems of a
covariance matrix and also of a correlation matrix under the nonnormal situation. Also
Beran and Srivastava [1] have treated some problems of eigenvalues and eigenvectors
of a covariance matrix without normality by using bootstrap method. Recently Das
and Sen [2], [3] wrote interesting papers about the nervous system, where they applied
the resampling method to the canonical correlation analysis.
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2 The limiting distribution of the canonical correlation

The pseudo-values and the jackknife statistic of the jth root r2j (S/n) are given by

r2j,a = r2j (S/n) + (N − 1){r2j (S/n)− r2j (S−a/(n− 1))}, (a = 1, · · · , N) (4)

and

r̄2j =
1

N

N
∑

a=1

r2j, a,

respectively, where S−a corresponding to S is a (p + q) × (p + q) matrix which is
obtained by deleting Xa = (xa1, · · · , xa p+q)

′ from the random sample X1, · · · ,XN .
Then S−a is given by

S−a = (s−a
kℓ ) = S − N

N − 1
(Xa − X̄)(Xa − X̄)′. (5)

Also let Sij,a(i, j = 1, 2) denote the submatrices of S−a partitioned as in (3). Here we
give the limiting distribution of r̄2j . Since the problem is concerned with eigenvalues of

Σ−1
11 Σ12Σ

−1
22 Σ21, we can assume the covariance matrix Σ such that Σ11 = Ip, Σ22 = Iq,

where Ip denotes a p× p identity matrix, and Σ12 = (P, 0), where P = diag(ρ1, ..., ρp).
Then we have

√
n(r̄2j − ρ2j) =

√
n(r2j (S/n)− ρ2j ) +

√
n(N − 1)

N

N
∑

a=1

{r2j (S/n)− r2j (S−a/(n− 1))}. (6)

When ρj is a nonzero simple root, Muirhead and Waternaux [8] have shown that
the first term of (6) converges in law to a normal distribution. Thus we will show that
the second term of the R.H.S. of (6) converges in probability to zero. In order to expand
r2j (S−a/(n− 1)) about S/n, we apply the implicit function theorem. We consider the

equation F (S−a/(n− 1), r2) = |S−1
11, aS12, aS

−1
22, aS21, a − r2Ip| = 0. At first we will show

that the equation can be solved for r2 around (S/n, r2j (S/n)). Then F (S/n, r2j (S/n)) =

0. The partial derivative of F (·) with respect to r2 under (S/n, r2j (S/n)) is given by

Fr2(S/n, r
2
j (S/n)) =

p
∑

i=1

|Ci|, (7)

where Ci is the matrix obtained from C = S−1
11 S12S

−1
22 S21− r2j (S/n)Ip by replacing ith

column with (0,...,-1,0,...,0)’ having -1 for the ith element. Since r2i (S/n) → ρ2i (i =
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1, ..., p) in probability, the expression (7) converges to
∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 0
0 ρ22 − ρ2j
...

. . .

0 0 ρ2p − ρ2j

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ21 − ρ2j 0. . .

ρ2p−1 − ρ2j0 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
p
∏

i=1,i 6=j

(ρ2i − ρ2j).

(8)

Thus if ρ2j is a simple root, for large N we have Fr2(S/n, r
2
j (S/n)) 6= 0 in the region

||S/n−Σ|| ≤ ǫ for a suitable norm || · || and some ǫ > 0. Let (takℓ) = S−a/(n−1)−S/n.
Then by Chebyshev’s inequality, since the fourth order moments are finite, we can
easily show that

P( sup
1≤a≤N

|takℓ| ≥ ǫ) → 0 as N → ∞. (9)

Thus, for all a (1 ≤ a ≤ N), we can expand the function r2j (S−a/(n− 1)) around S/n,
and get

r2j (S−a/(n − 1)) = r2j (S/n) +
∑

k≤ℓ

gjkℓ(S/n)t
a
kℓ +

1

2
< takℓ > C(j)

a < takℓ >
′, (10)

where gjkℓ(S/n) = −Fskℓ/n(S/n, r
2
j (S/n)), each element of a w × w matrix C

(j)
a with

w = (p+q)(p+q+1)/2 is the derivative of gjkℓ(S/n) evaluated at the elements of some
matrix between S/n and S−a/(n − 1) and < akℓ >= (a11, · · · , app, a12, · · · , ap−1,p).
Since

∑N
a=1 t

a
kℓ =

∑N
a=1{

skℓ
(N − 1)(N − 2)

− N

(N − 1)(N − 2)
(xak − x̄·k)(xaℓ − x̄·ℓ)}

=
Nskℓ

(N − 1)(N − 2)
− Nskℓ

(N − 1)(N − 2)

= 0,
(11)

we only have to show that the expression

√
n(N − 1)

N

N
∑

a=1

{r2j (S/n)− r2j (S−a/(n − 1))}

= −
√
n(N − 1)

2N

N
∑

a=1

< takℓ > C(j)
a < takℓ >

′

(12)
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converges in probability to zero. Since for large N, each element of C
(j)
a is bounded, by

the continuity of the derivatives of gjkℓ(·) and the convergence of S−a/(n−1) uniformly
in a, by using Schwarz’s inequality, we have

the absolute value of R.H.S. of (12) ≤ C(P, p + q)

×
√
n(N − 1)

N

N
∑

a=1

tr(
S−a

n− 1
− S

n
)2,

(13)

where C(P, p+ q) is a function of P and p+ q. Then from (5) we have

R.H.S. of (13) = C(P, p+ q)(N − 1)−1/2(
N

N − 2
)2

×{ 1

N

N
∑

a=1

tr[(Xa − X̄)(Xa − X̄)′]2 − tr(S/n)2}.
(14)

Since the fourth moments of Xa are finite, the above expression (14) converges in
probability to zero. Thus we have

THEOREM 2.1. Let the (p + q)× 1, (p ≤ q) vectors X1, · · · ,XN denote a random
sample from a (p+q)-variate distribution with mean µ, covariance matrix Σ and finite
fourth moments. If the jth canonical correlation ρj is a non-zero simple root, then we
have √

n(r̄2j − ρ2j) → N(0, τjj), (15)

where

τjj = ρ4j (κ
jj
jj + κp+j,p+j

p+j,p+j + 2κp+j,p+j
jj )− 4ρ3j (κ

j,p+j
jj + κj,p+j

p+j,p+j) + 4ρ2jκ
j,p+j
j,p+j (16)

with κcdab = Cov((xa − µa)(xb − µb), (xc − µc)(xd − µd)).

In case of normal distribution, since κjjjj = κp+j,p+j
p+j,p+j = 2, κj,p+j

j,p+j = 1+ρ2j , κ
p+j,p+j
jj =

2ρ2j and κj,j+p
jj = κj,p+j

p+j,p+j = 2ρj, we have τjj = 4ρ2j (1− ρ2j )
2.

3. The convergence of

N
∑

a=1

(r2j,a − r̄2j )
2/(N − 1)

We will show that

N
∑

a=1

(r2j,a − r̄2j )
2/(N − 1) → τjj in probability. (17)
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Now we have

∑N
a=1(r

2
j,a − r̄2j )

2/(N − 1)

= (N − 1)
∑N

a=1(r
2
j (S−a/(n − 1))− 1

N

N
∑

a=1

r2j (S−a/(n − 1)))2.

(18)

If ρj is a simple root, by the implicit function theorem, we have

r2j (S−a/(n− 1)) = r2j (S/n) +
∑

k≤ℓ

gjkℓ(ξ
j
a)t

a
kℓ = r2j (S/n) + Ua + Va, (19)

where ξja is some matrix between S−a/(n − 1) and S/n. Ua and Va in (19) are given
by

Ua =
∑

k≤ℓ

gjkℓ(S/n)t
a
kℓ

and

Va =
∑

k≤ℓ

(gjkℓ(ξ
j
a)− gjkℓ(S/n))t

a
kℓ.

(20)

Thus we have

R. H. S. of (18) = (N − 1)

N
∑

a=1

(Ua + Va − V̄ )2, (21)

where V̄ = N−1
∑N

a=1 Va. First we consider the sum (N − 1)
∑N

a=1 U
2
a . After some

simplification we have

(N − 1)
∑N

a=1 U
2
a =

∑

k≤ℓ

∑

t≤u

gjkℓ(S/n)g
j
tu(S/n)

×[(
N

N − 2
)2

N
∑

a=1

(xak − x̄·k)(xaℓ − x̄·ℓ)

×(xat − x̄·t)(xau − x̄·u)/(N − 1)− N

N − 1
(stu/(N − 2))(skℓ/(N − 2))].

(22)

Next we will give the values to which gjkℓ(S/n) converges in probability. In order
to get them, we need a well-known lemma (see for example, Srivastava and Khatri [14,
p. 28]).
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LEMMA 3.1. Let S = (sij) be a p× p nonsingular symmetric matrix. Then

∂S−1

∂sij
=

{

−(sis
′
j + sjs

′
i) i 6= j

−sis
′
i i = j

(23)

where S−1 = (s1, · · · , sp).
After some tedious calculations we see that gjkℓ(S/n) converges in probability to

the following values:

gjkℓ(S/n) →























−ρ2j k = ℓ = j, k = ℓ = p+ j

2ρj k = ℓ− p = j

0 otherwise.

(24)

Thus we have

(N − 1)
N
∑

a=1

U2
a → τjj in probability.

Next we consider (N − 1)
∑N

a=1 V
2
a . Since ξja converge in probability to Σ for all

1 ≤ a ≤ N when N → ∞ , for large N we can get |gjkℓ(ξ
j
a) − gjkℓ(S/n)| ≤ ǫ for any

ǫ > 0. Thus from Schwarz’s inequality, we have

(N − 1)

N
∑

a=1

V 2
a ≤ ǫ2(N − 1)

1

2
(p+ q)(p + q + 1)

×tr{N2
N
∑

a=1

[(Xa − X̄)(Xa − X̄)′]2 −NS2}[ 1

(N − 1)(N − 2)
]2.

(25)

Since the fourth moments are finite, (25) converges in probability to zero. Also

from
∑N

a=1(Va − V̄ )2 ≤ ∑N
a=1 V

2
a and Schwarz’s inequality, the other terms also con-

verge to zero. Thus we get the following:

THEOREM 3.2. Under the assumptions of Theorem 2.1,

N
∑

a=1

(r2j,a − r̄2j )
2/(N − 1) → τjj in probability. (26)

From Theorems 2.1 and 3.2, follows
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THEOREM 3.3. Let the (p + q) × 1 vectors X1, · · · ,XN denote a random sample
from a (p+ q)-variate distribution with mean µ, covariance matrix Σ and finite fourth
moments. If the jth canonical correlation ρj is a non-zero simple root, then we have

n(r̄2j − ρ2j)
√

∑N
a=1(r

2
j,a − r̄2j )

2
→ N(0, 1), as N → ∞. (27)

3 The jackknife statistic of a function of the sample canon-

ical correlation coefficients

In this section we generalize the above results for a function of eigenvalues of S−1
11 S12S

−1
22 S21.

Let f(·) be a real-valued function with the second continuous derivatives in some
neighborhood of (ρ21, · · · , ρ2p). By using the notations of the previous sections, the

pseudo-values and the jackknife statistic of f(r21(S/n), · · · , r2p(S/n)) are given by

fa = f(r21(S/n), · · · , r2p(S/n)) + (N − 1){f(r21(S/n), · · · , r2p(S/n))

−f(r21(S−a/(n− 1)), · · · , r2p(S−a/(n − 1)))}, (a = 1, · · · , N)

and

f̄ =
1

N

N
∑

a=1

fa,

(28)

respectively. First we will derive the limiting distribution of f̄ . Since the method
used is similar to the above, we only sketch the proof. Expanding f(r21(S−a/(n −
1)), · · · , r2p(S−a/(n − 1))) around (r21(S/n), · · · , r2p(S/n)), we have

f(r21(S−a/(n − 1)), · · · , r2p(S−a/(n− 1))) = f(r21(S/n), · · · , r2p(S/n))

+

p
∑

j=1

Aajfj(r
2
1(S/n), · · · , r2p(S/n)) +

1

2

p
∑

j,k=1

AajAakfjk(ξa),
(29)

where Aaj = r2j (S−a/(n− 1)) − r2j (S/n), fj(ρ1, · · · , ρp) =
∂

∂ρj
f(ρ1, · · · , ρp),

fjk(ρ1, · · · , ρp) =
∂

∂ρj
fk(ρ1, · · · , ρp) and ξa is a point on the line segment between

the vectors (r21(S/n), · · · , r2p(S/n)) and (r21(S−a/(n− 1)), · · · , r2p(S−a/(n− 1))). Then

the term eliminating
√
n(f(r21(S/n), · · · , r2p(S/n)) − f) from

√
n(f̄ − f) with f =

f(ρ21, · · · , ρ2p) converges in probability to zero if all ρ2j are non-zero simple roots. Since
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r2j (·) is a continuous function, ξa converge in probability to (ρ21, · · · , ρ2p) uniformly
1 ≤ a ≤ N . Hence by the assumption, |fjk(ξa)| are bounded (a = 1, ..., N) in some
neighborhood of (ρ21, · · · , ρ2p). Thus we only show that for j = 1, · · · , p,

√
n(N − 1)

N

N
∑

a=1

{r2j (S−a/(n− 1)) − r2j (S/n))}2 → 0 in probability. (30)

Let
∑N

a=1{r2j (S−a/(n− 1)) − r2j (S/n)}2 = Qj +Rj, where

Qj =

N
∑

a=1

{r2j (S−a/(n− 1)) −N−1
N
∑

a=1

r2j (S−a/(n− 1))}2

and

Rj = N{r2j (S/n)−N−1
N
∑

a=1

r2j (S−a/(n− 1))}2.

(31)

Then from Theorem 3.2,
√
n(N − 1)N−1Qj → 0 in probability. Since

√
n(N −

1)N−1Rj = (N−1)−1/2(r̄2j −r2j (S/n))
2, we have the desired conclusion (30). Therefore

we have

THEOREM 4.1. Let the (p + q) × 1 vectors X1, · · · ,XN denote a random sample
from a (p+ q)-variate distribution with mean µ, covariance matrix Σ and finite fourth
moments. For any function f(·) with continuous second derivatives in an open set
about (ρ21, · · · , ρ2p), if the population canonical correlations satisfy 1 > ρ1 > · · · >
ρp > 0, then we have √

n(f̄ − f) → N(0, τ2), (32)

where τ2 =
∑p

i,j=1 fifjτij , fj =
∂

∂ρ2j
f(ρ21, · · · , ρ2p), f = f(ρ21, · · · , ρ2p) and τij (i, j =

1, · · · , p) are given by

τij = ρ2i ρ
2
j(κ

jj
ii + κp+j,p+j

ii + κjjp+i,p+i + κp+j,p+j
p+i,p+i )

−2ρ2i ρj(κ
j,p+j
ii + κj,p+j

p+i,p+i)− 2ρiρ
2
j (κ

jj
i,p+i + κp+j,p+j

i,p+i )

+4ρiρjκ
j,p+j
i,p+i .

(33)

Next we shall investigate the convergence of
∑N

a=1(f
a − f̄)2/(N − 1). We have

f(r21(S−a/(n− 1)), · · · , r2p(S−a/(n− 1))) = f(r21(S/n), · · · , r2p(S/n)) +
p

∑

j=1

Aajfj(ξa),

(34)
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where ξa is a point on the line segment between the vectors (r21(S/n), · · · , r2p(S/n))
and (r21(S−a/(n− 1)), · · · , r2p(S−a/(n − 1)). Then we have

1

N − 1

N
∑

a=1

(fa − f̄)2 = (N − 1){
N
∑

a=1

(

p
∑

j=1

(Uaj − Ū·j + Vaj − V̄·j))
2}, (35)

where Uaj = Aajfj(r
2
1(S/n), · · · , r2p(S/n)), Vaj = Aaj(fj(ξa)− fj(r

2
1(S/n), · · · ,

r2p(S/n))), Ū·j = N−1
∑N

a=1 Uaj and V̄·j = N−1
∑N

a=1 Vaj . Using (24), after some
tedious calculations, we have

(N − 1)

N
∑

a=1

{
p

∑

j=1

(Uaj − Ū·j)}2 → τ2 in probability. (36)

Also (N − 1)
∑N

a=1(
∑p

j=1(Vaj − V̄·j))
2 converges in probability to zero since (fj(ξa)−

fj(r
2
1(S/n), · · · , r2p(S/n))) converges in probability to zero for all a when N → ∞.

The convergence in probability of the term to zero follows from Schwarz’s inequality.
Therefore by using the notation of Theorem 4.1, we have

THEOREM 4.2. The statistic
∑N

a=1(f
a − f̄)2/(N − 1) converges in probability to

τ2, if all nonzero ρj are distinct.
Accordingly from Theorems 4.1 and 4.2 we have

THEOREM 4.3. Let the (p + q) × 1 vectors X1, · · · ,XN denote a random sample
from a (p + q)-variate continuous distribution with mean µ, covariance matrix Σ and
finite fourth moments. If non-zero canonical correlations ρj are all distinct, then for
any function f(·) with continuous second derivatives about (ρ21, · · · , ρ2p), we have

n(f̄ − f)
√

∑N
a=1(f

a − f̄)2
→ N(0, 1), (37)

where f = f(ρ21, · · · , ρ2p) and n = N − 1.
Similarly we have

THEOREM 4.4. If non-zero canonical correlations ρj are all distinct, then we have

n(r̄21 − ρ21, · · · , r̄2p − ρ2p)Ω̂
−1(r̄21 − ρ21, · · · , r̄2p − ρ2p)

′ → χ2
p,

where χ2
p is chi-square distribution with p degrees of freedom and the elements τ̂ij of

the p× p matrix Ω̂ = (τ̂ij) are given by

τ̂ij =
1

N − 1

N
∑

a=1

(r2i,a − r̄2i )(r
2
j,a − r̄2j ). (38)
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4 The jackknife statistic when sample size N = gh with

fixed g and h → ∞
Finally we consider the case of the size N = gh where the group g is fixed and h is a
sample size in each group with h → ∞. The previous problem is the case g = N → ∞
and h = 1. Let the (p + q) × 1 vectors X1, · · · ,Xh, · · · ,X(g−1)h+1, · · · ,Xgh denote a
random sample from a (p+ q)-variate distribution with mean µ, covariance matrix Σ
and finite fourth moments. S−i/ng denotes the unbiased estimator of Σ based on a
random sample obtained by deleting the ith group sample X(i−1)h+1, · · · ,Xih, where

ng = h(g − 1) − 1. Then the pseudo-values and the jackknife statistic of r2j (S/n) are
given by

r2i,j = gr2j (S/n)− (g − 1)r2j (S
−i/ng), (i = 1, · · · , g)

and

r̄2j =
1

g

g
∑

i=1

r2i,j ,

(39)

respectively. Then S−i is given by

S−i =

N
∑

a/∈Ai,a=1

(Xa − X̄)(Xa − X̄)′ − h2

N − h
(X̄i − X̄)(X̄i − X̄)′, (40)

where X̄i = h−1
∑

a∈Ai
Xa and Ai denotes the set {(i − 1)h + 1, ..., ih}. Now, if non-

zero ρj is a simple root, using perturbation method (for example, see Dempster [4],
Konishi and Gupta [6]), then for any sample covariance matrix S/n, we have

r2j (S/n) = ρ2j + 2ρj(
sj,p+j

n
− ρj)− ρ2j(

sj+p,j+p

n
− 1)

−ρ2j(
sj,j
n

− 1) +Op(n
−1).

(41)

On the other hand, as h → ∞,
√
hh2

(N − h)ng
(X̄i − X̄)(X̄i − X̄)′ → 0, in probability. (42)

Thus from (40), after some calculations, we have

r2i,j = ρ2j + 2ρj(
vij,j+p

h
− ρj)− ρ2j (

vip+j,p+j

h
− 1)

−ρ2j(
vij,j
h

− 1) +Op(n
−1
g ),

(43)
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where vikℓ =
∑

a∈Ai
(xak − x̄·k)(xaℓ − x̄·ℓ). Now putting x̄i·a = h−1

∑h
j=1 x(i−1)g+j,a, we

have
vikℓ =

∑

a∈Ai

(xak − x̄i·k)(xaℓ − x̄i·ℓ) + h(x̄i·k − x̄·k)(x̄
i
·ℓ − x̄·ℓ). (44)

From (42), the second term of (44) times 1/
√
h converges in probability to zero. Thus

for each j we have √
h(r2i,j − ρ2j) → N(0, τjj), (45)

where τjj is given by (16). Noting that Ai ∩ Aj = φ (i 6= j), we can show that
r2i,j (i = 1, ..., g) are asymptotically independent. Therefore we have

THEOREM 5.1. Let the (p + q)× 1 vectors X1, · · · ,Xh, · · · ,X(g−1)h+1,
· · · ,Xgh denote a random sample from a (p + q)-variate distribution with mean µ,
covariance matrix Σ and finite fourth moments. If ρ2j is a non-zero simple root, then
we have √

g(r̄2j − ρ2j )
√

∑g
i=1(r

2
i,j − r̄2j )

2/(g − 1)
→ tg−1, (46)

where tg−1 denotes a t-distribution with (g − 1) degrees of freedom.
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