ISSN 1683-5603

International Journal of Statistical Sciences
Vol. 10, 2010, pp 71-92
© 2010 Dept. of Statistics, Univ. of Rajshahi, Bangladesh

Forecasting Production of Major Food Crops in Four Major SAARC Countries

Pradip Kumar Sahu

Department of Agricultural Statistics Bidhan Chandra Krishi Viswavidyalya Mohanpur, West Bengal, India, PIN-741252 E-mail: pksahubckv@rediffmail.com

[Received June 19, 2008; Revised September 17, 2009; Accepted January 13, 2010]

Abstract

The Indian sub-continent contributes near about 145 crores to the world population. To supply balanced diet to these huge population, is a stupendous task to the planners of these countries. Reports indicate that world wide near about 600 millions people go to bed either malnourished or without having two square meals daily. IWMI has estimated a requirement of 269 million metric tones of cereals for India by 2025 under the changing consumption scenario. Major staple food being rice and wheat, pulses and vegetables also figure among the food items of the SAARC countries. Vegetables play important role in balancing human diet at a relatively cheaper rate. Thus, production of cereals, particularly rice, wheat along with that of vegetables in a sustainable manner is of prime importance. The principle of sustainable production is to meet the needs of the present generation without compromising the ability of the future generations to meet their own needs. The study of production behaviour of major food items like cereals, (especially rice and wheat) and vegetables is of much importance not only for assured food supply for present generation but also for future generations. Present work is an attempt to examine the growth and trend in area, production, productivity, waste and actual availability of cereals, rice, wheat and vegetables in major SAARC countries namely Bangladesh, India, Nepal and Pakistan with an objective to visualize the behaviour of the production process of these crops to meet the future requirement of these countries. The study reveals a wide range of variations in growth of area, production, productivity of these crops among the countries. By and large there has been an increase of productivity over the years in all the countries with respect to the above-mentioned crops. Forecasting of production behaviour for these crops with the help of Box-Jenkins method reveals that 54.53 million tones of cereals and 0.709 million tones of vegetables would be available for 18.14 crores (projected, FAO, 2006) people of Bangladesh during the year 2015. Similarly the figures could be 229 and 58.46 million tones respectively for a population of 1264 millions (FAO projection) in India during the same year. Different measures of sustainability of productivity of these crops indicate wide range of variations among the countries. Nepal shows maximum sustainability with respect to the productivity of cereals, rice and wheat (using the indices of Singh, 1990 and ICARDA, 1994). Higher sustainability of vegetables productivity is shown by India, next to World (Singh, 1990) and Nepal (ICARDA, 1994). Taking in to consideration of the percentage loss of these crops due to various reasons and thereby reducing the actual availability; the study suggests for improvement in productivity of these crops in a sustainable manner so as to meet the future requirements of the crops.

Keywords and Phrases: Crops, Production Behaviour, Forecasting, B-J Method, Sustainability.

AMS Classification: 62M10.

1 Introduction

"The right of everyone to have access to safe and nutritious food, consistent with the right to adequate food and the fundamental right of everyone to be free from hunger" was the first sentence of the declaration by the committee on world food security in its 27^{th} session in Rome, 28^{th} May to 1st June 2001. On the other hand what we find is that near about 23% people of South Asia are undernourished, next to 34% of Sub-Saharan African region. In India alone, 75% of the children are under weight due to inadequate nutrition (Swaminathan, 2006), almost 200 million of Indian population go to bed daily either hungry or with out getting two square meals. As many as 45 out of 75 districts in Nepal are food deficit districts and anybody can have detailed picture of the other South Asian countries in this regard. The seven south Asian countries under SAARC (presently eight with the inclusion of Afghanistan) contribute near about one fourth of the total world population. These eight countries are to depend heavily on the production of India, Pakistan, Bangladesh and Nepal for supply of balanced food. Vegetables are considered to be cheaper source of nutrient in balancing human diet, as a result, ever since the beginning of the planning process, production of cereals, particularly rice and wheat along with that of vegetables in a sustainable manner remains the prime focal points to the planners. Though sustainability is a multifaceted and multifariously defined feature, it integrates mainly the environmental health, economic profitability, social and economic equity. Sustainable production refers to meet the need of present generation without compromising the ability of future generation to meet their own needs. One of the major components of environment is its water resources. International Water Management Institute (IWMI) indicates that there will be a need for 17% more irrigation water to feed the world population by 2025, at the same time near about 2 billion people of the world will have to face absolute water scarcity during this period. Thus, there is no option except to produce more food and other commodities per drop of water under the conditions of diminishing per capita arable land and irrigation water resources (Swaminathan, 2006). Figures indicate that though India, Bangladesh, Nepal and Pakistan contribute to 38.35% to world rice area, 16.51% to world wheat area, the productivity of rice and wheat are far below the average world productivity. Though in terms of area for rice and wheat India occupies first and second place, it ranks 35th and 32nd in terms of productivity among the countries in the world (Singh, 2006). In a study by Kumar and Mritunjay (2003) indicated that there has been a decline in per capita consumption of cereals over the time inspite of decline in rural prices and increase in income against vegetables and other foods. In India alone, the consumption of cereals for the people below poverty line (BPL) has come down to 132kg per anum per person from 147.1 kg (a decline of 10%) and incase of people 150% above BPL from 194.3 kg to 154.6kg (a decline of 20.4%) during the period of 1983-1999-00 and the same trend is still existing. On the contrary the consumption of vegetables for people below poverty line has gone up 53.9kg per annum per person from 36 kg (an increase of 49.6%) and in case of people 150% above BPL from 65.2kg to 90.8kg (an increase of 39.3%) during the period

1983-1999-00. This trend prompted Singh and Kumar (2002) to project a demand for vegetables of around 118 million tones during the year 2007 in India. Taking all these changes in to consideration along with the change in quantum of population, IWMI with the help of PODIUM has forecasted a requirement of 269 million tones of cereals for India during the year 2025. In a study, Chandrasekhar and Ghosh (2003) revealed that the rural India is not only eating less but also eating bad. So, we are facing the twin problems of supplying adequate food to the huge population and balancing their diet to face the challenge of malnutrition.

Crop	Country	%Area	%Production	%Productivity
	Bangladesh	7.25	6.70	92.42
Diag	India	28.42	22.38	78.75
nice	Nepal	1.04	0.76	73.14
	Pakistan	1.64	1.24	75.61
Wheat	Bangladesh	0.34	0.31	91.35
	India	11.98	11.60	96.81
	Nepal	0.32	0.24	74.28
	Pakistan	3.87	3.41	88.27
	Bangladesh	0.87	0.37	42.33
Veretable	India	13.41	14.18	105.68
vegetable	Nepal	0.92	0.77	82.99
	Pakistan	0.43	0.43	102.24
	Bangladesh	1.72	1.96	113.70
Cereals	India	14.58	11.19	76.70
	Nepal	0.49	0.36	73.82
	Pakistan	1.85	1.38	74.72

Percentage	contribution	of major	SAARC	countries	to the	world	with
	respect to r	ice, whea	t, vegeta	bles and	cereal		

It has already been discussed that the major food in the SAARC region is mostly cereal based and among the cereals rice and wheat are predominant, simply because of food habit of the people of this region. As far as balancing of human diet is concerned, nothing would be cheaper and easily available to the people of this region than the vegetables. Thus, production and availability of vegetables along with cereals like rice and wheat play major role in mitigating the challenge of supplying balanced food to the huge population of this region. Availability of balanced food to the ultimate stakeholders depends on two main factors viz. adequate production and assured supply/distribution of food among the people. Distribution of food mostly follows adequate production of food stuff and it is an affair of the state administration. Distribution of food is related with social, political, economic and other factors of the country concerned. It may not be wise and feasible to take care of all these in a particular exercise. In this exercise, we are interested in the first part i.e. production scenario of cereals like rice wheat, along with that of vegetables for past, present and future of these countries.

As such, examination of growth and trend in area, production and productivity of rice, wheat and vegetables (excluding potato) is of much importance, not only to visualize the path of changes in production system but also for the potentiality of the system to assure food supply. As we know agricultural goods are perishable in nature, so the production does not mean the availability of the same to the consumer. On an average 4.7% of rice, 4.3% of wheat and 31% of vegetables are being wasted due to various reasons. So keeping in view the growth in population in one hand, and the study of the production behaviour along with the availability of produce with respect to the three major food items i.e. rice, wheat and vegetables (excluding potato) on the other hand is of much importance for food and nutritional security of this region.

2 Material and Method

Data with respect to rice, wheat, cereals and vegetables (excluding potato) used for the study period 1961-2003 has been taken from FAO. Before analysis, as the study is dealing with time series data, each and every series have been verified for the existence of outlier in the data set.

2.1 Test for Outlier

A number of tests have been developed for the test of outlier Grubbs test is one of these test can be used in case of large sample. Grubbs' test is particularly easy to follow and is also called the ESD method (extreme studentized deviate). (Graph pad-2006) for outliers i.e. to detect the existence of any outlier or not; if found, have been replaced by the median of the respective series.

The test starts to quantify how far the outlier is from the others. Z ratio is calculated as absolute value of the difference between the outlier and the mean divided by the SD. If Z is large, the value is far from the others. It should be noted that one should use all the observations during calculation of the mean and SD from all values, including the outlier.

$$Z = \frac{|\bar{x} - x_i|}{S_x};$$

where, x_i , \bar{x} and S_x are the value of the ith observation, arithmatic mean and standard deviation of the variable respectively.

Since 5% of the values in a normal population are more than 1.96 standard deviation from the mean, our first thought might be to conclude that the outlier comes from a different population if Z is greater than 1.96. This approach only works if we

know the population mean and SD. This is rarely the case in practical situations or experimental data situations. As a result, one would calculate the mean and SD from the given set of data. The presence of an outlier increases the calculated SD. Since the presence of an outlier increases both the numerator (difference between the value and the mean) and denominator (SD of all values), Z does not get very large. In fact, no matter how the data are distributed, Z can not get larger than, $\frac{n-1}{\sqrt{n}}$ where n is the number of values. For example, if n = 64, Z cannot be larger than 7.88 for any set of values. Grubbs and others have tabulated critical values for Z. The critical value increases with sample size, as expected. If our calculated value of Z is greater than the critical value in the table, then the P value is less than 0.05. This means that there is less than a 5% chance that one would encounter an outlier so far from the others (in either direction) by chance alone, if all the data were really sampled from a single normal distribution. It should be noted that the method only works for testing the most extreme value in the sample (if in doubt, calculate Z for all values, but only calculate a P value for Grubbs' test from the largest value of Z. Once an outlier is identified, one may choose to exclude that value from the analyses/may retain or replace it. In this work we have replaced the outlier by median.

2.2 Test for Randomness

Each and every series has been analysed for their nature with the help of test of randomness. Like the test of outlier, statisticians have developed tests for randomness under different situations. As because our sample is large we use the test of turning points described as follows. This test for randomness (Kendall and Stuart, 1968) is a non-parametric test based on the number of turning points. The process is to count peaks and troughs in the series. A "peak" is a value greater than the two neighbouring values and a "trough" is a value, which is lower than of its two neighbors. Both the peaks and troughs are treated as turning points of the series. At least three consecutive observations are required to find a turning point, let U_1 , U_2 , U_3 be three points. If the series is random then these three values could have occurred in any order, viz. in six ways. But only in four of these ways would there be a turning point. Hence the probability of turning points in a set of three values is 4/6 = 2/3.

Let U₁, U₂, U₃..... U_n be a set of observations and let us define a marker variable X_i by $X_i = 1$ when $U_i < U_{i+1} > U_{i+2}$ and

$$U_i > U_{i+1} < U_{i+2}$$

= 0 otherwise \forall , i = 1,2,3.....(n-2)
Hence the number of turning points "p" is then $p = \sum_{i=1}^{n-2} x_i$
then we have $E(p) = \sum_{i=1}^{n-2} E(x_i) = 2/3(n-2)$ and

 $E(p^2) = E(\sum_{i=1}^{n-2} (x_i))^2$ on simplification, which ultimately comes out to be $(40n^2 - 144n + 131)/90$, resulting in

$$Var(p) = E(p^2) - (E(p))^2 = \frac{16n-29}{90}$$

It can easily be verified that as 'n', the number of observations increases the distribution of 'p' tends to normality. Thus for testing the null hypothesis H_0 : series is random

we have the test statistic, $\tau = \frac{p \sim E(p)}{S_p} \sim N(0, 1)$ where, S_p is the standard deviation of 'p'.

Thus if the calculated value of τ is greater than 1.96, we reject H_0 : Series is random otherwise accept it.

2.3 Statistical Tools

It include arithmetic mean, coefficient of variation percent, simple growth rate percent. Simple Growth Rate per cent (SGR%) = $\Psi = \{(Y_t - Y_0)/Y_0.n\} \times 100$, where Y_t = last year, Y_0 = initial year, n = number of years. Higher value of Ψ indicates higher growth during the period whereas lower value is the result of poor growth.

2.4 Study Method

In this study, B-J method has been used to modeling and forecast production values; also attempt has been made to compare predicted values with that of original values. The series were subjected to Auto Regressive (AR) / Auto Regressive Moving Average (ARMA)/Auto Regressive Integrated Moving Average (ARIMA) modeling followed by test of Auto Correlation Function (ACF), Partial Autocorrelation Function (PACF) for residuals of the models fitted in the process. To check whether there exists any trend or seasonality or not in the time series data, graphs of autocorrelation function and partial autocorrelation functions were drawn. Stationarity of any time series can also be judged with the help of ACF and PACF graphs. As a rule of thumb, the ACF and PACF are good estimate of the ACF and PACF of a stationary process for lag of about one third of the sample size. The horizontal line on the sample ACF and the PACF graphs are the bounds $\pm \frac{1.96}{\sqrt{n}}$. Values of the ACF that decay rapidly as the lag period (h) increases, indicate short term dependency in the time series, on the other hand slowly decaying values indicate long term dependency, data may have trend. Similarly, a sample ACF with very slow damped periodicity suggests the presence of periodic seasonal component. In both the above cases i.e. in presence of trend and or seasonality, data required to be transformed before ARMA model fitting.

Differencing is a technique that can be used to remove the seasonal components and the trends in a time series data. To remove the seasonal component of period 8 from the series Y_t we generate the transformed series $Y_t^* = Y_t - Y_{t-8}$. This is nothing but the differencing at lag 8. On the other hand to eliminate linear trend from a time series one has to difference the series at lag1; to eliminate quadratic trend differencing twice at lag1, and higher order polynomial trend can be eliminated analogously.

The graphs of the sample ACF and PACF sometimes suggest an appropriate model for the series. As a rough guideline, if the sample ACF falls between the plotted bound of $\pm \frac{1.96}{\sqrt{n}}$ for large h > q then a MA(q) model is adopted, on the other hand if the sample PACF falls between the plotted $\pm \frac{1.96}{\sqrt{n}}$ for lag h > p then AR(p) may be tried.

2.5 Sustainability

Sustainability is a very complex, contested and multifariously defined concept. Despite its contested nature there is an overall agreement that it is multifaceted and therefore, needs to be assessed across several dimensions. In its simplest form, it can be assessed from economic, social and bio-physical aspects. Crop productivity and its sustainability is a major component in maintaining food safety by making provision for assured food to the masses. The study envisaged here, implies persistence and the capacity of a crop to produce continuously for a long time. Thus persistency in productivity of a crop across a long period of time implies sustainability. The sustainability index refers to measure the yield potential of the four major crops produced in the studied countries along with the world. Here four different types of sustainability measures have been used.

1. Sustainability Index (SI-1) = $\frac{\bar{y}-s}{y_{\text{max}}}$, where \bar{y} is the average yield of a performance of a country, s is the standard deviation of performance over the years and y_{max} is the maximum performance of a country in any year (Singh *et al.* 1990; also used by Gangwar *et al.* 2003).

2. $y_{ij} = a + b_i \bar{y}_j$, where \bar{y}_j is the mean of all countries in the j th year and b_i is the regression coefficient for i-th country, y_{ij} is the value of the performance with respect to the i-th country in j-th year and SI of i-th country as per ICARDA (1994) is $|1/b_i| = (SI-2)$.

3. $y_{ij} = a + b_i t + c i \bar{y}_j$, where \bar{y}_j is the mean of all countries in j-th year, b_i and c_i are regression coefficients and 1/|ci| is partial sustainable index (SI-3) of i-th country (as per Katyal *et al.* 2000).

4. Simple Achievable Growth Rate Percent (SAGR%) as given by Sahu *et al.* (2005) as Simple achieved variation (SAV) was also used to describe each series. SAGR% is defined as SI-4 = { $(y_m - \bar{y})/(n\bar{y})$ } × 100, where, y_m = maximum value of series, \bar{y} = average value of the series, n = number of years. The SAGR% describes differences in what has been achieved and what could have been achieved; positive value indicates that under the given state of technology and other factors (existing scenario), realization could have been improved if the maximum potential was maintained. The closure the value of SI-4 towards zero the better is the performance and greater is the need for technological improvement. If SI-4 is zero the maximum potential has been achieved;

the present state of technology has reached its plateau, and further improvement can be made only through technological advancement

3 Results and Discussion

To judge the nature of each and every series Grubb's test for outlier check is followed. The result indicates that excepting for the area of vegetables in India in the year 1993 none of the series has got any outlier. The next objective is to examine whether the series under consideration follow a definite trend or observation in the series changed randomly. This is being done through the test of randomness as described in materials and method section. The result of test of randomness (Table 5) indicates that all the parameters under consideration for rice in India, production, productivity and waste of wheat in India have changed randomly during the period of 1961-2003. This is not a good indicator for a planned economy; at the same time it is also to be noted that agriculture depends on so many other factors like weather, market, disease and pest incidence etc. besides planning and execution.

Next objective of the study is to visualize the average performance of the crops under consideration for the countries taken up for study. Table 1 to table 4 depict the pictures of production performances and availability of these crops, which indicates that India is the major country among the four in area and production with respect to all the crops under consideration followed by either Bangladesh or Pakistan. So far about the variability in production behavior measured in terms of coefficient of variation percentage is concerned, it is found to be widely spread over the countries. The variability in productivity of the crops over the period is justified because of the change in technology, management and other practices. In almost all the crops there has been a growth in productivity over the periods. But the question is whether this growth in productivity and other related parameters are sufficient to meet the challenge of food and nutritional requirement of the SAARC countries in a sustainable manner. Sustainability in productivities of different crops has been measured with the help of sustainability indices as described in materials and method section. Among the countries sustainability (table 6) varies over the indices for a particular crop. Nepal shows maximum sustainability with respect to cereals, rice and wheat as per the indices given by Singh (1990) and ICARDA (1994). Maximum sustainability of productivity in vegetables as per Singh (1990) is found in case of world followed by India and Pakistan. On the other hand, maximum sustainability according to measure 3 and 4 is found in case of Bangladesh. Thus, the study of sustainability by different measures have different results but as a whole these are able to provide an over all comparative pictures of productivity in different crops among the countries with respect to sustainability.

One of the objectives of the present study is to forecast the production behaviour of the crops under consideration, in the study areas. For the purpose we have divided the whole period of investigation in two parts: the model building period (1961-2001) and model validation period (2002-2003). Box-Jenkins methodology has been used for modeling purpose. Different auto-regressive (AR), auto regressive moving average (ARMA), auto regressive integrated moving average (ARIMA) models are found to fit well with the given series. Among the competitive models, for any particular series, the best model is selected based on the overall standard error, log likelihood value, AIC value and the significance of the coefficients in the model followed by the diagnostic check of the residuals with the help of the auto-correlation and partial auto-correlation functions and presented in tables 7(A) to 7(D). The difference between predicted and realized values for different series during the model validation period i.e. 2002-2003 is presented in table 8 to 12. It is clear from the tables that the realized values are almost nearer to the predicted values. Moreover the diagnostic check of residual also indicates that these are white noise.

Forecasting of area, production and productivity, waste and availability are also made with the help of the model fitted. It is found that in Bangladesh 54.43 million tones of cereals and 0.709 million tones of vegetables would be available during the year 2015 for a projected population of 18.14 crores. Similarly for India the figures could be 229 million tones of cereals and 58.46 million tones of vegetables for a population 126.4 crores. But the important thing is that the productivity of all the crops in almost all the countries excepting for vegetables will almost remain stagnant. So far as the productivity of vegetables in Nepal is concerned it will remain constant and far below the average productivity of other countries and the world.

Under the given land and water scarcity scenario it is the need of the hour to increase productivity per unit of resource to ensure food and nutritional security to the ever increasing population of the world. Moreover in many parts of the world, the present day thrust is not only to eat but to eat quality food. Besides the above, there is trend to produce and consume more and more organically produced food in many parts of the world. Question has been raised whether it is possible to meet the demand for food through entirely organic system of production. Thus, we are facing multifarious challenges towards meeting the need for good quality of food in sufficient amount. But one thing should be noted that whatever may be the process of production, prediction of likely population and forecasting of production of food material should be done meticulously, otherwise there will be a total disaster.

Acknowledgement

The author is thankful to the reviewer of this work for constructive suggestions in improving the quality of the paper.

References

 Annual Report (1994). International Centre for Agricultural Research in the Dry areas, PB 5466, Aleppo, Syria, pp. 29-30.

- [2] Anonymous (2001). Assessment of the world food security situation. Report of 27th session of the Committee on World Food Security, 28th May to 1st June, 2001, Rome, Italy. www.fao.org.
- [3] Anonymous (2007). PODIUM, the Policy Dialogue Model : A water and food security planning tool. International Water Management Institute, Colombo, Srilanka. www.iwmi.org
- [4] Box, G. E. P. and Jenkins, G. M. (1976). Time series analysis: Forecasting and Control. Holden Day.
- [5] Chandrashekhar, C. P. and Ghosh, J. (2003). The Calorie Consumption Puzzle, Business Line. February 11, 2003.
- [6] Dorjee, K., Broca, S. and Pingali, P. (2003). Diversification of South Asian Agriculture : Trends and Constraints. ESA working paper No 03-15. www.fao.org/es/esa.
- [7] Gangwar, B., Katyal, V. and Anand, K. V. (2003). Productivity, stability and efficiency of different cropping sequences in Maharashra. *Indian Journal of Agri*cultural Sciences, 73 (9): pp-471-7.
- [8] Graph Pad Software, Inc. (2005). Grubb's test for detecting outliers. Graph Pad, Inc., San Diago, CA.
- [9] Katyal, V., Gangwar, K. S. and Gangwar, B. (2000). Yield stability in rice (Oryza sativa)- wheat (Triticum aestivum) under long-term fertilizer use. *Indian Journal* of Agricultural Sciences, 70 (5):pp- 277-81
- [10] Kendall, M. G. and Stuart, A. (1968). The advance theory of statistics, Vol (3). Charles Griffin and Company Limited, London.
- [11] Kumar, P. and Mritunjay (2003). Long term Changes in Food Basket in India. Paper presented in joint Moa, Bhutan-NCAP-IFPRI workshop on Agricultural Diversification in South Asia at Paro, Bhutan, November 21-23.
- [12] Rajagopalan, S. (2006). Ensuring access to food vectors. Hindu Survey of Indian Agriculture. August 2006. pp-41-43 Pub. Kasturi and Sons Ltd., Chennai, India.
- [13] Sahu, P. K., Kundu, A. L., Mani, P. K. and Pramanick, M. (2005). Sustainability of different nutrient combinations in a long term rice-wheat cropping system. Journal of New Seeds, 7(3): 91-101
- [14] Singh and Kumar, P. (2002). Acceleration of India's Agricultural Growth During the Tenth Five Year Plan and Beyond". *Agricultural Situation in India*, Vol. LIX August: pp-259-266.

- [15] Singh, R. P., Das, S. K., Bhaskar Rao, V. M. and Narayana Reddy, M. (1990). *Towards sustainable dryland Agricultural Practices*. Technical Bulletin, Central Institute for Dryland Agriculture, Hyderabad, India, 106P
- [16] Singh, A. K. (2006). Mantra for the new millennium. *Hindu Survey of Indian Agriculture*. August 2006. pp-32-40. Pub. Kasturi and Sons Ltd., Chennai, India.
- [17] Swaminathan, M. S. (2006). Overcoming land, water shortage. *Hindu Survey of Indian Agriculture*. August 2006. pp 10-17. Pub. Kasturi and Sons Ltd., Chennai, India.

Parameter	Item	World	Bangladesh	India	Nepal	Pakistan
Area (million hectare)	Average	140.637	10.027	40.041	1.317	1.876
	CV%	7.155	5.509	7.338	11.560	19.247
	SGR%	0.679	0.642	0.517	1.008	2.387
Production (million tones)	Average	422.986	22.647	87.682	2.809	4.533
	CV%	28.807	30.547	32.740	25.796	35.641
	SGR%	3.961	3.976	3.348	2.590	7.680
Productivity (tn/ha)	Average	2.964	2.237	2.152	2.104	2.337
	CV%	23.026	26.418	26.228	14.853	20.129
	SGR%	-1.494	-0.221	-1.430	-0.046	0.035
Waste (million tones)	Average	19.737	1.335	1.465	0.312	0.099
	CV%	30.644	46.966	20.691	28.614	26.131
	SGR%	4.689	6.499	-0.249	3.814	4.346
Actual availability (million tones)	Average	403.250	21.312	86.217	2.497	4.435
	CV%	28.722	29.600	33.441	25.705	35.896
	SGR%	3.928	3.843	3.448	2.479	7.784

Table 1: $Per\ se$ performance of Rice in the World and four major SAARC countries during 1961-2003

Table 2: Per se performance of Wheat in the World and four major SAARCcountries during 1961-2003

Parameter	Item	World	Bangladesh	India	Nepal	Pakistan
Area (million hectare)	Average	221.474	0.407	21.082	0.413	6.889
	CV%	3.993	68.856	21.814	48.573	16.799
	SGR%	0.037	26.678	2.147	11.818	1.702
Production (million tones)	Average	446.435	0.771	39.653	0.579	11.252
	CV%	26.930	82.175	52.419	62.544	45.088
	SGR%	3.543	122.566	11.441	20.830	9.371
Productivity (tn/ha)	Average	2.012	1.528	1.752	1.321	1.556
	CV%	26.594	39.727	36.796	18.469	31.718
	SGR%	3.451	7.689	4.833	1.482	4.429
Waste (million tones)	Average	18.996	0.081	1.736	0.059	0.305
	CV%	29.047	51.398	50.213	75.088	40.636
	SGR%	3.497	20.051	11.038	38.584	7.466
Actual availability (million tones)	Average	427.439	0.690	37.917	0.520	10.947
	CV%	27.111	86.448	52.524	61.352	45.239
	SGR%	3.545	206.667	11.462	19.695	9.430

Parameter	Item	World	Bangladesh	India	Nepal	Pakistan
Area (million hectare)	Average	693.108	10.530	100.164	2.510	10.696
	CV%	2.983	7.382	3.803	22.737	13.382
	SGR%	0.085	0.790	0.145	2.219	1.368
Production (million tones)	Average	1596.379	23.489	156.216	4.585	17.464
	CV%	24.372	31.897	33.009	30.793	39.597
	SGR%	3.206	4.220	3.887	3.317	7.683
Productivity (tn/ha)	Average	2.299	2.199	1.554	1.804	1.576
	CV%	24.022	25.649	32.477	10.239	28.573
	SGR%	3.012	2.559	3.523	0.562	3.976
Waste (million tones)	Average	63.386	0.975	4.741	0.393	0.452
	CV%	26.995	46.499	22.755	35.815	33.717
	SGR%	3.611	6.941	2.981	4.063	5.500
Actual availability (million tones)	Average	1532.993	22.514	151.475	4.192	17.012
	CV%	24.310	31.304	33.349	30.454	39.766
	SGR%	3.191	4.123	3.918	3.258	7.752

Table 3: Per se performance of Cereal in the World and four major SAARC
countries during 1961-2003

Table 4: Per se performance of Vegetable in the World and four major SAARC countries during 1961-2003

Parameter	Item	World	Bangladesh	India	Nepal	Pakistan
Area (million hectare)	Average	9.827	0.086	2.263	0.084	0.076
	CV%	27.430	32.199	10.010	62.010	30.631
	SGR%	3.082	2.397	0.563	24.502	-0.688
Production (million tones)	Average	118.525	0.541	20.279	0.702	0.873
	CV%	45.407	29.557	25.291	75.558	30.500
	SGR%	6.818	3.499	4.351	46.503	2.240
Productivity (tn/ha)	Average	11.550	6.334	8.977	7.661	12.006
	CV%	18.756	10.438	24.671	17.936	24.948
	SGR%	1.607	0.543	3.051	1.907	4.158
Waste (million tones)	Average	37.257	0.118	2.881	0.071	0.121
	CV%	40.337	24.582	35.918	75.915	35.604
	SGR%	6.073	3.146	6.492	46.555	5.264
Actual availability (million tones)	Average	81.268	0.423	17.398	0.632	0.752
	CV%	47.824	31.090	23.864	75.521	30.888
	SGR%	7.175	3.603	4.064	46.497	1.866

Table 5: Test of randomness

Crop: Rice

		World	Bangladesh	India	Nepal	Pakistan
Area (million hectare)	n	43.000	43.000	43.000	43.000	43.000
	р	22.000	20.000	25.000	19.000	15.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-1.971	-2.710	-0.862	-3.080	-4.558
Production (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	18.000	20.000	26.000	22.000	17.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-3.449	-2.710	-0.493	-1.971	-3.819
Productivity (tn/ha)	n	43.000	43.000	43.000	43.000	43.000
	р	17.000	21.000	26.000	21.000	21.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-3.819	-2.341	-0.493	-2.341	-2.341
Waste (million tones)	n	43.000	43.000	43.000	43.000	43.000
	Р	18.000	21.000	26.000	23.000	19.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-3.449	-2.341	-0.493	-1.601	-3.080
Actual availability (million tones)	n	43.000	43.000	43.000	43.000	43.000
	Р	18.000	20.000	26.000	24.000	17.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-3.449	-2.710	-0.493	-1.232	-3.819

Cont...Table 5: Test of randomness

Crop: Wheat

		World	Bangladesh	India	Nepal	Pakistan
Area (million hectare)	n	43.000	43.000	43.000	43.000	43.000
	р	20.000	16.000	21.000	14.000	20.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-2.710	-4.188	-2.341	-4.927	-2.710
Production (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	26.000	14.000	22.000	13.000	22.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-0.493	-4.927	-1.971	-5.297	-1.971
Productivity (tn/ha)	n	43.000	43.000	43.000	43.000	43.000
	р	26.000	18.000	23.000	20.000	22.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-0.493	-3.449	-1.601	-2.710	-1.971
Waste (million tones)	n	43.000	43.000	43.000	43.000	43.000
	P	23.000	28.000	24.000	14.000	20.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-1.601	0.246	-1.232	-4.927	-2.710
Actual availability (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	26.000	15.000	21.000	16.000	20.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-0.493	-4.558	-2.341	-4.188	-2.710

Cont...Table 5: Test of randomness

		World	Bangladesh	India	Nepal	Pakistan
Area (million hectare)	n	43.000	43.000	43.000	43.000	43.000
	р	19.000	17.000	17.000	18.000	17.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-3.080	-3.819	-3.819	-3.449	-3.819
Production (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	28.000	28.000	23.000	21.000	20.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	0.246	0.246	-1.601	-2.341	-2.710
Productivity (tn/ha)	n	43.000	43.000	43.000	43.000	43.000
	р	26.000	23.000	24.000	22.000	22.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-0.493	-1.601	-1.232	-1.971	-1.971
Waste (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	24.000	24.000	26.000	17.000	26.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-1.232	-1.232	-0.493	-3.819	-0.493
Actual availability (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	25.000	24.000	22.000	24.000	23.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-0.862	-1.232	-1.971	-1.232	-1.601

Crop: Cereal

Cont...Table 5: Test of randomness

Crop: Vegetable

		World	Bangladesh	India	Nepal	Pakistan
Area (million hectare)	n	43.000	43.000	43.000	43.000	43.000
	р	16.000	17.000	20.000	17.000	16.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-4.188	-3.819	-2.710	-3.819	-4.188
Production (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	12.000	11.000	10.000	6.000	20.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-5.667	-6.036	-6.406	-7.884	-2.710
Productivity (tn/ha)	n	43.000	43.000	43.000	43.000	43.000
	р	22.000	15.000	13.000	12.000	13.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-1.971	-4.558	-5.297	-5.667	-5.297
Waste (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	10.000	15.000	6.000	5.000	19.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-6.406	-4.558	-7.884	-8.253	-3.080
Actual availability (million tones)	n	43.000	43.000	43.000	43.000	43.000
	р	11.000	13.000	11.000	13.000	23.000
	E(p)	27.333	27.333	27.333	27.333	27.333
	σ	2.706	2.706	2.706	2.706	2.706
	τ	-6.036	-5.297	-6.036	-5.297	-1.601

Crop	Country	SI-1	SI-2	SI-3	SI-4
Rice	World	0.573	0.736	21.277	0.762
	Bangladesh	0.473	0.861	0.536	1.428
	India	0.503	0.890	0.839	1.041
	Nepal	0.652	1.859	0.513	0.833
	Pakistan	0.601	1.224	5.376	0.733
Wheat	World	0.536	0.912	3.268	0.858
	Bangladesh	0.373	0.851	0.299	1.434
	India	0.399	0.757	2.809	1.362
	Nepal	0.536	2.525	2.506	1.212
	Pakistan	0.427	0.989	1.672	1.397
Cereal	World	0.561	0.799	5.917	0.825
	Bangladesh	0.463	0.775	0.433	1.409
	India	0.433	0.858	1.059	1.300
	Nepal	0.706	3.650	0.555	0.630
	Pakistan	0.468	0.982	8.772	1.227
Vegetable	World	0.864	17.241	19.231	0.676
	Bangladesh	0.436	4.329	0.626	0.401
	India	0.685	4.739	2.874	1.570
	Nepal	0.614	24.390	2.132	1.260

Table 6: Yield Sustainability of rice, wheat, total cereals and vegetables in the World and four major SAARC countries during 1961-2003

Table 7A: Prediction model for Rice crop in major SAARC countries

Country	Item	Area	Production	Productivity	Waste	Actual availability
		(million hectare)	(million tones)	(tn/ha)	(million tones)	(million tones)
World	р	0	1	1	1	1
	d	2	1	1	1	1
	q	1	1	1	1	1
Bangladesh	р	1	1	1	1	1
	d	0	0	1	0	1
	q	2	0	1	0	1
India	р	1	1	2	2	1
	d	1	1	1	0	1
	q	0	2	1	1	0
Nepal	р	2	0	1	1	1
	d	2	1	1	0	1
	q	0	1	0	0	0
Pakistan	р	2	2	1	1	1
	d	2	2	0	0	0
	q	0	0	0	0	0

Country	Item	Area	Production	Productivity	Waste	Actual availability
		(million hectare)	(million tones)	(tn/ha)	(million tones)	(million tones)
World	р	1	1	1	1	1
	d	0	0	0	0	2
	q	0	0	0	1	1
Bangladesh	р	1	2	1	2	1
	d	1	2	0	0	0
	q	1	0	0	0	0
India	р	1	1	1	1	2
	d	0	2	2	2	2
	q	0	2	1	1	0
Nepal	Р	1	2	1	1	1
	d	1	2	0	0	0
	q	1	0	0	0	1
Pakistan	р	1	2	1	1	1
	d	0	2	1	1	1
	q	0	1	2	1	2

 Table 7B: Prediction model for Wheat crop in major SAARC countries

Table 7C: Prediction model for Cereal crop in major SAARC countries

Country	Item	Area	Production	Productivity	Waste	Actual availability	
		(million hectare)	(million tones)	(tn/ha)	(million tones)	(million tones)	
World	р	1	1	2	1	2	
	d	2	0	0	1	1	
	q	2	0	2	1	1	
Bangladesh	р	1	2	2	1	0	
	d	0	1	0	0	2	
	q	0	0	1	0	1	
India	р	2	2	1	1	2	
	d	2	1	1	0	1	
	q	0	2	0	0	2	
Nepal	р	1	1	1	2	1	
	d	1	0	0	3	2	
	q	1	1	1	0	1	
Pakistan	р	1	1	1	2	2	
	d	1	0	0	1	2	
	q	1	2	0	1	0	

Table 7D: Prediction model for Vegetable crop in major SAARC countries

Country	Item	Area	Production	Productivity	Waste	Actual availability
		(million hectare)	(million tones)	(tn/ha)	(million tones)	(million tones)
World	р	1	1	1	1	2
	d	2	2	1	1	2
	q	0	0	2	1	0
Bangladesh	р	1	1	2	1	1
	d	2	0	2	2	0
	q	1	0	0	0	0
India	р	2	1	1	1	2
	d	0	1	2	2	2
	q	0	0	1	0	0
Nepal	р	1	1	1	1	2
	d	2	1	1	2	0
	q	1	2	1	1	0
Pakistan	р	1	1	1	1	1
	d	0	0	1	0	0
	q	0	0	1	0	0

	Table 8:	
-	Model	
:	ß	
	lidation	
j	ar	
•	ā	
	predictio	
`	Ď	
2	of	
	area,	
	pr	
	oduc	
	tio	
•	ġ,	
-	pr	
•	Ő.	
•	luc	
	tiv	
•	it	
	چ	

Table 9: Model validation and prediction of area, production, productivity, waste and availability of Rice, Wheat, Cereals and Vegetables in Bangladesh

Crop	Year	Area	(mill ha)	Productio	on (mill tns)	Producti	vity (tn/ha)	Waste	(mill tns)	Availabi	lity (mill tns)	
		Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted	
	2002	10.771	10.723	37.593	36.225	3.490	3.388	2.632	2.528	34.961	34.191	
	2003	10.824	10.786	39.090	37.547	3.611	3.500	2.737	2.620	36.353	35.403	
Rice	2005		10.874		38.995		3.611		2.731		37.283	
	2010		11.029		38.757		3.597		2.654		39.541	
	2015		11.181		38.520		3.610		2.596		41.709	
	2002	0.740	0.860	1.610	2.008	2.160	2.181	0.130	0.133	1.480	1.682	
	2003	0.710	0.874	1.750	2.049	2.470	2.167	0.140	0.130	1.610	1.671	
Wheat	2005		0.900		2.166		2.138		0.123		1.648	
	2010		0.960		2.440		2.069		0.108		1.591	
	2015		1.013		2.713		2.001		0.095		1.537	
	2002	11.564	11.647	39.234	39.857	3.393	3.491	1.895	0.090	37.339	38.867	
	2003	11.576	11.635	40.876	40.986	3.531	3.533	1.984	0.707	38.892	40.279	
Cereals	2005		11.610		43.245		3.597		0.133		43.112	
	2010		11.549		48.892		3.656		0.652		48.240	
	2015		10.112		54.539		3.610		0.106		54.433	
	2002	15.809	0.173	0.920	0.907	6.144	5.695	0.180	0.189	0.740	0.734	
	2003	17.215	0.187	0.907	0.905	6.025	5.858	0.193	0.197	0.714	0.732	
Vegetables	2005		0.204		0.901		5.690		0.212		0.728	
	2010		0.250		0.890		5.524		0.248		0.718	
	2015		0.296		0.880		5.365		0.284		0.709	

		Wa	iste and avi	ailability	of Rice, Wr	ieat, Cer	eals and Veg	getables i	in Nepal		
Crop	Year	Area ((mill ha)	Producti	on (mill tns)	Producti	vity (tn/ha)	Waste	(mill tns)	Availabil	ity (mill tns)
		Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted
	2002	1.545	1.542	4.133	4.088	2.675	2.726	0.449	0.476	3.684	3.720
	2003	1.559	1.524	4.456	4.112	2.857	2.707	0.462	0.445	3.994	3.684
Rice	2005		1.575		4.297		2.812		0.454		3.917
	2010		1.617		4.297		2.799		0.436		3.893
	2015		1.661		4.297		2.800		0.418		3.894
	2002	0.670	0.683	1.260	1.228	1.890	1.996	0.130	0.127	1.130	1.058
	2003	0.670	0.694	1.340	1.248	2.010	2.036	0.140	0.126	1.200	1.052
$\mathbf{W}\mathbf{heat}$	2005		0.717		1.317		2.139		0.124		1.040
	2010		0.772		1.448		2.237		0.119		1.011
	2015		0.826		1.580		2.402		0.114		0.982
	2002	3.324	3.386	7.215	6.683	2.171	2.083	0.612	0.690	6.603	6.752
	2003	3.351	3.415	7.684	6.600	2.293	2.082	0.632	0.746	7.052	6.879
Cereals	2005		3.475		6.437		2.080		0.891		7.135
	2010		3.624		6.047		2.076		1.442		7.775
	2015		3.895		5.953		2.072		2.264		8.415
	2002	0.160	0.152	1.736	1.528	10.853	9.995	0.174	0.155	1.562	1.323
	2003	0.160	0.156	1.890	1.560	11.810	9.989	0.189	0.156	1.700	1.318
Vegetables	2005		0.167		1.622		9.990		0.165		1.310
	2010		0.169		1.764		9.993		0.185		1.288
	2015		0.177		1.890		9.992		0.205		1.267

wheth a	Table 10:
and area	Model
lahility of	validation
D : co	and
Whent (prediction
	of
	area,
nd Vomotable	production,
	prod
Nonal	luctivity;

 Table 11: Model validation and prediction of area, production, productivity,

 wests and availability of Bics
 Wheat
 Carsals and Wardshles in Debiston

Pakistan	
Vegetables in	
Cereals and ¹	
Wheat,	
of Rice,	
availability	
waste and	

Crop	Year	Area	(mill ha)	Productic	on (mill tns)	Producti	vity (tn/ha)	Waste	(mill tns)	Availabilit	y (mill tns)
		Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted
	2002	2.225	2.008	6.718	5.801	3.091	2.750	0.134	0.115	6.583	5.666
	2003	2.461	2.163	7.271	6.236	2.955	3.015	0.145	0.133	7.126	6.535
Rice	2005		2.589		7.430		2.947		0.143		7.023
	2010	_	3.128		8.474		2.928		0.139		6.773
	2015		3.651		9.660		2.909		0.135		6.531
	2002	8.060	8.452	18.230	20.395	1.890	1.996	0.460	0.526	17.770	20.323
-	2003	8.030	8.446	19.180	21.616	2.010	2.036	0.480	0.506	18.700	20.813
Wheat	2005		8.435		22.092		2.139		0.507		21.785
	2010		8.407		24.509		2.237		0.523		24.173
	2015		8.379		26.817		2.402		0.510		26.501
	2002	12.016	12.866	27.173	31.039	2.261	2.402	0.655	0.738	26.518	32.226
	2003	12.482	12.974	28.964	31.760	2.320	2.400	0.696	0.742	28.269	34.475
Cereals	2005		13.190		33.194		2.394		0.767		37.201
-	2010		13.728		36.727		2.380		0.824		45.242
	2015		14.461		38.614		2.367		0.879		53.179
	2002	0.074	0.072	1.076	1.064	14.566	15.275	0.193	0.204	0.882	0.858
-	2003	0.074	0.071	1.076	10.450	14.550	15.415	0.197	0.203	0.879	0.840
Vegetables	2005		0.069		1.008		15.692		0.201		0.805
	2010		0.065		0.992		16.360		0.195		0.723
-	2015		0.061		0.843		16.998		0.189		0.650

		Vegetables					Cereals					Wheat					Rice				Crop	
2015	2010	2005	2003	2002	2015	2010	2005	2003	2002	2015	2010	2005	2003	2002	2015	2010	2005	2003	2002		Year	
			17.215	15.809				671.649	663.621				207.450	214.070				149.205	147.693	Actual	Area	wast
26.583	22.670	18.759	17.197	16.402	630.512	636.404	656.147	663.790	667.459	214.353	214.699	215.046	215.185	215.255	153.350	151.623	149.896	147.952	152.560	Predicted	(mill ha)	e and avail
			244.970	233.745				2085.774	2042.390				561.120	574.390				583.002	577.989	Actual	Productic	ability of
508.570	411.301	313.952	274.866	256.123	2010.399	2040.705	2050.532	2054.476	2056.451	567.436	573.577	579.785	583.542	584.799	633.430	613.553	592.072	582.598	604.930	Predicted	on (mill tns)	Rice, Whe
			14.230	14.786				3.105	3.078				2.700	2.680				3.907	3.913	Actual	Producti	at, Cerea
15.594	15.176	14.740	14.561	14.470	3.103	3.141	3.148	3.135	3.123	2.674	2.690	2.705	2.715	2.718	4.163	4.065	3.955	3.942	3.971	Predicted	vity (tn/ha)	ls and Vege
			73.023	70.149				80.060	77.254				19.270	19.610				28.578	28.763	Actual	Waste	tables in
103.038	92.973	80.534	74.773	71.704	1.842	1.862	1.884	1.892	1.896	18.225	18.805	19.403	19.647	19.770	33.225	31.305	29.362	29.182	29.431	Predicted	(mill tns)	the World
			171.947	163.595				2005.714	1965.136				541.850	554.780				554.425	549.226	Actual	Availabili	
387.519	308.873	230.001	198.279	183.659	2395.747	2262.507	2128.970	2075.801	2047.378	688.993	648.979	609.006	584.444	578.153	598.876	581.476	562.493	553.268	575.399	Predicted	ty (mill tns)	

	Table
	12:
	Model
hilling of D:	validation
-	and
When the Co	prediction
	n of
	area,
Vanatablas	production,
- the Wite	productiv
2	ity,