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Abstract

Negative-binomial Lindley distribution is a two-parameter discrete model that has been
recently introduced in statistical literature. It has been used mostly in the analysis of insur-
ance data and has shown to provide suitable fits as compared with the Poisson and Negative
-binomial distributions. The parameters of the Negative- binomial Lindley model were es-
timated using separate maximum likelihood equations via the Newton-Raphson iterative
technique. However, this method of estimation does not require the construction of a joint
Hessian matrix. Further to this, it becomes difficult to estimate the joint covariance matrix.
To overcome this shortcoming, we propose a joint maximum likelihood estimation approach
that is based on a diagonal Jacobian approximation of the joint Hessian matrix. We further
compare this estimation methodology with the separate maximum likelihood approach and
show that the joint maximum likelihood approach is computationally faster.
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1 Introduction

Traditionally, Poisson and Negative binomial (NB) models are considered to be the
most convenient models to represent count data. In the recent years, some new dis-
crete distributions have been introduced such as the Com-Poisson model (Shmueli et
al. 2005 ) and Negative- binomial Lindley (NL) distributions (Zamani and Ismail,
2010). In this paper, we focus on the Negative- binomial Lindley (NL) distribution.
This is a two-parameter model and is formed by mixing the negative-binomial dis-
tribution and the Lindley distribution. Zamani and Ismail (2010) have applied it
on two samples of insurance data and compared the fits with Poisson and negative
binomial models. Their results show that NL is slightly better than NB and more
efficient than Poisson since the counts are dispersed. To estimate the two parameters,
the authors formulate separate maximum likelihood estimating equations (SML) and
find the estimates iteratively using the Newton-Raphson technique. We note that, in
their approach, they did not construct the joint hessian matrix. In fact, the hessian
component of the likelihood function is very difficult to express and may yield huge
computational troubles. In this paper, we propose an iterative algorithm based on
a joint maximum likelihood principle (JML) that consists of approximating the joint
hessian matrix by a diagonal Jacobian approximation following Waziri et al.(2010).
We will also compare the computational time of this new algorithm with the approach
of Zamani and Ismail (2010). The outline of the paper is as follows: In the next section,
we review the Negative- binomial Lindley (NL) distribution and its statistical prop-
erties as demonstrated by Zamani and Ismail (2010). In section 3, we provide their
estimating equations of the parameters under separate maximum likelihood functions.
In section 4, we present a new version of the Newton iterative algorithm based on a
diagonal Jacobian transformation of the hessian matrix. In section 5, we apply both
algorithms on simulated samples of over- and under-dispersed data and compare the
computational time of both algorithms. In section 6, we present the conclusions and
recommendations.

2 Negative- binomial Lindley Model

Very often, mixed Poisson and mixed negative binomial provide better fits on count
data than other discrete distribution. Zamani and Ismail (2010) introduce a new mixed
distribution known as Negative-binomial Lindley distribution (NL) by mixing the dis-
tributions of the negative binomial (r, p) and Lindley (θ) where the parameterization
of p = exp(−λ) is taken into account. They proved that the marginal distribution re-
sulting out of this mixture can be expressed in the following probability mass function
form

Pr(x) =
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where E(X) = r
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3 Separate Maximum Likelihood Estimating Equations

Approach (SML)

To estimate the parameters (θ, r), Zamani and Ismail (2010) used the maximum like-
lihood approach. The log-likelihood function is expressed as:
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where nx is the value at the xth index and the partial derivatives are given as follows:
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where n =
∑k

x=0 nx

Following Klugman et al. (2008),
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Zamani and Ismail (2010) re-write equation (3) as follows:
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The steps to estimate the two parameters can be then summarized as follows:

Step 1: The estimate of θ:
⌢
θ is obtained by solving equation (6) using the quadratic

formula.

Step 2: Following equation (5), they re-write equation (6) as follows:
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Then
⌢
r is obtained iteratively by using the Newton-Raphson technique

⌢
r k+1=

⌢
r k −Ḣ−1(

⌢
r k)H(

⌢
r k) (8)

where Ḣ(
⌢
r k) is the estimate of the gradient matrix at the kth iterated value.

The algorithm works as follows: For an initial value of
⌢
r , we calculate the estimate

of
⌢
θ using equation (6). Using this value of

⌢
θ , we solve iteratively equation (8) until

convergence. Having obtained an update of
⌢
r , we replace in equation (6) to update

⌢
θ , then solve equation (8) iteratively again. This cycle continues until both estimates

converge based on the criteria || ⌢
r k+1 −

⌢
r k || < 10−5.

4 Joint Maximum Likelihood Approach Based on the Di-
agonal Jacobian Transformation (JML)

In the previous approach, we note that there is no construction of a joint Hessian
matrix to estimate the parameters. This is in fact quite difficult because the second
partial derivatives of the parameters (θ, r) are complicated following equations (3) and
(4). To overcome this problem, we propose to construct a diagonal Jacobian trans-
formation matrix that approximates the Hessian matrix. That is, using the equations
(3) and (4), we may write the Newton-Raphson iterative equation as follows:
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To obtain the diagonal approximation of the Hessian matrix, we follow the estimation
method of Waziri et al. (2010), i.e, based on the classical Taylor series expansion, we
may write

F (xk+1) = F (xk) + F ′(xk)(xk+1 − xk) + o(||xk+1 − xk||)2 (10)

By letting F ′(xk) = Dk where Dkis the diagonal matrix, we obtain

Dk+1(xk+1 − xk) = F (xk+1)− F (xk) (11)

Then the ith diagonal component of the matrix becomes
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xik+1 − xik
(12)
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we may write
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The algorithm works as follows: For an initial value of (
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⌢
r 0)
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By replacing in equation (15), we obtain (
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whole process continues until convergence based on the criteria || ⌢r k+1 −
⌢
r k || < 10−5.
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5 Comparison of SML and JML

In this section, we perform a simulation study to compare the estimates of (θ, r) under
SML and JML. Initially, we generate a set of over-dispersed counts using the nbinom
function in R 1.6.1 with various parameters. Then, we apply (6), (8) and (15) to

calculate the estimates of (
⌢
θ ,

⌢
r )under SML and JML approaches respectively using

Matlab 7. The results of the study are shown in the table below:

Table 1: Estimates of (
⌢
θ ,

⌢
r ) under SML and JML based on

Negative-binomial simulated data

Sample size SML estimates JML estimates Computational Computational
time for SML time for JML

10 (1.23, 3.44) (1.21, 3.46) 2 s 1.8 s

30 (2.56, 1.11) (2.53, 1.10) 2 s 1.8s

50 (0.23, 1.61) (0.26, 1.61) 3 s 2s

100 (4.09, 2.11) (4.09, 2.11) 15 s 10s

500 (3.13, 1.12) (3.13, 1.12) 35 s 20s

1000 (5.55, 0.21) (5.55, 0.21) 57 s 40s

2000 (0.93, 5.21) (0.92, 5.20) 60 s 40s

5000 (2.53, 6.02) (2.53, 6.02) 80 s 56s

10,000 (1.18, 2.41) (1.18, 2.40) 110 s 90s

In Table 1, we present the estimates under SML and JML approaches. To start the

algorithms, we assume small initial values for (
⌢
θ ,

⌢
r ). We note that under the SML

approach, certain of the initial values lead to divergence problems whereas under the
JML approach, such problems were not noted. As the sample size increases, the
estimates under both approaches become almost equal and as for the computational
time, SML is quite time-consuming compared with the JML approach. Next, we
generate a set of under-dispersed Com-Poisson counts following the simulation process
of Shmueli et al. (2005) and use SML and JML to estimate the parameters.
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Table 2: Estimates of (
⌢
θ ,

⌢
r ) under SML and JML based on Com-Poisson simulated data

Sample size SML estimates JML estimates Computational Computational
time for SML time for JML

10 (2.13, 0.92) (2.25, 0.96) 2 s 1.7 s
30 (1.16, 0.76) (1.23, 0.85) 2 s 1.6s
50 (4.03, 0.86) (3.97, 0.91) 2 s 1.8s
100 (3.09, 0.56) (3.09, 0.62) 12 s 11s
500 (1.13, 0.82) (1.22, 0.86) 30 s 23s
1000 (3.55, 0.41) (3.62, 0.45) 60 s 45s
2000 (1.43, 0.68) (1.35, 0.72) 62 s 45s
5000 (2.51, 1.02) (2.51, 0.98) 80 s 52s
10,000 (0.88, 0.79) (0.91, 0.82) 120 s 95s

In Table 2, we note practically the same pattern in the estimates and the computational
times. That is, JML is lesser time consuming and as the cluster size increases, the
difference in the estimated values become lesser. However, JML yields quite a few
non-convergent simulations.

6 Conclusion

Based on the simulation results, we note that as the sample size increases, the estimates
under SML and JML approaches become almost equal. As for the computational
time, we note that SML takes significantly more time to run the algorithm than JML
especially for large sample size. Thus, we may conclude that JML is a more suitable
technique to estimate the parameters of the Negative-Binomial Lindley model.
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