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Abstract

A statistical method for glaucoma detection using tomographic images is discussed. It is known

that the ONH (optic-nerve-head) area contains all the relevant information on glaucoma. Mean

change of the angles of the tetrahedron determined by four control points, three on the neural rim

and the other one corresponding to the maximum depth of the ONH is tested for significance. Apart

from Hotelling’sT 2-test, a nonparametric bootstrap and permutation method are used for statistical

analysis, because the assumption of normality of the data set seems clearly violated. Moreover, a

projection pursuit approach based on the sign test is applied as an alternative to these nonparametric

procedures. The statistical analysis is done using data from Louisiana State University, Eye Center.

1Research supported by NSF Grant DMS-0713012 and NSA Grant MSP-H98230
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1 Introduction

Glaucoma induces a change in the shape of the tetrahedron determined by the superior aspect
of the retina (S), the normal aspect of the retina (N), the temporal in the optic nerve (T), and
the deepest point in the optic nerve head (V). Glaucoma detection can be based on statistical
tests for shape change. Most tests employed thus far apply techniques from shape analy-
sis (see, for instance Bhattacharya and Patrangenaru (2003), Bhattacharya and Patrangenaru
(2005), Bookstein (1991), Dryden and Mardia (1998), Goodall ( 1991), Kendall (1984), Kent
(1992), Mardia and Patrangenaru (2005)). In a recent paper Bhattacharya (2008) uses all five
landmarks in the glaucoma data and reaches the same conclusion as the present authors. In
this paper we propose an alternative to those tests by directly analyzing the changes in the an-
gles of the tetrahedron. The proposed alternative method will be applied in a study involving
12 rhesus monkeys with glaucoma induced in one eye and the other kept as the control. A
tetrahedron has 12 angles, 5 of which are independent. Of the latter angles 2 are in the base
triangle and of no relevance for the shape change we are interested in, which means that only
3 angles for each tetrahedron will be used. The data for the paired comparison methods to be
used will consist of the 12 differences of the paired 3-dimensional “angle” vectors.

 

Figure 1: 12 angles of the tetrahedron

If we are willing to assume that these vectors of differences are i.i.d. and 3-dimensional
normal, the hypothesis of “no change” , i.e. that the mean difference vector equals the zero
vector, can be tested using Hotelling’sT 2-statistic for the intrinsic mean of these multivariate
circular data. The analysis of the data, using this standard procedure is briefly discussed in
Section 2.

When deviations form these model assumptions are to be expected, one might resort to
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View of original angles and their differences First coordinate of angle difference

Second coordinate of angle difference Third coordinate of angle difference

Original data distribution

robust procedures. Since the data are differences of angles, heavy-tailed distributions will
not occur, but skewness might be present. Also the differences may not all have the same
distribution. Let us project the multivariate data on a line through the origin and compute
the univariate student-statistics, with these projected data. Its well-known that Hotelling’s
statistic equals the maximum of the squares of these univariate student-statistics, when the
maximum is taken over all directions. For a robust version of this test the student-statistic
may be replaced with the sign-test-statistic for each direction. This collection of sign-test-
statistics is a stochastic process, indexed by directions. Since the overall test statistic to be
used here will not be the maximum of the squared process, but rather a squared integral norm,
convergence in distribution of this process will be derived in a suitable Hilbert space. A
general version of this simple but basic result is derived in Section 3.

In Section 4 we return to the analysis of the glaucoma data, exploiting the result of Section
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3. In Section4.1 the test used is based on the sum of squared sign-test-statistics over a finite
number of directions. Since the direction of a possible shift is not known, the directions of the
coordinate axes are included and some other directions are added for better power. In Section
4.2 the null hypothesis to be tested is modified. Rather than testing that the mean differences
of the angles are exactly zero, we will test the hypothesis that their medians are approximately
zero. The latter hypothesis is an instance of a neighborhood hypothesis. The idea of employ-
ing a neighborhood rather than a sharp hypothesis has already been explored in Hodges &
Lehmann (1954). Recently there has been renewed interest in this type of hypothesis (Dette
& Munk (1998)) that are practically relevant and usually leads to simpler asymptotics as well.
Finally, Section4.3 is devoted to a brief discussion in which in particular the results in Section
2 and Section 4 are compared.

2 The Analysis using Hotelling’s Test Statistic

In Figure 1 the base triangle has two independent angles and each of the extra point creates
three independent angles. All together there are 3(k-3) + 2 = 3k-7 independent angles. In our
case k = 4 ( see figure 5). So the dimension is reduced to 3(4)-7=5. Two of these angles are on
the base triangle, thus the problem is locally reduced to a 3-dimensional multivariate circular
data problem. We use the following notation for the angles considered:G1 = X1X2X4,
G2 = X1X3X4, G3 = X1X4X2, and letG1, G2 be the value of(G1, G2, G3) before and
after inducing glaucoma. Given that the changeD = G2 − G1, is small, the support of the
distribution of(exp(iD1), exp(iD2), exp(iD3)) on the torus(S1)3 is very concentrated, and
we may use ordinary multivariate analysis for the vectorD. The values ofD are summerized
in Table 1.

When we apply the HotellingT 2 test for the data set assuming normality ( Mardiaet al.
(1972))

H0 : D = 0 vs.H1 : D 6= 0, (2.1)

T 2 =
(n− 1)p
n− p

Fp,n−p. (2.2)

For our casen = 12, p = 3, Fcal = 2.8798 and thep-value = 0.0954. Therefore, we
rejectH0 at the 0.1 level. However, Hotelling’sT 2−test is based on the assumption of nor-
mality. If the assumption of normality is not acceptable, we need to look for other multivariate
testing procedures. Here, we are going to discuss two such approaches, first is the so called
nonparametric bootstrap approach and an approach based on the permutations. The next two
subsections will show the results of the above approaches.

2.1 Bootstrap Method for the Mean Change in Angles

The pivotal statistic, under the null hypothesis that the means are equal to zero is given by
Tn(p) = nD̄

′
nS−1D̄n. To generate the bootstrap statistic, first center the byCi = Di−D̄, then
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Table 1: Angle difference for twelve monkeys

X1X2X4 X1X3X4 X1X4X2

0.1344 -0.4991 0.0292

0.2899 -0.4216 -0.2228

0.0002 0.1066 -0.0182

0.0389 0.0285 -0.0053

0.1722 -0.3529 -0.0415

0.1179 -0.5625 -0.0026

-0.1393 0.3291 0.0512

0.0202 0.0260 -0.0269

0.1979 -0.0216 -0.1633

0.3177 -0.4572 -0.1401

0.0955 -0.2078 -0.1185

0.1465 -0.0624 -0.1965

obtain a large number of bootstrap samplesC∗
1 , C∗

2 , C∗
3 , ..., C∗

nfrom C1, C2, C3, ..., Cn and the
corresponding bootstrap statisticsT ∗n(p) = nC̄∗′

n S∗−1C̄∗
n. To find thep-value calculate the

proportion of the times thatTn(p) > T ∗n(p). For the glaucoma dataset, it was found that
Tn(p) = 2.8796. The p-value = 0.1233. The results here suggest that the nonparametric
bootstrap method fails to improve the testing. However, this will lead to further investigation
using more powerful nonparametric methods.

2.2 A Permutation Test Based on Hotelling’sT 2

In this section a permutation test based onT 2 will be discussed. This procedure is carried out
as follows: Under the null hypothesis, the vector of differences is equally likely to be either
the observed vector of differences itself or the negative of the observed vector of differences.
If there aren pairs of vectors, there are2n possible permutations of the pairs (each observed
difference can be itself or the negative of it) and thus2n possible sets of difference vectors.
One can compute Hotelling’sT 2 on each sets of difference vectors to obtain the permutation
distribution of the statistic. Based on the permutation distribution thep-value for the observed
T 2 statistic can be calculated. Whenn is large, enumeration of all possible permutations is not
feasible. In this case the test could be performed using a random sample of the permutation
distribution. In our case since our sample sizen(=12) is large enough we proceed with the
latter random sample approach.

For our case the total number is a larger number (4096). We used a random sample of
size 1000 for whichT 2 = 10.5593 with ap-value of 0.1080; this clearly indicates that the
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difference is marginally significant.

 

Figure 2: Histogram of the Permutations Distribution

3 The Process of Sign Test Statistics

All random elements in this section are defined on one and the same probability space(Ω,A,P).
Let X : Ω → Rd be and-dimensioanl random vector, andS denote the unit sphere inRd.
Introduce the real valued random variables

Xθ = X∗θ, θ ∈ S. (3.1)

For the use of such projected data see Huber(1985). Note that

Bθ = 1(0,∞)(Xθ) = Bernoulli(pθ), pθ = P{Xθ > 0}. (3.2)

Let us introduce

m(θ) = pθ − 1
2
, θ ∈ S. (3.3)

Assuming that

P{Xθ = 0} = 0, ∀θ ∈ S, (3.4)

we have, for eachθ ∈ S,
m(θ) = 0 ↔ median ofXθ equals0. (3.5)
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Next suppose thatX1, . . . , Xn is a random sample of independent copies ofX and define
Xi,θ andBi,θ in a similar way asXθ andBθ. A good statistic for testingm(θ) = 0 is

Bn(θ)− 1
2

=
1
n

n∑

i=1

(
Bi,θ − 1

2

)
, (3.6)

which equals the sign-test-statistic. We will be concerned with the stochastic process

Tn(θ) =
√

n

[(
Bn(θ)− 1

2

)
−m(θ)

]
, θ ∈ S. (3.7)

If µ is any finite measure on theσ-field of Borel setsBS in S, it is immediate thatTn is a
random element of the real, separable Hilbert spaceL2(µ) = L2(S,BS, µ). In this section we
will focus on convergence in distribution of theTn in this space. For brevity, let us introduce

pθ,τ = P{Xθ > 0, Xτ > 0}, Σ(θ, τ) = pθ,τ − pθpτ , θ, τ ∈ S. (3.8)

Combinations of multivariate procedures based on the projected data as in (3.1) was employed
for a robust principal component analysis in Ruymgaart (1981), and for a nonparametric re-
gression test in Buhrman & Ruymgaart(1981).

Theorem 3.1. There exists a Gaussian random elementG in L2(µ) with

EG(θ) = 0, EG(θ)G(τ) = Σ(θ, τ), θ, τ ∈ S, (3.9)

such that
Tn

d→ G, asn →∞ in L2(µ). (3.10)

Proof. The random functions

θ → (Bi,θ − 1
2
)−m(θ) = Bi,θ − pθ, i = 1, . . . , n, (3.11)

are i.i.d. with

E
∫

S
(Bi,θ − pθ)2dµ(θ) =

∫

S
Σ(θ, θ)dµ(θ) ≤

∫

S
2dµ(θ) < ∞, (3.12)

Hence the conditions for applying the central limit theorem in Hilbert spaces (Laha & Rohatgi
(1979)) are fulfilled. Application yields the desired result.

Let us denote inner product and norm inL2(µ) by < ·, · >µ and‖ · ‖µ respectively. The
functional

Q(f) = ‖f‖2
µ, f ∈ L2(µ), (3.13)

has a Fŕechet - derivative atm ∈ S, given by

Q∗
mf = 2 < f,m >µ, f ∈ L2(µ). (3.14)

According to the delta-method (see, for instance, van der Vaart (1998)) in conjunction with
(3.10) this yields at once the following result.
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Corollary 3.1. For m as in (3.3) we have

√
n

(∥∥∥∥Bn − 1
2

∥∥∥∥
2

µ

− ‖m‖2
µ

)
d→ 2 < G,m >µ, (3.15)

where< G,m >µ has a normal distribution with

E < G,m >µ= 0, Var < G,m >µ=< m,Σm >µ . (3.16)

Remark. The directionsθ and−θ generate the same one-dimensional subspace, and it is easy
to verify that

Tn(−θ) = −Tn(θ), θ ∈ S. (3.17)

Hence there is a redundancy in the collection of random variablesTn(θ), when considered for
all θ ∈ S, as is done here. Although this redundancy doesn’t need to be of any consequence,
it can be eliminated by restricting the measureµ to a suitable part ofS.

4 Analyzing the Data using Robust Test Procedures

First the procedures will be described for general dimension, and will then be applied to the
glaucoma data. Let us selectr ≥ d different directions

θ1, . . . , θr ∈ Rd. (4.1)

For µ in (3.12) we choose the counting measure on the set of directions in (4.1), so that
µ({θj}) = 1 for j = 1, . . . , r. Let us write

Bn,j = Bn(θj), mj = m(θj), (4.2)

Tn,j =
√

n

{(
Bn,j − 1

2

)
−mj

}
. (4.3)

The result in (3.10) now reduces to

Tn = (Tn,1, . . . , Tn,r)
∗ d−→ (g1, . . . , gr)

∗ = G, (4.4)

whereG has anr−variate normal distribution with mean vector 0 and covariance matrix (see
also (3.8))

Σj,k = Σ(θj , θk), j = 1, . . . , r, k = 1, . . . , r. (4.5)
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4.1 Method 1

In this subsection we will test the null hypothesis that the medians are 0 for allr directions,
i.e.

H0 : m1 = · · · = mr = 0. (4.6)

Since this hypothesis is larger thanH0 in (2.1), the procedure will be somewhat conservative.
If the matrixΣ were the same for each distribution covered byH0, known, and of full rank

we could employ
∥∥∥Σ−

1
2 Tn

∥∥∥
2

as a test statistic, with approximateχ2
r−distribution for largen.

Example4.2 below shows, however, that all these conditions are not in general satisfied, not
even in the case whereH0 is restricted to

H′0 : all r-variate densities that are rotationaly symmetric about the origin. (4.7)

Example 4.1. Let us first consider a situation in whichΣ is known and of full rank,
under the hypothesis (4.7). Although this hypothesis is more restrictive than (4.6) it is not
an uncommon one in statistics. The matrixΣ is now in principle determined by the known
positions of theθj . Let us illustrate this in the special case whered = 2, takingr = 4 and

θ1 = (1, 0)∗, θ2 = (
1√
2
,

1√
2
)∗, θ3 = (0, 1)∗, θ4 = (− 1√

2
,

1√
2
)∗. (4.8)

By symmetry we have

pθj =
1
2
, pθj ,θk

=
4− |j − k|

8
, (4.9)

for all j, k, which yields the matrix

Σ =




2
8

1
8 0 −1

8
1
8

2
8

1
8 0

0 1
8

2
8

1
8

−1
8 0 1

8
2
8




, (4.10)

with determinant|Σ| = 3
4 > 0.

Example 4.2.Once more let us assume that (4.7) holds true, let us taked = 3 andr = 3
with directions

θ1 = (1, 0, 0)∗, θ2 = (0, 1, 0)∗, θ3 = (0, 0, 1)∗. (4.11)

By symmetry we now have

pθj =
1
2
, pθj ,θk

=
1
8
. (4.12)
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for all j, k, and obtain the matrix

Σ =




2
8 −1

8 −1
8

−1
8

2
8 −1

8

−1
8 −1

8
2
8


 , (4.13)

with determinant|Σ| = 0.

Let us return to the general situation. There exists an orthonormal matrixO and a diagonal
matrixΛ = diag(λ1, . . . , λr) with λj ≥ 0 for all j, such thatΣ = O∗ΛO. It is clear that

OG = (
√

λ1Z1, . . . ,
√

λrZr)∗, (4.14)

whereZ1 . . . , Zr are i.i.d. standard normal random variables.
Because some of the eigenvalues may be zero, we cannot include an inverse ofΛ in our

procedure. We can however, employ a generalized inverse. Let us fix an arbitraryε > 0. As
an estimator ofΣ we will use

Σ̂j,k = p̂j,k − p̂j .p̂k, (4.15)

where the estimators on the right are suggested by their population analogues in (3.8) and
given by

p̂j =

(
1
n

n∑

i=1

1{X∗
i θj>0}

)
, (4.16)

p̂j,k =
1
n

n∑

i=1

1{X∗
i θj>0}1{X∗

i θk>0}. (4.17)

The estimator in (4.15) is
√

n−consistent.
It is immediate from the continuous mapping theorem that, underH0 in (4.6),

(
εI + Σ̂

)− 1
2
Tn

d→ (εI + Σ)−
1
2 G, as n →∞, (4.18)

whereI is ther × r identity matrix. As a test statistic we might use the squared norm of the
l.h.s of (4.15), and this statistic would have limiting distribution

∥∥∥∥
(
εI + Σ̂

)− 1
2
Tn

∥∥∥∥
2

d→
∥∥∥(εI + Σ)−

1
2 G

∥∥∥
2

=
∥∥∥O∗ (εI + Λ)−

1
2 OG

∥∥∥
2

=
r∑

j=1

λj

ε + λj
Z2

j , as n →∞.

(4.19)
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If we had simplify used the squared norm of the l.h.s of (4.4) we would have obtained

‖Tn‖2 d→
r∑

j=1

λjZ
2
j . (4.20)

We see that the limiting distribution of either statistic contains the unknown eigenvalues
λj . Since (4.20) doesn’t require the choice of an extra parameter, we will use‖Tn‖2 as a test
statistic for the glaucoma data. If we define

Fλ1,...,λr(x) = P





r∑

j=1

λjZ
2
j ≤ x



 , x ≥ 0, (4.21)

for the actual test we will use the quantiles of the c.d.f. in (4.21) but withλj replaced by
estimatorŝλj obtained fromΣ̂ in (4.15), i.e. we use the quantiles of

Fλ̂1,...,λ̂r
(x), x ≥ 0. (4.22)

Summerizing we have the following result.

Theorem 4.1. The test that rejectsH0 in (4.6) for

‖Tn‖2 > F−1

λ̂1,...,λ̂r
(1− α), 0 < α < 1, (4.23)

can be used as an approximate size-α test.

The method 1 was then used for glaucoma data with several sets of directions. This test
was carried out for few different choices ofε includingε = 0. Thep-valuses produced by this
method were listed on Table 1. Direction vectors on Table 1 were normalized before we used
them for the calculation ofp-values.

4.2 Method 2

An interesting alternative to the first method is based on replacing the null hypothesisH0 in
(4.6) by the neighbourhood hypothesis.

H0,δ :
r∑

j=1

m2
j ≤ δ2, for some δ > 0. (4.24)

Let us assume that

σ2 = 4
r∑

j=1

r∑

k=1

mjΣj,kmk > 0. (4.25)
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Table 2:p-values produced by method 1

Directions
p-value

ε = 0 ε = .001 ε = .1


1

0

0


,




0

1

0


,




0

0

1


 .000003 .00001 .0011




1

0

0


,




0

1

0


,




0

0

1


,




1

1

1


 0 .00001 .0043




1

0

0


,




0

1

0


,




0

0

1


,




1

1

1


,




1

1

−1


 0 0 .00007




1

0

0


,




0

1

0


,




0

0

1


,




1

1

1


,




1

1

−1


,




1

−1

−1


 0 0 .00004

This notation has already been briefly discussed in Section 1. It turns out that a natural test
statistic now simply has a normal distribution. One has to decide on a suitable value for the
external parameterδ > 0.

It is immediate from (4.4) that

√
n





r∑

j=1

(
Bn,j − 1

2

)2

−
r∑

j=1

m2
j





d→ U , as n →∞, (4.26)

whereU has a normal distribution with mean 0 and varianceσ2, given by (4.25). A consistent
estimator for this variance is

σ̂2 = 4
r∑

j=1

r∑

k=1

m̂jΣ̂j,km̂k, (4.27)

whereΣ̂j,k is defined in (4.15) and wherêmj = p̂j − 1
2 , with p̂j as in (4.16).

Let us now define

Sn =
√

n





r∑

j=1

(
Bn,j − 1

2

)2

− δ2



 /σ̂, (4.28)
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Table 3:p-values produced by method 2

Directions
p-value

δ = .000001 δ = .001 δ = .1


1

0

0


,




0

1

0


,




0

0

1


 5.9954× 10−5 5.9958× 10−5 1.1296× 10−4




1

0

0


,




0

1

0


,




0

0

1


,




1

1

1


 1.5460× 10−4 1.5461× 10−4 2.6858× 10−4




1

0

0


,




0

1

0


,




0

0

1


,




1

1

1


,




1

1

−1


 1.3882× 10−5 1.3883× 10−5 2.494× 10−5




1

0

0


,




0

1

0


,




0

0

1


,




1

1

1


,




1

1

−1


,




1

−1

−1


 1.1406× 10−5 1.1407× 10−5 1.7875× 10−5

and denote the c.d.f. of the standard nornal distribution as usual byΦ. The following result is
clear from (4.26).

Theorem 4.2. The test that rejectsH0,δ in (4.24)for

Sn > Φ−1(1− α), 0 < α < 1, (4.29)

has the asymptotic sizeα, provided(4.25)is fullfilled.

It should be noted that rejection ofH0,δ entails rejection ofH0. Employing a neigh-
bourhood hypothesis yields in fact some further protection against undue rejection of the null
hypothesis of actual interest.

For the glaucoma data this test was used for several sets of directions and different values
of δ. Again thep-values were computed: see Table 2. Again the direction vectors were
normalized before we used them for the calculation ofp-values.

5 Conclusion

The glaucoma data consist of 3-dimensional vectors with coordinates that are differences of
angles. Consequently, each coordinate is a random variable with bounded range. Deviations
from normality of the distribution of such a coordinate will therefore not occur in the tail be-
haviour. It may present itself, for instance, in the form of skewness as seems to be the case for
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the current data. See Figure 2, Figure 3, Figure 4 and Figure 5. Due to this skewness, more-
over, it seemed appropriate to use sign tests rather than, for instance, one-sample Wilcoxon
tests, although our procedures could be easily modified so as to accomodate tests of the latter
type. We see that, in general, the robust procedures yield smallerp-values.
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