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Abstract

A statistical method for glaucoma detection using tomographic images is discussed. It is known
that the ONH (optic-nerve-head) area contains all the relevant information on glaucoma. Mean
change of the angles of the tetrahedron determined by four control points, three on the neural rim
and the other one corresponding to the maximum depth of the ONH is tested for significance. Apart
from Hotelling’s T2-test, a nonparametric bootstrap and permutation method are used for statistical
analysis, because the assumption of normality of the data set seems clearly violated. Moreover, a
projection pursuit approach based on the sign test is applied as an alternative to these nonparametric
procedures. The statistical analysis is done using data from Louisiana State University, Eye Center.
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1 Introduction

Glaucoma induces a change in the shape of the tetrahedron determined by the superior aspect
of the retina (S), the normal aspect of the retina (N), the temporal in the optic nerve (T), and
the deepest point in the optic nerve head (V). Glaucoma detection can be based on statistical
tests for shape change. Most tests employed thus far apply techniques from shape analy-
sis (see, for instance Bhattacharya and Patrangenaru (2003), Bhattacharya and Patrangenaru
(2005), Bookstein (1991), Dryden and Mardia (1998), Goodall ( 1991), Kendall (1984), Kent
(1992), Mardia and Patrangenaru (2005)). In a recent paper Bhattacharya (2008) uses all five
landmarks in the glaucoma data and reaches the same conclusion as the present authors. In
this paper we propose an alternative to those tests by directly analyzing the changes in the an-
gles of the tetrahedron. The proposed alternative method will be applied in a study involving
12 rhesus monkeys with glaucoma induced in one eye and the other kept as the control. A
tetrahedron has 12 angles, 5 of which are independent. Of the latter angles 2 are in the base
triangle and of no relevance for the shape change we are interested in, which means that only
3 angles for each tetrahedron will be used. The data for the paired comparison methods to be
used will consist of the 12 differences of the paired 3-dimensional “angle” vectors.

Figure 1: 12 angles of the tetrahedron

If we are willing to assume that these vectors of differences are i.i.d. and 3-dimensional
normal, the hypothesis of “no change”, i.e. that the mean difference vector equals the zero
vector, can be tested using Hotelling’$-statistic for the intrinsic mean of these multivariate
circular data. The analysis of the data, using this standard procedure is briefly discussed in
Section 2.

When deviations form these model assumptions are to be expected, one might resort to
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robust procedures. Since the data are differences of angles, heavy-tailed distributions will
not occur, but skewness might be present. Also the differences may not all have the same
distribution. Let us project the multivariate data on a line through the origin and compute
the univariate student-statistics, with these projected data. Its well-known that Hotelling’s
statistic equals the maximum of the squares of these univariate student-statistics, when the
maximum is taken over all directions. For a robust version of this test the student-statistic
may be replaced with the sign-test-statistic for each direction. This collection of sign-test-
statistics is a stochastic process, indexed by directions. Since the overall test statistic to be
used here will not be the maximum of the squared process, but rather a squared integral norm,
convergence in distribution of this process will be derived in a suitable Hilbert space. A
general version of this simple but basic result is derived in Section 3.

In Section 4 we return to the analysis of the glaucoma data, exploiting the result of Section
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3. In Sectiond.1 the test used is based on the sum of squared sign-test-statistics over a finite
number of directions. Since the direction of a possible shift is not known, the directions of the
coordinate axes are included and some other directions are added for better power. In Section
4.2 the null hypothesis to be tested is modified. Rather than testing that the mean differences
of the angles are exactly zero, we will test the hypothesis that their medians are approximately
zero. The latter hypothesis is an instance of a neighborhood hypothesis. The idea of employ-
ing a neighborhood rather than a sharp hypothesis has already been explored in Hodges &
Lehmann (1954). Recently there has been renewed interest in this type of hypothesis (Dette
& Munk (1998)) that are practically relevant and usually leads to simpler asymptotics as well.
Finally, Section!.3 is devoted to a brief discussion in which in particular the results in Section

2 and Section 4 are compared.

2 The Analysis using Hotelling’s Test Statistic

In Figure 1 the base triangle has two independent angles and each of the extra point creates
three independent angles. All together there are 3(k-3) + 2 = 3k-7 independent angles. In our
case k =4 ( see figure 5). So the dimension is reduced to 3(4)-7=5. Two of these angles are on
the base triangle, thus the problem is locally reduced to a 3-dimensional multivariate circular
data problem. We use the following notation for the angles consideféd= X; X, Xy,
G? = X1X3X4, G3 = X1X4 X, and letGy, Go be the value of G!, G?, G?) before and
after inducing glaucoma. Given that the chardge= G2 — G4, is small, the support of the
distribution of (ezp(iD'), exp(iD?), exp(iD?)) on the torug.S1)3 is very concentrated, and
we may use ordinary multivariate analysis for the veddrThe values ofD are summerized
in Table 1.

When we apply the Hotelling™ test for the data set assuming normality ( Mareliaal.
(1972))

Hy:D=0vs.H, :D #0, (2.1)
—1)p

T?:L Fopsp. 2.2
=y P 22)

For our caser = 12,p = 3, F.y = 2.8798 and thep-value = 0.0954. Therefore, we
reject H, at the 0.1 level. However, HotellingB?—test is based on the assumption of nor-
mality. If the assumption of normality is not acceptable, we need to look for other multivariate
testing procedures. Here, we are going to discuss two such approaches, first is the so called
nonparametric bootstrap approach and an approach based on the permutations. The next two
subsections will show the results of the above approaches.

2.1 Bootstrap Method for the Mean Change in Angles

The pivotal statistic, under the null hypothesis that the means are equal to zero is given by
To(p) = nD;LS‘an. To generate the bootstrap statistic, first center th€;by D;— D, then
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Table 1: Angle difference for twelve monkeys

X1XoXy Xi1X3Xy X1XuXo

0.1344 -0.4991 0.0292
0.2899 -0.4216 -0.2228
0.0002 0.1066 -0.0182
0.0389 0.0285 -0.0053
0.1722 -0.3529 -0.0415
0.1179 -0.5625 -0.0026
-0.1393 0.3291 0.0512
0.0202 0.0260 -0.0269
0.1979 -0.0216 -0.1633
0.3177 -0.4572 -0.1401
0.0955 -0.2078 -0.1185
0.1465 -0.0624 -0.1965

obtain a large number of bootstrap samglgsCs, C3, ..., Cifrom Cy, Cs, Cs, ..., Cy, and the
corresponding bootstrap statisti€%(p) = nC' S*~*C*. To find thep-value calculate the
proportion of the times thdl,,(p) > Ti(p). For the glaucoma dataset, it was found that
T.(p) = 2.8796. Thep-value = 0.1233. The results here suggest that the nonparametric
bootstrap method fails to improve the testing. However, this will lead to further investigation
using more powerful nonparametric methods.

2.2 A Permutation Test Based on Hotelling's/™?

In this section a permutation test basedI&rwill be discussed. This procedure is carried out
as follows: Under the null hypothesis, the vector of differences is equally likely to be either
the observed vector of differences itself or the negative of the observed vector of differences.
If there aren pairs of vectors, there af¥" possible permutations of the pairs (each observed
difference can be itself or the negative of it) and tRligpossible sets of difference vectors.
One can compute Hotelling’s? on each sets of difference vectors to obtain the permutation
distribution of the statistic. Based on the permutation distributiompit@ue for the observed
T? statistic can be calculated. Wheis large, enumeration of all possible permutations is not
feasible. In this case the test could be performed using a random sample of the permutation
distribution. In our case since our sample si¢el?) is large enough we proceed with the
latter random sample approach.

For our case the total number is a larger number (4096). We used a random sample of
size 1000 for whicHI™? = 10.5593 with gp-value of 0.1080; this clearly indicates that the
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difference is marginally significant.
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Figure 2: Histogram of the Permutations Distribution

3 The Process of Sign Test Statistics

Allrandom elements in this section are defined on one and the same probabilityQpac®).
Let X : Q — R% be and-dimensioanl random vector, aSddenote the unit sphere R,
Introduce the real valued random variables

Xg=X"0,0¢€S. (3.1)
For the use of such projected data see Huber(1985). Note that

By = 1(9,00)(Xg) = Bernoulli(pg), py=P{Xy > 0}. (3.2)
Let us introduce
m(0) = pg — %, 6 €S. (3.3)
Assuming that
P{Xy=0}=0, VOeS, (3.4)

we have, for each € S,

m(#) = 0 «— median ofXy equald. (3.5)
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Next suppose thaX, ..., X, is a random sample of independent copieXadnd define
X9 andB, ¢ in a similar way asXy andBy. A good statistic for testing:(6) = 0 is
_ 1 1< 1
Buit) 5= 2 (B 3). (36)
which equals the sign-test-statistic. We will be concerned with the stochastic process
— 1
T.(0) = vn [(Bn(e) - 2) - m(@)} ) 0eSs. (3.7)

If 1 is any finite measure on thefield of Borel sets3s in S, it is immediate thatl}, is a
random element of the real, separable Hilbert sgade) = L2(S, Bs, i1). In this section we
will focus on convergence in distribution of thg in this space. For brevity, let us introduce

Por = ]P){XQ > OyXT > O}u 2(077-) = Po,r — PoPr, 97 T EC S. (38)

Combinations of multivariate procedures based on the projected data as in (3.1) was employed
for a robust principal component analysis in Ruymgaart (1981), and for a nonparametric re-
gression test in Buhrman & Ruymgaart(1981).

Theorem 3.1. There exists a Gaussian random elemgim L2 () with

EG) =0, EG0)G(r)=23%(0,7),0,T €S, (3.9)
such that
T, % G, asn — oo in L2(p). (3.10)
Proof. The random functions
0 — (Bi,g—%)—m(m — Big—pai=1,....n, (3.11)
are i.i.d. with
B [ (Bio—m)Pdn(0) = [ 0.0)d0(0) < [ 20(0) < o (3.12)

Hence the conditions for applying the central limit theorem in Hilbert spaces (Laha & Rohatgi
(1979)) are fulfilled. Application yields the desired result.

Let us denote inner product and normZif(x) by < -,- >, and|| - ||, respectively. The
functional

QN =117 f e L*(w), (3.13)
has a Fechet - derivative ath € S, given by
wf=2<fim>, feL*n). (3.14)

According to the delta-method (see, for instance, van der Vaart (1998)) in conjunction with
(3.10) this yields at once the following result.
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Corollary 3.1 For m as in (3.3) we have

ﬁ(‘

where< G, m >, has a normal distribution with

1 2

B - -
2

= \mlli> 49 <Gm>,, (3.15)
I

E<g,m>,=0, Var <G ,m>,=<m,Xm >, . (3.16)

Remark. The direction® and—# generate the same one-dimensional subspace, and it is easy
to verify that

T (—0) = —T,(0),0 € S. (3.17)

Hence there is a redundancy in the collection of random varidhl@d, when considered for
all € S, as is done here. Although this redundancy doesn’t need to be of any consequence,
it can be eliminated by restricting the measur® a suitable part d$.

4 Analyzing the Data using Robust Test Procedures

First the procedures will be described for general dimension, and will then be applied to the
glaucoma data. Let us select d different directions

01,...,6, € R (4.1)

For i in (3.12) we choose the counting measure on the set of directions in (4.1), so that
n({6;}) =1forj=1,...,r. Letus write

B j = Bn(0;), mj=m(b;), (4.2)

T, = vn { <Bn,j - ;) - m]} - (43)

The result in (3.10) now reduces to

* d *
Tw=Tw1, ... Tny) — (91,---,90) =G, (4.4)

whereg has an-—variate normal distribution with mean vector 0 and covariance matrix (see
also (3.8))

ZM:E(QJ-,Q;“), jzl,...,T, kzl,...,T‘. (45)
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4.1 Method 1

In this subsection we will test the null hypothesis that the medians are 0 fodakctions,
i.e.

Ho : my=---=m, =0. (4.6)

Since this hypothesis is larger thafy in (2.1), the procedure will be somewhat conservative.
If the matrix X were the same for each distribution coveredHyy, known, and of full rank

2
we could emplo E‘%TnH as a test statistic, with approximaté—distribution for largen.

Example4.2 below shows, however, that all these conditions are not in general satisfied, not
even in the case whefd is restricted to

ﬂg : all r-variate densities that are rotationaly symmetric about the origin. 4.7

Example 4.1. Let us first consider a situation in which is known and of full rank,
under the hypothesis (4.7). Although this hypothesis is more restrictive than (4.6) it is not
an uncommon one in statistics. The maffixs now in principle determined by the known
positions of the;. Let us illustrate this in the special case whére 2, takingr = 4 and

1 1 1 1

01 =(1,0)", O=(—,—=)", 03=(0,1)", O4=(——,—4)" 4.8
1=(1,0) 2 = ( 5 2) 3=1(0,1) 1= 5 2) (4.8)
By symmetry we have
1 4—|5j—k
p@j = 57 Pej,ek = ’é|7 (49)

for all 7, k, which yields the matrix

2 1 1

s 8 0 —g

12 1 9
=% 58 7 (4.10)

0 5 § 38

1 1 2

5 0 8 §

with determinantX| = 2 > 0.
Example 4.2.0nce more let us assume that (4.7) holds true, let usdaked andr = 3
with directions

91 = (13030)*’ 92 = (Oa 150)*7 03 = (0’07 1)* (411)

By symmetry we now have

(4.12)



144 International Journal of Statistical Sciences, Vol. 9s, 2009

for all j, k, and obtain the matrix

ool

eI
| ool

(4.13)

0| ool
oolIno

0o

IS

with determinantX| = 0.

Let us return to the general situation. There exists an orthonormal miagid a diagonal
matrix A = diag(Aq, ..., A,) with A; > 0 for all j, such thats = O*AO. Itis clear that

0G = (V\Zi,...,\/\Zn)*, (4.14)
whereZ; ..., Z, are i.i.d. standard normal random variables.
Because some of the eigenvalues may be zero, we cannot include an invargeair
procedure. We can however, employ a generalized inverse. Let us fix an arbitsaby As
an estimator of> we will use
Sk = Djk — Dj-Drs (4.15)
where the estimators on the right are suggested by their population analogues in (3.8) and
given by

1 n
pj = (nzl{X;ej>o}> ) (4.16)
i=1

N
Pjk = Z; 1{X;0]~>0}1{X39k>0}' (4.17)
1=
The estimator in (4.15) ig/n—consistent. B
It is immediate from the continuous mapping theorem that, uttien (4.6),

_1
(d+i> T, L (I +%)2G, as n— oo, (4.18)

wherel is ther x r identity matrix. As a test statistic we might use the squared norm of the
l.h.s of (4.15), and this statistic would have limiting distribution

|

(1+3) 1, “ 4 ler+m o

_ Ho* (61+A)—%OQH2 (4.19)
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If we had simplify used the squared norm of the I.h.s of (4.4) we would have obtained
ITal® 5" 222, (4.20)
j=1

We see that the limiting distribution of either statistic contains the unknown eigenvalues
),. Since (4.20) doesn't require the choice of an extra parameter, we willTige as a test
statistic for the glaucoma data. If we define

Py, (@) =PIy NZE<wo x>0, (4.21)
j=1

for the actual test we will use the quantiles of the c.d.f. in (4.21) but wjtmeplaced by
estimatorsij obtained fron® in (4.15), i.e. we use the quantiles of

F5\17.”75\T (1‘), T > 0. (4.22)
Summerizing we have the following result.

Theorem 4.1. The test that reject®(, in (4.6)for

((-a), O0<a<l, (4.23)

can be used as an approximate sizéest.

The method 1 was then used for glaucoma data with several sets of directions. This test
was carried out for few different choicesoincludinge = 0. Thep-valuses produced by this
method were listed on Table 1. Direction vectors on Table 1 were normalized before we used
them for the calculation gf-values.

4.2 Method 2

An interesting alternative to the first method is based on replacing the null hypotiesis
(4.6) by the neighbourhood hypothesis.

'
Hos: » mj < 4% forsome 4> 0. (4.24)
j=1
Let us assume that
I8 '
o? =4 > my%;emy, > 0. (4.25)

j=1k=1
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Table 2:p-values produced by method 1

Directions pvalue

e=0 e =.001 e=.1
1 0 0
Of.11f.]0 .000003| .00001 .0011
0 0 1
1 0 0 1
Of,11f:-]10],11 0 .00001 .0043
0 0 1 1
1 0 0 1 1
ol-(1]-]0 1 1 0 0 .00007
0 0 1 1 -1
1 0 0 1 1 1
0 11,10 1 1 -1 0 0 .00004
0 0 1 1 -1 —1

This notation has already been briefly discussed in Section 1. It turns out that a natural test
statistic now simply has a normal distribution. One has to decide on a suitable value for the
external parametey > 0.

It is immediate from (4.4) that

r

7 1\2
vn Z(Bn,j—2> =Y m? LY, as n— oo, (4.26)
j=1

J=1

wherel{ has a normal distribution with mean 0 and varianéggiven by (4.25). A consistent
estimator for this variance is

6% = 4iimjijﬁkmk, (4.27)

j=1 k=1

wherei)j,k is defined in (4.15) and wherg; = p; — % with p; as in (4.16).
Let us now define

r 2
Sn=vnq>. (Bn,j - 1> — 2% /6, (4.28)



Bandulasiri, Gunathilaka, Patrangenaru, Ruymgaart and Thompson: Nonparametric Shdgey

Table 3:p-values produced by method 2

Directions pvalue
8 = .000001 § =.001 §=.1

1 0 0
of.[1].]0 5.9954 x 107° | 5.9958 x 1075 | 1.1296 x 104
0 0 1
1 0 0 1
of.]1]-]0]. |1 1.5460 x 10~ | 1.5461 x 10~* | 2.6858 x 10~4
0 0 1 1
1 0 0 1 1
ol f1f,]of,|1 1 1.3882 x 107° | 1.3883 x 1072 | 2.494 x 10~°
0 0 1 1 -1
1 0 0 1 1 1
0 1].]10].[1 1 -1 1.1406 x 1075 | 1.1407 x 107> | 1.7875 x 107>
0 0 1 1 -1 -1

and denote the c.d.f. of the standard nornal distribution as usubl e following result is
clear from (4.26).

Theorem 4.2. The test that rejectsl, 5 in (4.24)for

S,>dY1-a), 0<a<l, (4.29)
has the asymptotic size provided(4.25)is fullfilled.

It should be noted that rejection {, 5 entails rejection of{y. Employing a neigh-
bourhood hypothesis yields in fact some further protection against undue rejection of the null
hypothesis of actual interest.

For the glaucoma data this test was used for several sets of directions and different values
of §. Again thep-values were computed: see Table 2. Again the direction vectors were
normalized before we used them for the calculatiop-gélues.

5 Conclusion

The glaucoma data consist of 3-dimensional vectors with coordinates that are differences of
angles. Consequently, each coordinate is a random variable with bounded range. Deviations
from normality of the distribution of such a coordinate will therefore not occur in the tail be-

haviour. It may present itself, for instance, in the form of skewness as seems to be the case for
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the current data. See Figure 2, Figure 3, Figure 4 and Figure 5. Due to this skewness, more-
over, it seemed appropriate to use sign tests rather than, for instance, one-sample Wilcoxon
tests, although our procedures could be easily modified so as to accomodate tests of the latter
type. We see that, in general, the robust procedures yield srpalkdues.
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