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Abstract

In this paper the nonparametric estimation of a joint distribution when the
available data is a multivariate current status data, so-called case 1 interval
censored data, is considered. The nonparametric maximum likelihood esti-
mator (NPMLE) is proposed, and it is shown that this estimator satisfies
a self-consistency property. This self-consistency property is exploited to
derive some asymptotic properties of the estimator, such as strong consis-
tency and rates of convergence. The convergence rates are derived under
the strong conditions, which include that the joint density of multivari-
ate vector is bounded away from both zero and infinity and that the joint
distribution function is a multivariate Archimedean copula.
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1 Introduction

Multivariate interval-censored lifetime data arise in many areas such as epidemiology,
bio-medicine, demography, sociology and financial studies. So far there have been
a number of literature dealing with the statistical inference on the interval-censored
lifetime data. For instance, Wang and Wells (1997, 2000) studied nonparametric es-
timators of a bivariate survival function under censoring conditions, proposed model
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selection procedures for censored data generated by the Archimedean copula family
and developed estimators of some time-dependent association measures, including esti-
mators of local and global Kendall’s tau, local odds ratio, and other measures defined
in their papers. Wang and Ding (2000) and Ting and Wang (2004) discussed the
associations for bivariate current status data and further developed a nonparametric
procedure for assessing marginal independence for current status data using contin-
gency table techniques. Betensky and Finkelstein (1999), Bogaerts and Lesaffre (2004)
and Gentleman and Vandal (2001, 2002) discussed the NPMLE based on the bivariate
interval-censored data and proposed three algorithms for finding this NPMLE ( see also
Sun, 2006). Further, Wong and Yu (1999) studied the generalized maximum likelihood
estimator (GMLE) of the joint distribution of a multivariate random vector based on
the interval-censored data and established the consistency of the GMLE under the
assumptions that the multivariate random vector is independent of the multivariate
censoring vector and that their components are discrete. Yu, et al (2006) relaxed the
assumptions and obtained the strong consistency of the GMLE in the topologies of
weak convergence and pointwise convergence.

However, although the strong consistency of the GMLE is derived for the multi-
variate interval-censored data, to the best of my knowledge, there has not been a study
fully investigating the asymptotic properties of these proposed estimators such as self-
consistency equation and the rates of convergence. Moreover, it is worth pointing out
that in view of complexity of multivariate lifetime data, most of existing results are
derived only for bivariate interval-censored lifetime data. It is not feasible to derive
the convergence rates of the nonparametric estimators in the multivariate interval-
censored data by using the methods proposed in Wong and Yu (1999) and Yu, et al
(2006). In an effort to solve this problem, new procedures need to be developed.

The purpose of this paper is to study properties of the nonparametric maximum
likelihood estimate (NPMLE) of the joint distribution of a multivariate lifetime vector
of interest based on the current status (case 1 interval-censored) data. In particular,
results about the self-consistency equation, strong consistency and convergence rate of
the NPMLE with multivariate case 1 interval-censoring mechanism are given. The rest
of this paper is organized as follows. In Section 2, the assumptions and notation that
will be used throughout the paper are introduced for the multivariate lifetime variables
with the general case 1 interval censoring mechanism. The self-consistency equation of
the NPMLE is obtained in Section 3. In Section 4, the strong consistency for NPMLE
is derived for the general multivariate current status data. The convergence rates
of NPMLE in two situations are also given in this section. Concluding remarks are
addressed in Section 5. The proofs are presented in the Appendix.

2 Notation and Assumptions

Let X = (X1, ..., Xd) be the vector of lifetime variables of interest with joint dis-
tribution function F (x) = F (x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd) and marginal
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distribution functions Fr(xr)(r = 1, ..., d). If d = 2, (X1, X2) may be the bivariate
variable in matched-paired case control studies and studies of time to occurrence of
a disease to paired organs. In this situation, only the information about whether the
lifetimes of interest lie before or after the corresponding censoring times is known,
which means that only censored data are observed for the multivariate lifetime vector
X = (X1, ..., Xd).

Suppose that there exists a vector of random variables C = (C1, ..., Cd) that decides
the current status for X = (X1, ..., Xd). That is, the random vectors C = (C1, ..., Cd)
and ∆ = (∆1, ..., ∆d), where ∆ = (∆1, ...,∆d) = (I{X1<C1}, ..., I{Xd<Cd}), are ob-
served. For r = 1, ..., d, the variables Cr and ∆r define the observed current status
for each Xr. However, it is not always true that each component of X has its own
censoring time. Often several components in X share a censoring time. For example,
in the bivariate case (d = 2), X1 and X2 are often measured from the same individual
since the paired data arise in many cases, and thus they share a common censoring
time C. Therefore the more general censoring mechanism should be considered in the
multivariate situation.

Roughly speaking, the random vector of interest X = (X1, ..., Xd) is divided into
several subvectors and all components of each subvector share a common censoring
time. Rigorously, the vector X is partitioned into p subvectors X = (X1, ...,Xp) with
Xr = (Xd1+···+dr−1+1, ..., Xd1+···+dr−1+dr), (r = 1, ..., p), d0 = 0 and d1 +d2 + · · ·+dp =
d. The censoring time of components in Xr is a univariate variable Cr (r = 1, ..., p).
In this case, the random vectors C and Λ are observed, where C = (C1, ..., Cp) and
Λ = (Λ1, ..., Λd) with Λs = I{Xs<Cr}, (d1+· · ·+dr−1+1 ≤ s ≤ d1+· · ·+dr; r = 1, ..., p).
Note that 1 ≤ p ≤ d. If p = 1, all Xs’s share one common censoring time C and if
p = d, each Xs has its own censoring time Cs for s = 1, ..., d.

Our goal is to make the statistical inference about the distribution function F (x)
of X from the observed random vectors C and Λ. Further we will set up the self-
consistency equation for NPMLE of the distribution F (x) based on the multivariate
current status data and then derive the strong consistency and the convergence rates
for NPMLE. Toward these ends, we need to introduce some notation for the multi-
variate current status data.

Set D = {1, 2, ..., d}, Dr = {i : d1 + · · ·+dr−1 +1 ≤ i ≤ d1 + · · ·+dr}(r = 1, 2, ..., p)
and D = {D : D is a subset of D}. Let µF be the measure induced by the distribution
function F in IRd

+. For any D ∈ D, c ∈ IRp
+ and x ∈ IRd

+, define the sets AD(c) and
Ax

D(c) in IRd
+ as

AD(c) = AD(c1, ..., cp) =
p⊗

r=1

{
[0, cr)αr × [cr,∞)βr

}
,

Ax
D(c) = Ax

D(c1, ..., cp) =
p⊗

r=1





⊗

i∈D∩Dr

[0, cr ∧ xi)×
⊗

j∈D̄∩Dr

[cr ∧ xj , xj ]





where D̄ = D − D, αr = card{D ∩ Dr}, βr = card{D̄ ∩ Dr} (note that αr + βr =
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card{Dr} = dr),
⊗m

r=1[ur, vr)kr = [u1, v1)k1 × · · · × [um, vm)km is a rectangle set of
IR

∑m
r=1 kr

+ with [ur, vr)kr = [ur, vr)× · · · × [ur, vr)︸ ︷︷ ︸
kr

∈ IRkr
+ and a ∧ b = min{a, b}. Then

for any c ∈ IRp
+,

⋃

D∈D

AD(c) = IRd
+ and

⋃

D∈D

Ax
D(c) = [0, x1]× · · · × [0, xd] ≡ [0,x].

Similarly, for any x ∈ IRd
+ and D ∈ D, define the set CD(x) in IRp

+ as

CD(x) = CD(x1, ..., xd) =
p⊗

r=1

( max
s∈Dr∩D

xs, min
t∈Dr∩D̄

xt]

Further we have that for any x ∈ IRd
+,

⋃

D∈D

CD(x) = IRp
+.

Throughout this paper, we assume:

(A1) X = (X1, ..., Xd) is a vector of non-negative continuous random variables. The
joint distribution function F (x) of X is contained in the class
FM :=

{
F |support(F ) ⊂ [0, M ]d; F ¿ λd

}
where M is a given positive constant,

λd is the Lebesgue measure in IRd
+, and IRm

+ = {(x1, ..., xm) : cr ≥ 0, r = 1, ...,m}
for any positive integer m.

(A2) C = (C1, ..., Cp) is a vector of non-negative continuous random variables with
joint distribution G. G(c) is contained in the class
GM := {G|support(G) ⊂ [0,M ]p; G ¿ λp}.

(A3) The random vector C are independent of X.

(A4) There exists a positive constant η such that P (C ≥ η) = 1.

(A5) The marginal distribution functions Gr(cr) of C have the bounded continuous
densities gr(cr) on [0, M ].

(A6) F satisfies that for any D ∈ D, µF [AD(c1, ..., cp)] ≥ ε > 0 if cr ≥ δ > 0,
r = 1, ..., p.

The above conditions are similar to those required for the consistency of the max-
imum likelihood estimator of a failure time distribution based on interval-censored
data (Groeneboom and Wellner 1992 ; Yu et al., 2006). The conditions (A4), (A5)
and (A6) are required to avoid the singularity of the integral equation appearing in
the information calculation. The condition (A4) means that there exists a positive
censoring time. More discussion about these conditions can be found in Geskus and
Groeneboom (1996, 1997).
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3 NPMLE of F (x)

In this section, we will study the nonparametric maximum likelihood estimator of the
distribution function F (x) and its self-consistency equation for the random vector X
with the multivariate case 1 censoring mechanism.

At first, in terms of the notation introduced in Section 2, the density function for
the random vector (C,Λ) can be expressed as follows:

qF (c,λ) = g(c)
∏

D∈D

{µF (AD(c)}{
∏

r∈D λr
∏

s∈D̄(1−λs)}.

Suppose that (ci, λi)(i = 1, 2, ..., n) are the observed sample from the random vector
(C,Λ). Then the conditional likelihood function LC(F ) for F (x) is

LC(F ) =
n∏

i=1

∏

D∈D

{µF (AD(ci))}{
∏

r∈D λir
∏

s∈D̄(1−λis)}

and thus the log conditional likelihood function lC(F ) for the distribution function F
is

lC(F ) =
∫

IRp
+×{0,1}d

∑

D∈D





∏

r∈D

λr

∏

s∈D̄

(1− λs)



 log{µF (AD(c))}dIPn(c, λ) (3.1)

where IPn(c, λ) is the empirical probability function obtained from the observations
{(ci, λi), i = 1, ..., n}. Now, the NPMLE F̂n of the distribution function F (x) can be
obtained by maximizing the function (3.1):

F̂n = arg max
F∈F̄M

lC(F )

where

F̄M :={F : |support(F ) ⊂ [0,M ]d; F is either a continuous ditribution function

a piecewise constant distribution function with a nite number of jumps}

According to the idea of Geskus and Groeneboom (1996, 1997), one may define
the following operator LF for a(x) ∈ L2(F1) where F1 is the probability measure in
IRd

+

[LF a](c, λ) = E{a(X)|(C,Λ) = (c, λ)} =
∑

D∈D





∏

r∈D

λr

∏

s∈D̄

(1− λs)





∫
AD(c) a(x)dµF

µF [AD(c)]
.
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By applying this operator to the function a(z) = a(z1, .., zd) = I{z1≤x1,...,zd≤xd} and
taking expectation with respect to the probability distribution IP (c, λ) of (C,Λ), we
have that

F (x) =
∫

IRp
+×{0,1}d

∑

D∈D





∏

r∈D

λr

∏

s∈D̄

(1− λs)





µF [Ax
D(c)]

µF [AD(c)]
dIP (c,λ). (3.2)

Therefore replacing F and IP (c,λ) with F̂n and IPn(c, λ), respectively in (3.2), we have
the self-consistency equation for the nonparametric maximum likelihood estimator
F̂n(x):

F̂n(x) =
∫

IRp
+×{0,1}d

∑

D∈D





∏

r∈D

λr

∏

s∈D̄

(1− λs)





µF̂n
[Ax

D(c)]
µF̂n

[AD(c)]
dIPn(c, λ) (3.3)

Now we discuss the existence and uniqueness of the NPMLE. Some researchers have
developed the algorithms for the NPMLE based on the bivariate interval censored data
(see Betensky and Finkelstein, 1999; Gentleman and Vandal 2001, 2002; Bogaerts
and Lesaffre, 2004). A similar iterative algorithm can be developed using this self-
consistency equation (3.3) to obtain the estimator F̂n. For the uniqueness of NPMLE,
let

H = {Hj = (rj1, sj1]× · · · (rjd, sjd], j = 1, ..., m}
denote the disjoint hyperrectangles that constitute the regions of possible support of
the NPMLE of F , αij = I{Hj ⊆ AD(Ci)} and pj = µF (Hj), i = 1, ..., n, j = 1, ..., m.
Then the likelihood function LC(F ) can be rewritten as

L(p) =
n∏

i=1

m∑

j=1

αijpj

with p = (p1, ..., pm)T , and the NPMLE of F is determined by maximizing L(p) over
the pj ’s subject to pj ≥ 0 and

∑m
j=1 pj = 1. Further, if the rank of n × m matrix

A = (αij) is m, the log-likelihood function log L(p) is strictly concave and thus the
vector p is unique. Therefore the NPMLE based on the multivariate case 1 interval-
censored data is unique if the log-likelihood function lC(F ) is strictly concave.

4 Asymptotic Properties of NPMLE

In this section, we derive the asymptotic properties of NPMLE F̂n(x). From the
self-consistency equation (3.3) for the NPMLE F̂n, the following result on the strong
consistency of the estimator F̂n(x) can be derived. Its proof is given in Appendix.
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Theorem 4.1. Under the conditions (A1)-(A6),

P{ lim
n→∞ sup

x∈IRd
+

|F̂n(x)− F (x)| = 0} = 1

Next we derive the convergence rate for F̂n and give some comments on the rates
for the different types of case 1 interval censoring mechanism. Before giving the
convergence rate for F̂n, we introduce the measure for assessing the distance of two
density functions.

The Hellinger distance between two density functions f1 and f2 with respect to µ
is defined by

h(f1, f2) =
(

1
2

∫
(
√

f1 −
√

f2)2dµ

)1/2

.

where µ is a σ-finite dominating measure.
We now define the density function φF with respect to the dominating measure

µ = µ1 × µ0 as follows.

φF (c, λ) =
∑

D∈D





∏
r∈D

λr

∏

s∈D̄

(1− λs)



 µF (AD(c))

where µ1 is the measure induced by the distribution of C and µ0 is the counting
measure on {0, 1}d.

We first measure the Hellinger distance between φF̂n
and φF . To this end, the

following additional conditions should be assumed.

(S1) The joint density of C is bounded on its support.

(S2) The joint density of X is bounded away from zero and infinity on its support.

Theorem 4.2. Under the conditions (A1)-(A4), (S1) and (S2), the Hellinger distance
h(φF̂n

, φF ) satisfies

h(φF̂n
, φF ) =





Op

(
n
− (1+α)(1+d)

2(1+α+d+3αd) (log n)
αd(β−1)

(1+α)(1+2d)

)
if α > 1

Op

(
n
− (1+d)

(2+4d) (log n)
d2

2(1+2d)

)
if α = 1

where α = max{di, 1 ≤ i ≤ p} and β = card{di : di = α}.
It is worth pointing out that (S1) implies (A5) and (S2) implies (A6). On the other

hand, (A5) and (A6) imply (S1) and (S2), respectively, provided that components of
X and components of C are independent of each other, respectively. Therefore we
have
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Corollary 4.1. Suppose that components of X and components of C are independent
of each other, respectively. Then under the conditions (A1)-(A6), we have that

h(φF̂n
, φF ) =





Op

(
n
− (1+α)(1+d)

2(1+α+d+3αd) (log n)
αd(β−1)

(1+α)(1+2d)

)
if α > 1

Op

(
n
− (1+d)

(2+4d) (log n)
d2

2(1+2d)

)
if α = 1.

Remarks
(i) Note that if α = 1, then p = d and each Xr has its own censoring time Cr, r =
1, ..., d. If α = d, then p = 1 and all Xr’s share a common censoring time C.
(ii) In the case that X has a common censoring time, we have that α = d, β = 1 and
thus

h(φF̂n
, φF ) = Op

(
n
− (1+d)2

2(1+2d+3d2)

)
.

Also, if each Xr has its own censoring time, α = 1, β = d and thus

h(φF̂n
, φF ) = Op

(
n
− (1+d)

(2+4d) (log n)
d2

2(1+2d)

)
.

In particular, if d = 1, we have that α = 1 and

h(φF̂n
, φF ) = Op

(
n−

1
3 (log n)

1
6

)
,

which coincides with the results in Groeneboom and Wellner (1992), Van de Geer
(1996).
(iii) Since (1+d)2

2(1+2d+3d2)
and 1+d

2(1+2d) are the monotone decreasing functions of d, the con-
vergence rates decrease as the dimensional number of multivariate lifetime X increases
in the two extreme settings (p = 1 and p = d). Generally, the convergence rate de-
creases as the the dimensional number of X increases since (1+α)(1+d)

2(1+α+d+3αd) is a monotone
decreasing function of d for a fixed value of α. Moreover, the upper limit of conver-
gence rates is n−1/3. The lower limits are n−1/4 in the situation where each Xi has
its own censoring time (p = d), and n−1/6 if all Xr’s share a common censoring time
(p = 1).
(iv) If the dimension d of multivariate lifetime X is fixed, (1+α)(1+d)

2(1+α+d+3αd) is a monotone
decreasing function of α. Since the small α results in a big number of censoring times,
the bigger the number of censoring times is, the faster the convergence rate is, which is
reasonable because the data with more censoring times involve much more information
than the data with less common censoring times about the multivariate lifetime X .

Note that Theorem 4.2 gives the convergence rate for the function φF̂n
of NPMLE

F̂n. We need to further specify the convergence rate for NPMLE F̂n using the L2-
distances defined on the spaces induced by the marginal distributions of random vector
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C. Let
C̃ = (C1, ..., C1︸ ︷︷ ︸

d1

, C2, ..., C2︸ ︷︷ ︸
d2

, ...., Cp, ..., Cp︸ ︷︷ ︸
dp

).

For any set D = {i1, i2, ..., ia} ∈ D, define the subvectors CD and XD of C̃ and X,
respectively, as follows:

CD = (Ci1 , Ci2 , ..., Cia)

XD = (Xi1 , Xi2 , ..., Xia).

Since some components of CD may be equal, define C̃D as the random vector
consisting of the distinct Cik , k = 1, 2, ..., a in CD. Similar to the Corollary 2 in
Geskus and Groeneboom (1997), we have the following theorem.

Theorem 4.3. Let, for multivariate distribution functions F1(x) and F2(x) in IRd
+,

and D ∈ D, ||F1 − F2||CD
denote the L2-distance defined by

||F1 − F2||2CD
=

∫
{F1XD

(cD)− F2XD
(cD)}2dG

C̃D
(c̃D)

where FXD
and G

C̃D
denote the marginal distributions of subvector XD and C̃D,

respectively. Then under the same conditions as that in Theorem 4.2, for any D ∈ D,
we have that as n →∞,

||F̂n − F ||CD
=





Op

(
n
− (1+α)(1+d)

2(1+α+d+3αd) (log n)
αd(β−1)

(1+α)(1+2d)

)
if α > 1,

Op

(
n
− (1+d)

(2+4d) (log n)
d2

2(1+2d)

)
if α = 1.

In particular,

||F̂n − F || =





Op

(
n
− (1+α)(1+d)

2(1+α+d+3αd) (log n)
αd(β−1)

(1+α)(1+2d)

)
if α > 1,

Op

(
n
− (1+d)

(2+4d) (log n)
d2

2(1+2d)

)
if α = 1.

where
||F1 − F2||2 =

∫
{F1(c̃)− F2(c̃)}2dG(c)

It should be emphasized that the above results are derived under strong assump-
tions (S1) and (S2). However, in many situations, the joint densities of X and C do
not satisfy these assumptions. We are much more concerned about the convergence
rate of F̂n without (S1) and (S2). By examining the proof of Theorem 4.2 (see Ap-
pendix), we found that the key of evaluating the convergence rate for F̂n is to estimate
the values of the tail integrals

∫
φF >σn

1
φF

dµ and
∫
φF≤σn

φF dµ. However, it is difficult
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to assess these values if the joint density function of the multivariate lifetime X is not
bounded away from zero and infinity. Therefore, we are making an effort to derive the
convergence rate for specified distributions.

We now focus on a class of joint or “couple” multivariate distributions widely
used in the statistical inference for dependent multivariate models, which are so-
called copulas (see Nelsen (1998), Schwerzer and Sklar (1983)). In fact, a non-
normal distribution function F (x) of a multivariate variable X can be expressed in
terms of its marginals F1(x1), F2(x2), ..., Fd(xd), and its associated dependence func-
tion A, implicitly defined through the identity A{F1(x), F2(x2), ..., Fd(xd)} = F (x),
where the mapping A, which is uniquely determined on the unit hypercube when-
ever F1, F2, ..., F2 are continuous, captures the essential features of the dependence
among the random variables X1, X2, ..., Xd. In the bivariate case, one family of depen-
dence functions suitable for statistical analysis was proposed and further illustrated
by Plackett (1965), Clayton (1978), Cook and Johnson (1981, 1986) and others. In
their studies, analysis was restricted to situations where the dependence function was
known to belong to a specific class of bivariate distributions indexed by a one- or
two-dimensional parameter. This important class of copulas is Archimedean copulas,
which implies that on the unit square, the appropriate dependence function has the
form A(u1, u2) = ψ[−1]{ψ(u1) + ψ(u2)} for some convex decreasing function ψ defined
on (0,1]. As pointed out by Genest and MacKay (1986a, 1986b), this class of depen-
dence functions is wide and mathematically tractable, and its elements have stochastic
properties that make these functions attractive for the statistical treatment of data.
Naturally, Archimedean d-copulas can be easily generated in the same way as the bi-
variate Archimedean copula and be applied in the statistical inference of multivariate
dependent variables. Therefore we concentrate the derivation of convergence rate on
Archimedean d-copulas. In particular, the convergence rate of NPMLE is obtained for
specified Archimedean d-copulas, called the Gumbel-Hougaard family.

Note that Gumbel-Hougaard family of d-copulas has the following dependence
function Aθ(u) = exp{−[(− lnu1)θ +(− ln u2)θ + · · ·+(− ln ud)θ]1/θ} where 1 ≤ θ < ∞
(see Nelsen, 1998). Now, the following result can be derived provided that there is
only one common censoring time C for multivariate lifetime X = (X1, X2, ..., Xd). For
this purpose, we need the following assumption.

(A6′) The marginal densities of X are bounded away from zero and infinity on
[0,M ].

Theorem 4.4. Suppose that the conditions (A1)-(A5) and (A6’) hold. For the Gumbel-
Hougaard family of d-copulas, if α = d, the Hellinger distance h(φF̂n

, φF ) satisfies

h(φF̂n
, φF ) = Op(n

− (1+γ)(1+d)
2(1+γ+d+3dγ) )

where γ = d1/θ. Further, we have

||F̂n − F || = Op(n
− (1+γ)(1+d)

2(1+γ+d+3dγ) )
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where

||F̂n − F ||2 =
∫
{F̂n(c, ..., c︸ ︷︷ ︸

d

)− F (c, ..., c︸ ︷︷ ︸
d

)}2dG(c).

From Theorem 4.5, we see that for the Gumbel-Hougaard copulas, the convergence
rate for NPMLE F̂n depends on the dependence parameter θ. Further, if θ = 1 in the
Gumbel-Hougaard copulas, then X1, ..., Xd are independent of each other and γ = d.
Therefore from Theorem 4.5,

h(qF̂n
, qF ) = Op(n

− (1+d)2

2(1+2d+3d2) )

which coincides with that in Corollary 4.1 (see remark (ii) in Theorem 4.2). The con-
vergence rate of F̂n increases as θ increases and attains its maximum order for θ = ∞
because the parameter θ measures the association among the variables X1, X2, ..., Xd,
and the big value of θ shows the strong associations and accelerates the convergence
rate. Also note that for the situation where θ = ∞, γ = 1 and the convergence rate

is O(n−
(1+d)

2(1+2d) ), which is the same as that in the case where X1, X2, ..., Xd have their
own censoring times C1, C2, ..., Cd, respectively.

It is worth pointing out that the convergence rate of NPMLE in the dependent
case is derived only for Gumbel-Hougaard copulas. Of course, one can also derive the
convergence rate for other specific copulas such as Clayton family and Frank family
of d-copulas. But it is of much concern to know the convergence rates for the general
Archimedean copulas, even for the general copulas. It is not realistic to obtain the
convergence rate of the NPMLE for general multivariate distribution using the current
approaches.

5 Concluding Remarks

This paper studied the asymptotic properties of the nonparametric maximum likeli-
hood estimator of the distribution function F (x) when the multivariate lifetimes of
interest are type 1 interval-censored. Firstly, we described the general current status
data for the multivariate lifetimes, in which, the vector of multivariate variables of
interest is partitioned into several subvectors, each subvector has its own censoring
time. For the multivariate current status data, we introduced some notation, which
makes the derivation of asymptotic properties much more clear and concise. Secondly,
we established the self-consistency equation and strong consistency for the NPMLE.
Moreover, we derived the convergence rates of the NPMLE in two situations and drawn
the following conclusions: (i) the convergence rate decreases as the dimensional num-
ber of multivariate lifetimes increases or as the number of censoring times decreases
provided that X and C have the densities which are bounded away from zero and
infinity; (ii) the strong association of the random variables accelerates the convergence
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rate of NPMLE in the situation where the joint distribution of multivariate variables
follows a specified family of Archimedean d-copulas.

Many studies about the multivariate current status data remain to be done. For
example, the problems on assessing the association and testing independence among
lifetimes X1, ..., Xd based on the multivariate interval-censored data need to be studied.
Further, we are interested in whether the result in Ding and Wang (2004) can be
extended with the multivariate current status data. Moreover, it should be pointed
out that in one-parameter Archimedean copulas, the association among the random
variables can be assessed by estimating the dependent parameter. As we saw in Section
4, in the Gumbel-Hougaard family of copulas the independence is equivalent to the
property that the association parameter θ equals zero. We may test the independence
in this family of copulas by assessing the dependent parameter.

Another question related to the asymptotic properties of the NPMLE is the asymp-
totic distribution theory. For instance, does the asymptotic normality hold for the
NPMLE F̂n? More generally, we are interested in the asymptotic optimal estimation
of smooth functionals for multivariate current status lifetime data. That is, for the
functional K of F , does the following hold?

√
n(K(F̂n)−K(F )) → N(0, σ2

F ) in distribution

If so, what is the expression of asymptotic variance σ2
F ?

A Appendix

Now we are in the position to prove the theorems. For the convenience, we assume
that A0 is a positive constant that varies from line to line in the sequel.

The proof of Theorem 4.1

At first note that lC(F ) is maximized at F̂n. We have that

lim
ε↓0

ε−1{lC[(1− ε)F̂n + εF ]− lC(F̂n)} ≤ 0.

Thus it follows from the marginal log likelihood function
∫

IRp×{0,1}d

∑

D∈D

{
∏
r∈D

λr

∏

s∈D̄

(1− λs)} µF (AD(c))

µF̂n
(AD(c))

dIP n(c, λ) ≤ 1

Now using the strong law of large number one can show that IPn converges to IP
almost surely. For a fixed ω ∈ Ω, by the Helly Compactness Theorem, the sequence of
functions F̂n(·, ω) has a subsequence F̂nk

(·, ω) which converges vaguely to a distribution
function F ′. Then the proof is completed if F ′ = F .

In fact, similar to the proof of Lemma 4.3 in Groeneboom and Wellner (1992), it
can be shown that
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∫

IRp×{0,1}d

∑

D∈D

{
∏
r∈D

λr

∏

s∈D̄

(1− λs)} µF (AD(c))

µF ′(AD(c))
dIP (c, λ) =

∫

IRp

∑

D∈D

{µF (AD(c))}2
µF ′(AD(c))

dG(c) ≤ 1.

On the other hand, from the following facts that for real numbers 0 < ai < 1, 0 <
bi < 1; i = 1, 2, ..., k with conditions

∑k
i=1 ai = 1 and

∑k
i=1 bi = 1,

k∑

i=1

a2
i

bi

{
= 1 if ai = bi for all i

> 1 otherwise

and that
∑

D∈D µF (AD(c)) =
∑

D∈D µ′F (AD(c)) = 1 (see Section 2), the above expres-
sion is larger than one unless F ′ = F . Therefore we have that for all x, F ′(x) = F (x).
The proof is complete.

In order to prove Theorem 4.2, we need the following results. We first give the
definition of ε-covering number.

Definition A.1. (see Van de Geer, 1996) Let Q be a measure on (X ,A), and G ⊂
L2(Q). For each ε > 0, the ε-covering number N(ε,G, Q) is defined as the number of
balls with radius ε, necessary to cover G. Formally,

N(ε,G, Q) = min{J : there exist {gj}J
j=1 such that for all

g ∈ G, min
j∈{1,...,J}

∫
(g − gj)2dQ ≤ ε2}.

Consider a probability space (Ω, B, P ) and independent identically distributed
random variables Y1, Y2, ..., Yn, with distribution Φ. Suppose that

φ0 =
dΦ
dµ

∈ P

where µ is a σ-finite dominating measure, and P is a class of densities with respect to
µ. A maximum likelihood estimator φ̂n of φ0 satisfies

φ̂n ∈ arg max
φ∈P

n∑

i=1

log φ(Yi).

Let Pn be the measures induced by the empirical distribution of the sample {Yi, i =
1, ...n}. By using Theorem 1.1 and Theorem 2.2 in Van de Geer (1996), we have the
following proposition.

Proposition A.1. Suppose K = {k(·,x) : x ∈ IRd
+} and P = conv(K). Assume that

for some sequences 1 ≤ ρn ↑ ∞ and 0 ≤ σn ↓ 0,
∫

φ0>σn

K2

φ0
dµ ≤ ρ2

n, n = 1, 2, ...,
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where K = supk∈Kk and for K̃ =
{(

k(·,x)
φ0

)
I{φ0 > σn},x ∈ IRd

+

}
, we have that

lim
A→∞

lim sup
n→∞

P

(
sup
δ>0

(
δ

ρn

)w

N(δ, K̃, Pn) > A

)
= 0,

for some 0 < w < ∞. Then for τn ≥ 0 satisfying

τ2
n ≥

∫

φ0≤σn

φ0dµ, n = 1, 2, ...,

τn ≥ n−(2+w)/(4+4w)ρw/(2+2w)
n , n = 1, 2, ...,

we have that

lim
L→∞

lim sup
n→∞

P (h(φ̂n, φ0) ≥ Lτn) = 0.

Lemma A.1. Let f(x1, ..., xm) = xk
1 · · ·xk

m be the function defined in the unit hyper-
cube [0, 1]m of IRm

+ with integer k and 0 ≤ σn ↓ 0. Then we have

∫

f≥σn

f−1dx1 · · · dxm ≤




A0σ
−1+1/k
n

(
log 1

σn

)m−1
if k > 1

A0

(
log 1

σn

)m
if k = 1

and
∫

f≤σn

fdx1 · · · dxm ≤ A0σ
1+1/k
n

(
log

1
σn

)m−1

The proof of Theorem 4.2

Note that the density φF of (C,Λ), with respect to the dominating measure µ =
µ1 × µ0 is then in the class

P = {φν(c, λ) =
∑

D∈D


∏

r∈D

λr

∏

s∈D̄

(1− λs)


µν(AD(c)) : ν ∈ F̄M}

where µν is the measure induced by the distribution function ν in F̄M . Clearly,
P = conv(K), with

K = {kx(c, λ) =
∑

D∈D


∏

r∈D

λr

∏

s∈D̄

(1− λs)


 ICD(x)(c) : x ∈ [0, M ]d}.
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Under the condition (S1), one can verify that for any x and y in [0,M ]d,

∫
(kx(c, λ)− ky(c, λ))2dµ ≤ A0(

d∑

i=1

|xi − yi|).

Therefore there exists a constant C0 such that for any probability measure Q on
IRp

+ × {0, 1}d,

N(ε,K, Q) ≤ C0ε
−2d, for all ε > 0 (A.1)

where N(ε,K, Q) is the ε-covering number of (K, Q). For some sequences 1 ≤ ρn ↑ ∞
and 0 ≤ σn ↓ 0, and for K̃ =

{(
kx
φF

)
I{φF > σn},x ∈ IRd

+

}
, application of (A.1), with

dQ = ((1/φ2
F )I{φF > σn}dIPn/(A2ρ2

n), give

N(ε, K̃, IPn) ≤ A2dC0

(ρn

ε

)2d
, for all ε > 0,

on the set
{∫

φF >σn

1
φ2

F
dIPn ≤ A2ρ2

n

}
. So, for

∫
φF >σn

1/φF dµ ≤ ρ2
n, we have that

lim sup
n→∞

P

((
ε

ρn

)2d

N(ε, K̃, IPn) > A2dC0

)

≤ lim sup
n→∞

P

(∫

φF >σn

1
φ2

F

dIPn > A2ρ2
n

)

≤ lim sup
n→∞

P

(∫

φF >σn

1
φF

dµn > A2ρ2
n

)
→ 0, as A →∞,

where dµn = dIPn/φF → dµ as n →∞.
Next we derive the expressions for {ρn} and {τn}. Note that under the condition

(S2), we have that

µF [AD(c)] =
∫

AD(c)
dµF (x) ≤ A0

∫

AD(c)
⋂

[0,M ]d
dλd(x) ≤ A0

p∏

r=1

cαr
r (M − cr)βr .

Therefore,

φF (c, λ) =
∑

D∈D


∏

r∈D

λr

∏

s∈D̄

(1− λs)


µF [AD(c)]

≤ A0

∑

D∈D

IΩ(D)(λ)


∏

r∈D

cαr
kr

∏

s∈D̄

(M − cks)
βs



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where Ω(D) = {λ : λr = 1 for r ∈ D;λs = 0 for s ∈ D̄}. Similarly, we have

φF (c, λ) ≥ A0

∑

D∈D

IΩ(D)(λ)


∏

r∈D

cαr
kr

∏

s∈D̄

(M − cks)
βs




Note that for α = max{di : i = 1, ..., p}, β = card{di : di = α} and for 0 ≤ σn ↓ 0, re-
gardless of the order of variables c1, c2, ..., cp, φ−1

F (c, λ) is dominated by (cα
1 cα

2 · · · cα
β)−1

on the set {φF > σn} and φF (c, λ) is dominated by cα
1 cα

2 · · · cα
β on the set {φF ≤ σn},

respectively. Therefore from Lemma A.1 and (S1), we have that for 0 ≤ σn ↓ 0,

∫

φF >σn

1
φF

dµ ≤ A0

∫

(cα
1 cα

2 ···cα
β )−1>C0σn

(cα
1 cα

2 · · · cα
β)−1g(c)dc

≤ A0

∫

(cα
1 cα

2 ···cα
β )−1>C0σn

(cα
1 cα

2 · · · cα
β)−1dc1dc2 · · · dcbeta

≤





A0σ
−1+1/α
n

(
log 1

σn

)β−1
if α > 1

A0

(
log 1

σn

)d
if α = 1

and similarly,

∫

φF≤σn

φF dµ ≤ A0σ
1+1/α
n

(
log

1
σn

)β−1

.

Now based on Proposition A.1, we estimate the order of τn. Note that for α = 1
and w = 2d, we have that ρn = (log 1

σn
)d/2 and thus

τn = σ1+1/α
n (log

1
σn

)d−1 ≥ n−
2+2d
4+8d ρ

2d
2+4d
n ≥ n−

2+2d
4+8d (log

1
σn

)
d
2

2d
2+4d ≈ n

− 1+d
2(1+2d) (log

1
σn

)
d2

2(1+2d) .

Further from the above expression, we have log( 1
σn

) ≈ log n. Hence,

τn ≈ n
− 1+d

2(1+2d) (log n)
d2

2(1+2d) .

Next for α > 1 and w = 2d we have

τn = σ1+1/α
n (log

1
σn

)β−1 ≥ n−
2+2d
4+8d ρ

2d
2+4d
n = n

− 1+d
2(1+2d) [σ−1+1/α

n (log
1
σn

)β−1]
1
2

d
1+2d .

Also it can be derived from the above expression that σn ≈ n
− α(1+d)

(1+α+d+3αd) , log 1
σn
≈

log n and thus

τn ≈ n
− (1+α)(1+d)

2(1+α+d+3αd) (log n)−
d(β−1)
2(1+2d) .
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Therefore we have

h(φn, φF ) =





Op(n
− (1+α)(1+d)

2(1+α+d+3αd) (log n)
αd(β−1)

(1+α)(1+2d) ) if α > 1

Op(n
− (1+d)

(2+4d) (log n)
d2

2(1+2d) ) if α = 1,

where φn = arg maxφ∈P
∑n

i=1 log{φ(ci, λi)}. Since

max
φ∈P

n∑

i=1

log{φ(ci, λi)} = max
ν∈F̄M

n∑

i=1

log{φν(ci, λi)}

= max
ν∈F̄M

n∑

i=1

∑

D∈D


∏

r∈D

λir

∏

s∈D̄

(1− λis)


 log{µν(AD(ci))},

we have φn = φF̂n
. The proof is complete.

The proof of Theorem 4.4

From the definition of φF , for any subset D of D, we have that

∫

IR
p
+

(
µF̂n

[AD(c)]− µF [AD(c)]
)2

dG(c) ≤ 4

∫

IR
p
+

(√
µF̂n

[AD(c)]−
√

µF [AD(c)]
)2

dG(c)

= 4

∫

IR
p
+×{0,1}d




√ ∏
r∈D

λr

∏

s∈D̄

(1− λs)µF̂n
[AD(c)] −

√ ∏
r∈D

λr

∏

s∈D̄

(1− λs)µF [AD(c)]




2

dµ

≤ 4h2(φF̂n
, φF ) (A.2)

For any subvector CD = (Ci1 , ..., Cia) of C̃ with D = {i1, ..., ia}, we have the
marginal distribution FXD

(cD) of XD=(Xi1 , ..., Xia) as

FXD (cD)=FXD (ci1 , ..., cia)=µF

[
a⊗

r=1

[0, cir )× [0, M ]d−a

]
. (A.3)

According to the definition of AD(c), there exists a subset D′ of D such that
a⊗

r=1

[0, cir )× [0, M ]d−a =
⋃

D′∈D′

⊗

r∈D′
[0, cr)

⊗

s∈D̄′
[cs, M ]

=
⋃

D′∈D′

p⊗
r=1

{[0, cr)
α′r × [cr, M ]β

′
r} =

⋃

D′∈D′
AD′(c) (A.4)

here α′r = card{D′ ∩Dr} and β′r = card{D̄′ ∩Dr}. Therefore (A.2), (A.3), (A.4) and
triangle inequality imply that
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||F̂n − F ||CD =

{∫

IRa′
+

[
F̂nXD (cD)− FXD (cD)

]2

dGC̃D
(c̃D)

}1/2

=

{∫

IRa′
+

[
µF̂n

(
a⊗

r=1

[0, cir )× [0, M ]d−a

)
− µF

(
a⊗

r=1

[0, cir )× [0, M ]d−a

)]2

dGC̃D
(c̃D)

}1/2

=

{∫

IR
p
+

[
µF̂n

( ⋃

D′∈D′
AD′(c)

)
− µF

( ⋃

D′∈D′
AD′(c)

)]2

dG(c)

}1/2

=

{∫

IR
p
+

[ ∑

D′∈D′
µF̂n

[AD′(c)]−
∑

D′∈D′
µF [AD′(c)]

]2

dG(c)

}1/2

≤
∑

D′∈D′

{∫

IR
p
+

(
µF̂n

[AD′(c)]− µF [AD′(c)]
)2

dG(c)

}1/2

≤ 4× 3dh(φF̂n
, φF ), (A.5)

where a′ is the number of distinct variables in the subvector CD = (Ci1 , ..., Cia).
Now, Theorem 4.4 follows from (A.5) and Theorem 4.2.

The proof of Theorem 4.5

In the light of proof of Theorem 4.2, it suffices to evaluate the tail integrals∫
φF >σn

φ−1
F dµ and

∫
φF≤σn

φF dµ for the family of the Gumbel-Hougaard copulas. Since
α = d, X has a common censoring time C. Now define

Ĉ = (C, C, ..., C︸ ︷︷ ︸
d

).

Then for any D = {i1, i2, ..., ia}, define the subvectors CD and XD of Ĉ and X,
respectively, as follows:

CD = (Ci1 , Ci2 , ..., Cia)

XD = (Xi1 , Xi2 , ..., Xia)

where all Cik ’s are equal (= C)(k = 1, 2, ..., a). According to the proof of Theorem
4.2, the density φF has the following form

φF (c, λ) =
∑

D∈D


∏

r∈D

λr

∏

s∈D̄

(1− λs)


µF (AD(c)).

Since all Xr’s share a common censoring time C, for D = {i1, ..., ia}
AD(c) = [0, c)a × [c,M ]d−a

= [0, c]a ×
d−a∑

i=0

(−1)i

(
d−a

i

)
[0, c)i × [0,M ]d−a−i =

d−a∑

i=0

(−1)i

(
d−a

i

)
[0, c)a+i × [0,M ]d−a−i.
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For the the Gumbel-Hougaard copula model, the distribution function F of X has the
form

F (x1, x2, ..., xd) = exp{−[(− lnF1(x1))θ + (− ln F2(x2))θ + · · ·+ (− lnFd(xd))θ]1/θ}

and thus under (A6’),

µF (AD(c)) = µF ([0, c)a × [c,M ]d−a) =
d−a∑

i=0

(−1)i

(
d−a

i

)
µF ([0, c)a+i × [0,M ]d−a−i)

=
d−a∑

i=0

(−1)i

(
d−a

i

)
exp



−

[
a+i∑

k=1

(− log Fk(c))θ +
d∑

k=a+i+1

(− log Fk(M))θ

]1/θ




≤
d−a∑

i=0

(−1)i

(
d−a

i

)
exp



−

[
a+i∑

k=1

(− log(A0c))θ

]1/θ


 ≤ A0

d−a∑

i=0

(−1)i

(
d−a

i

)
c(a+i)1/θ

.

Hence,

φF (c, λ) ≤ A0

∑

D∈D


∏

r∈D

λr

∏

s∈D̄

(1− λs)




(
d−aD∑

i=0

(−1)i

(
d−aD

i

)
c(aD+i)1/θ

)

where aD = card{D}. Similarly, we have that

φF (c, λ) ≥ A0

∑

D∈D


∏

r∈D

λr

∏

s∈D̄

(1− λs)




(
d−aD∑

i=0

(−1)i

(
d−aD

i

)
c(aD+i)1/θ

)
.

Now for 0 ≤ σn ↓ 0, φ−1
F is dominated by c−γ on the set {φF > σn} and φF is

dominated by cγ on the set {φF ≤ σn}, respectively and thus
∫

φF >σn

φ−1
F dµ ≤ A0

∫

cγ>σn

c−γdc ≤ A0σ
−1+1/γ
n (A.6)

and
∫

φF≤σn

φF dµ ≤ A0

∫

cγ≤σn

cγdc ≤ A0σ
1+1/γ
n (A.7)

where γ = d1/θ. Therefore by using Proposition A.1, Theorem 4.5 follows from (A.6)
and (A.7).
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