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Abstract

In this paper we develop tests when the available data are sampled under censor-

ship and sacrificing. For the underlying test process we derive an i.i.d. repre-

sentation which is useful to justify a distributional approximation through a wild

bootstrap.
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1 Introduction

When analyzing lifetime data a major difficulty is caused by the fact that due to time limita-
tions placed on a study or follow-up losses, information may only be available in incomplete
form. Undoubtedly, the best-studied example is the right-censorship case handled in the land-
mark paper from Kaplan and Meier (1958).

Here, one is interested in the distribution of a random variableX denoting the “lifetime”
of the study subjects. Due to the reasons mentioned above, it can occur that instead ofX,
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one observes a “censored” quantityZ = min(X, C) together with an indicatorδ = 1{X≤C}
of “failure”. Here C is a censoring variable, the length of time the subject takes part in
the study, which, in the caseδ = 0, is observed instead of the targetX. Given a sample
(Zi, δi) , 1 ≤ i ≤ n, of such data, a portion is reported asXi, while the rest equalCi.

A similar but more complicated situation arises when, for example in an animal experi-
ment, the goal is not to analyze the lifetimeX, but the timeD elapsed from the exposition to
some risk (e.g., exposure to a carcinogenic substance) until the onset of disease (start of tumor
development). However, the onset of the disease remains unobservable unless the animal is
sacrificed, so that one faces the following situation:

Letting Y denote the time of sacrifice, we may expect three different cases as
indicated in the illustration below.

Exposition Disease Onset Death

0 D X
? ? ?

Y

Y < D The sacrificed subject is examined, but no evi-

dence of the disease is detectable.

Y ≥ D The sacrificed subject is examined, and the dis-

ease is found to be present.

Y ≥ X ( ≥ D ) The subject dies of the diseasebefore the pre-

determined time of sacrifice.

From this we see thatD is never actually observable. Instead we observe the variables:

Z = min(X, Y ) The subject’s lifespan – ended by disease or sacrifice.

δ = 1{X≤Y } An indicator of whether the subject died of the disease or

was sacrificed.

µ = 1{D≤Y } An indicator of whether the disease was present at the time

of sacrifice.

One possible goal is to estimate the distribution functionA(x) = P(D ≤ x) of D. How-
ever, here we will be concerned with testing possible specifications ofA, i.e., given a simple
or composite modelM of distribution functions, to test for

H0 : A ∈M .
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Before beginning, we introduce some notation for several distribution functions (d.f.) and
sub-d.f. Define

H(t) = P(Z ≤ t)

H0(t) = P(Z ≤ t, δ = 0) H1(t) = P(Z ≤ t, δ = 1)

H01(t) = P(Z ≤ t, δ = 0, µ = 1) ,

all unknown, and for the d.f. ofY andX, let

G(t) = P(Y ≤ t) and F (t) = P(X ≤ t) .

We will also work under the assumption that(D, X) andY are independent. This inde-
pendence yields a first very important equation, namely

1−H = (1− F )(1−G) . (1.1)

Furthermore,

H0(t) =
∫ t

0
(1− F (y)) G(dy) , (1.2)

and similarly forH1. Finally,

H01(t) =
∫
P(Z ≤ t, X > y, D ≤ y | Y = y) G(dy)

=
∫ t

0
P(X > y, D ≤ y) G(dy)

=
∫ t

0
[P(D ≤ y)− P(D ≤ y, X ≤ y)] G(dy)

=
∫ t

0
A(y) G(dy)−

∫ t

0
F (y) G(dy), (1.3)

where the final equality follows fromD ≤ X.
Since we are concerned with testing, we need to introduce estimators for some of the

above quantities. Given a sample(Zi, δi, µi), 1 ≤ i ≤ n, of independent replicates of
(Z, δ, µ), we can use the classic non-parametric estimator ofH01(t)

H01
n (t) =

1
n

n∑

i=1

1{Zi≤t, δi=0, µi=1}

for H01. Furthermore, recallingY ∼ G andX ∼ F , we can consistently estimateF andG
with their Kaplan-Meier estimators

F̂n =
n∑

i=1

WF
ni · δZi:n and Ĝn =

n∑

i=1

WG
ni · δZi:n .
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HereδZi:n is the Dirac measure concentrated at thei-th order statisticZi:n, while

WF
ni =

δ[i:n]

n− i + 1

i−1∏

j=1

(
n− j

n− j + 1

)δ[j:n]

and

WG
ni =

1− δ[i:n]

n− i + 1

i−1∏

j=1

(
n− j

n− j + 1

)1−δ[j:n]

are the Kaplan-Meier weights attached to theith order statisticZi:n underF̂n andĜn, respec-
tively. δ[i:n] is taken to mean theδ-concomitant ofZi:n. If we plug this into (1.3), we obtain
the empirical analogue

∫ t

0
A(y) Ĝn(dy) ∼ H01

n (t) +
∫ t

0
F̂n(y) Ĝn(dy) . (1.4)

The right hand side is completely known (i.e., computable from the sample data), but the
left hand side contains the unknown d.f.A. We can, however, use the relationship in (1.4)
to construct tests for various hypotheses aboutA. In this work we will consider the simple
hypothesis

H0 : A = A0 ,

whereA0 is completely specified.

2 Testing The Simple HypothesisH0 : A = A0

Recalling (1.4) ∫ t

0
A dĜn ∼ H01

n (t) +
∫ t

0
F̂n dĜn ,

we see that underH0 the left hand side becomes computable as well.
Now,

∫ t
0 A0(y) Ĝn(dy) constitutes a Kaplan-Meier integral (process) for which a linear ex-

pansion (uniformly int) has already been obtained in Stute (1995).
H01

n is a simple empirical sub-d.f., but the integral
∫ t
0 F̂n(y) Ĝn(dy) will require quite a

bit more work to handle. Motivated by (1.4) we are led then to consider the process

Cn(t) =
√

n

(∫ t

0
A0 dĜn −H01

n (t)−
∫ t

0
F̂n dĜn

)
. (2.1)

Tests ofH0 will then be based onCn, with H0 being rejected whenCn(t) at a given point
t or an appropriate discrepancy of the functionCn exceeds a critical value. To obtain such
values we need the limit distribution ofCn. For this, in the following, we will concentrate on
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expandingCn uniformly in t into a sum of centered, independent processes plus remainder
underH0. That is

Cn(t) =
1√
n

n∑

i=1

ζ(t, Zi, δi, µi) + oP

(
1√
n

)
, (2.2)

where

ξ(t, Zi, δi, µi) = −Ki(t) + Li(t)−Mi(t)−Ni(t)

are centered i.i.d. processes to be specified later. This will give us

Theorem 2.1. UnderH0,

Cn −→ C in distribution,

whereC is a centered Gaussian process (with complicated covariance).

Though the limit process is complicated, the linear expansion (2.2) is useful because it al-
lows us to approximate relevant distributions through a wild bootstrap. This will be illustrated
in Section 3.

In order to show (2.2) and specifyKi, Li,Mi andNi, we first note that by (1.3)

Cn(t) =
√

n

(∫ t

0
A0 dĜn −

∫ t

0
A0 dG− (

H01
n (t)−H01(t)

)

−
(∫ t

0
F̂n dĜn −

∫ t

0
F dG

))
. (2.3)

Obviously,

H01
n (t)−H01(t) =

1
n

n∑

i=1

(
1{Zi≤t, δi=0, µi=1} −H01(t)

)

≡ 1
n

n∑

i=1

Ki(t) (2.4)

is already a sum of centered independent processes.
As mentioned before, a representation of the Kaplan-Meier integral

∫ t
0 A0 dĜn as a linear

expansion (uniformly int) plus remainder is found in Stute (1995). We will rely heavily on
this representation in the following.

Let τH = inf {x : H(x) = 1} ≤ ∞. In the following we will consider the processCn(t)
only for t ≤ T for someT < τH . We will also work under the assumption thatF andG (and
thusH) are all continuous. In this case, Stute (1995), Theorem 1.1 and the remark on p. 438



90 International Journal of Statistical Sciences, Vol. 9s, 2009

therein give us

∫ t

0
A0 dĜn −

∫ t

0
A0 dG =

1
n

n∑

i=1

1[0,t](Zi)A0(Zi)γ0(Zi)(1− δi)−
t∫

0

A0dG

+
1
n

n∑

i=1

γ1(Zi, t)δi − 1
n

n∑

i=1

γ2(Zi, t) + Rn(t)

≡ 1
n

n∑

i=1

Li(t) + Rn(t), (2.5)

where sup
0≤t≤T

|Rn(t)| = oP( 1√
n
) and

γ0(x) = exp
{∫ x

0

H1(dz)
1−H(z)

}
=

1
1− F (x)

for x < τH , (2.6)

γ1(x, t) =
1

1−H(x)

∫
1{x<w}1[0,t](w)A0(w)γ0(w) H0(dw) , (2.7)

and

γ2(x, t) =
∫∫ 1{v<x, v<w}1[0,t](w)A0(w)γ0(w)

(1−H(v))2
H1(dv)H0(dw) . (2.8)

It remains then to find a representation of
∫ t
0 F̂n dĜn −

∫ t
0 F dG as a sum of independent

processes plus remainder. Firstly,

∫ t

0
F̂n dĜn −

∫ t

0
F dG =

∫ t

0

(
F̂n − F

)
dĜn +

∫ t

0
F dĜn −

∫ t

0
F dG . (2.9)

Since1[0,t] · F is deterministic,
∫ t
0 F dĜn can be handled exactly as

∫ t
0 A0 dĜn in (2.5),

yielding

t∫

0

FdĜn −
t∫

0

FdG =
1
n

n∑

i=1

1[0,t](Zi)F (Zi)γ0(Zi)(1− δi)−
t∫

0

FdG

+
1
n

n∑

i=1

γ̃1(Zi, t)δi − 1
n

n∑

i=1

γ̃2(Zi, t) + R̃n(t)

≡ 1
n

n∑

i=1

Mi(t) + R̃n(t), (2.10)
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wheresup0≤t≤T |R̃n(t)| = oP( 1√
n
) and

γ̃1(x, t) =
1

1−H(x)

∫
1{x<w}1[0,t](w)F (w)γ0(w)H0(dw)

γ̃2(x, t) =
∫∫ 1{v<x,v<w}1[0,t](w)F (w)γ0(w)

(1−H(v))2
H1(dv)H0(dw).

Thus, we need to focus on finding a linearization with remainder of the first term
∫ t
0

(
F̂n − F

)
dĜn.

Lemma 2.1. We have, uniformly in0 ≤ t ≤ T ,

n1/2

t∫

0

(F̂n − F )dĜn =
1√
n

n∑

i=1

Ni(t) + oP(n−1/2), (2.11)

where

Ni(t) =
δi

1−G(Zi)
[G(t)−G(Zi)]1{Zi≤t} −

t∫

0

FdG

+ (1− δi)

t∫

0

[F (x)− F (Zi)]1{Zi≤x}G(dx)

−
t∫

0

∫
1− F (v)

[1−H(v)]2
1{v<Zi}[F (x)− F (v)]1{v≤x}G(dv)G(dx).

It is indeed easy to check thatNi(t) has expectation zero.

PROOF. Write

n1/2

t∫

0

(F̂n − F )dĜn = n1/2

t∫

0

(F̂n(x)− F (x))G(dx) + n1/2

t∫

0

(F̂n − F )(dĜn − dG).

If we apply Theorem 1.1. in Stute (1995) for indicators, i.e., forF̂n(x), and integrate out, we
obtain the right-hand side of (2.11). It thus suffices to show that

n1/2

t∫

0

(F̂n − F )(dĜn − dG) = oP(1). (2.12)

For this, introduce the Kaplan-Meier process

α̂n(x) = n1/2[F̂n(x)− F (x)], 0 ≤ x ≤ T.
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It follows from Breslow and Crowley (1974) or Stute (1995), Theorem 1.1., thatα̂n is asymp-
totically C-tight, i.e., for given positiveε andρ there existsδ > 0 such that for all large
n

P

(
sup

|x−x̃|≤δ
|α̂n(x)− α̂n(x̃)| ≥ ε

)
≤ ρ.

Moreover, the sample paths ofα̂n are uniformly bounded with large probability. For functions
satisfying such oscillation bounds Rao (1962) has shown that a uniform Glivenko-Cantelli re-
sult holds. Since in our case, we have these bounds only with large probability, a modification
of Rao’s (1962) arguments together with the SLLN for Kaplan-Meier due to Stute and Wang
(1993) yields

t∫

0

α̂n(dĜn − dG) = oP(1).

This completes the proof of Lemma 2.1. ¤

3 A Simulation

In order to finish constructing an asymptotic levelα test forH0, it still remains to determine
critical values for a test statisticΦ(Cn), whereΦ is a functional operating in the Skorokhod
spaceD ([0, T ]) such that larger values ofΦ(Cn) support a rejection ofH0, for example

Φ(Cn) = sup {|Cn(t)| : 0 ≤ t ≤ T} .

As mentioned before, however, due to the complexity of the covariance structure of the
limit processC of Cn, it is not feasible to use the covariance function ofC – which isnot
distribution-free – to study its distribution in order to determine critical values. Neither is it
feasible to collect further statisticsΦ(Cn, j) , 1 ≤ j ≤ m, since we only have one sample
(Zi, δi, µi), 1 ≤ i ≤ n, all elements of which are needed in the calculation ofCn. Thus,
one approach is to use a wild bootstrap procedure to approximate critical values of the limit
distribution.

3.1 The Simulation Procedure

After a sample(Zi, δi, µi), 1 ≤ i ≤ n, has been collected (or in the case of a simulation,
computer generated) we are in a position to calculate the processCn at any pointt ∈ [0, T ]
and we can write

Cn(t) =
1√
n

n∑

i=1

ζ (t, Zi, δi, µi) + oP

(
1√
n

)

with
ζ (t, Zi, δi, µi) ≡ −Ki(t) + Li(t)−Mi(t)−Ni(t), for 1 ≤ i ≤ n .
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At this point, we generatem sets ofn i.i.d. normally distributed random variablesξ
(j)
1 , · · · ,

ξ
(j)
n , 1 ≤ j ≤ m, with mean 0 and variance 1, independent ofZ, δ, andµ as well, and use

them to weight the leading part of theCn sum, which gives usm new processes

C(j)
n (t) ≡ 1√

n

n∑

i=1

ξ
(j)
i · ζ (t, Zi, δi, µi) , 1 ≤ j ≤ m ,

and thusm new statistics
Φ

(
C(j)

n

)
, 1 ≤ j ≤ m .

Conditioned on the sample(Zi, δi, µi), 1 ≤ i ≤ n, thesem processes are each centered
Gauss processes with covariance asymptotically identical toC.

Therefore, rejectingH0 when

Φ(Cn) > Φ
(
C(j)

n

)

for b(1− α) ·mc of thej ∈ {1, . . . ,m} can be used as an asymptotic levelα test forH0. We
will simulate then observations(Z1, δ1, µ1) , . . . , (Zn, δn, µn) with the following model:

Let G andA0 be exponential distributions with parametersλ1 andλ2 > 0 respectively.
Since it is important for our model as described in Section 1 thatX ≥ D wp1, we setX =
D + X0, with X0 ∼ Exp(λ3), independent ofD, being the subject’s lifetimeafter disease
onset. We need only generaten realizations ofY ∼ G, D ∼ A0, andX0 ∼ Exp(λ3)
respectively to obtain our sample(Zi, δi, µi) , 1 ≤ i ≤ n.

Based on this sample and the known distributionsG = Exp(λ1), A0 = Exp(λ2), and
F = Exp(λ2) ∗ Exp(λ3), we are in a position to calculateΦ(Cn) as well as the bootstrap
values and to make a decision for or against rejection ofH0 based on the criteria above.

3.2 Results

The approach outlined above was implemented with the programR 2.5.1. After settingλ1 =
1
30 , λ2 = 1

5 , andλ3 = 1
15 , the following sample of sizen = 35 was generated and shown in

Table 1.
First, this sample was used to generate bootstrap values together with the “true” distri-

butionsF , G, H, andH01, as they appear in theKi, Li,Mi andNi. For our purposes, we
choose the test statistic

Φ(Cn) = |Cn(t1)|
for a fixedt1 ∈ [0, T ]. Since the processCn is (neglecting remainder terms) centered under
H0, we haveE [Cn(t1)] = 0, meaning that larger values of|Φ (Cn) | support rejection ofH0.
As an example, Figure 1 shows an empirical d.f. of the first set ofm = 50 bootstrap values
generated with the sample above and the original statisticCn(t1) for t1 = 10.
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Table 1: A sample of sizen = 35 drawn under censorship and sacrificing
i Zi δi µi i Zi δi µi

1 45.6309040 1 1 19 14.7202004 1 1

2 12.1424422 0 1 20 18.6115287 0 1

3 4.3995801 0 1 21 10.6941886 0 0

4 6.5584534 1 1 22 20.6657402 0 1

5 2.6857854 0 0 23 23.3815238 1 1

6 15.1280329 1 1 24 8.3022079 1 1

7 24.8203449 1 1 25 13.4059135 1 1

8 33.0821729 1 1 26 1.3350373 1 1

9 4.4641163 1 1 27 16.5287285 0 1

10 4.6959084 0 1 28 30.4298429 1 1

11 10.4468399 1 1 29 0.1181929 0 0

12 2.7262884 1 1 30 18.6238358 0 1

13 20.2133506 0 0 31 5.2754026 1 1

14 34.5137933 1 1 32 5.7268069 0 1

15 29.2987938 1 1 33 3.2786180 1 1

16 23.8979167 0 1 34 12.7667918 0 1

17 14.8551747 1 1 35 5.4127871 0 1

18 9.1511955 1 1

 

 

Figure 1: Empirical distribution of 50 bootstrap values witht1 = 10
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With m = 50, we can test, as described in the previous section, forH0 : A = A0 at an
α-level of 0.1 by rejectingH0 when our sample statistic is larger thanb(1− α) ·mc = 45 or
more of the bootstrap values. Obviously, this first sample did not lead to a rejection ofH0 atα
= 0.1, since the statistic for this sample 0.1214 is situated close to the median of the bootstrap
values. While operating under the null hypothesis withA = A0, we expect rejection ofH0

to occur in about100× α− percent of cases when the test functions correctly. Generating 49
further samples like the one above, then calculating the statistic|Cn(t1)| for each sample along
with m = 50 new bootstrap statistics as above yielded 50 repetitions of the test procedure as
outlined in the previous section. Of these 50 repetitions, 3 led to rejections ofH0 atα = 0.1.
Table 2 shows some selectedα and corresponding rejection rates.

Table 2: Nominalα levels and actual rejection rates fort1 = 10
α Rejection Rate

0.05 0.02

0.1 0.06

0.2 0.12

0.25 0.16

0.3 0.26

0.4 0.36

0.5 0.52

Repeating the entire procedure witht2 = 25 yielded similar rates shown in Table 3.
The values above indicate that the asymptotic test functioned correctly underH0 : A = A0

with arbitrarily chosenα. Presumably, the nominal and actual rejection rates would match
more closely, were a larger sample size numerically feasible.

Clearly it is not possible to implement the test in this fashion in practice, since the true
F , G, H, andH01 are unknown. For this reason, in a second simulation we switch to the
use of the estimatorŝFn for F , Ĝn for G, Hn for H, andH01

n for H01, which due to their
adequate rates of convergence, do not affect the convergence of the leading terms ofCn to C
when substituted for the true distributions.

Table 3: Nominalα levels and actual rejection rates fort2 = 25
α Rejection Rate

0.05 0.08

0.1 0.08

0.2 0.14

0.25 0.2

0.3 0.24

0.4 0.3

0.5 0.32
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This substitution gives us a viable way to implement the test in practice since the leading
terms ofCn are then able to be calculated based solely on the sample together withA0. Using
the same procedure as above withn = 40, m = 50, andt1 = 10 led to the rejection rates
shown in Table 4, indicating that the test functioned properly.

Table 4: Nominalα levels and actual rejection rates fort1 = 10 using empirical distributions

F̂n, Ĝn, Hn, andH01
n in place ofF , G, H, andH01

α Rejection Rate

0.05 0.02

0.1 0.08

0.2 0.16

0.25 0.2

0.3 0.26

0.4 0.32

0.5 0.38

References

[1] Breslow, N. and Crowley, J. (1974).A large sample study of the life table and product-
limit estimates under random censorship. Ann. Statist.2, 437-453.

[2] Kaplan, E. L. and Meier, P. (1958).Nonparametric estimation from incomplete observa-
tions. J. Amer. Statist. Assoc.53, 457-481.

[3] Rao, R. R. (1962).Relations between weak and uniform convergence of measures with
applications. Ann. Math. Statist.33, 659-680.

[4] Stute, W. (1995).The central limit theorem under random censorship. Ann. Statist.23,
422-439.

[5] Stute, W. and Wang, J.-L. (1993).The strong law under random censorship. Ann. Statist.
21, 1591-1607.


