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Abstract

We explore relationships between the finite-sample addition breakdown point (ABP) and replace-

ment breakdown point (RBP)of a statistic. Each concerns the minimum fraction of contaminants

present in a sample, due to either addition or replacement, that can cause breakdown. Some authors

prefer the ABP, which avoids the need to specify points to replace. Others argue the merits of the

RBP, which avoids the conceptual issue of adding further points to the actual data. Zuo (2001) pro-

vides quantitative correspondences between the ABP and RBP when they depend only on the sample

size and assume a particular form. In the present note we pursue their relationship in full general-

ity, allowing dependence on data values and not restricting to any special form, thus including for

example the Hodges-Lehmann location estimator and the sample halfspace median. We develop

inequalities showing that the ABP and RBP are equivalent in the senses that (i) each corresponds to

the other, through explicit expressions or by inequalites, although their values can slightly differ, and

(ii) asymptotic limits, whether deterministic or almost sure, agree exactly. Therefore, as measures

of robustness the ABP and RBP perform equivalently for practical purposes. This grants a pardon to

authors who inadvertently commit the crime of comparing one estimator’s ABP with another’s RBP.
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1 Introduction and a Basic Relation

We explore relationships between the finite-sample addition breakdown point (ABP) and re-
placement breakdown point (RBP) of a statisticT (XN ), for XN a data set of sizeN in Rd

andT (XN ) some nonnegative real-valued measure of the robustness of some estimator of in-
terest based onXN . For example, relative to a vector-valued location estimatorm(XN ), we
might chooseT0(XN ) = ‖m(XN )‖, where‖ · ‖ denotes the usual Euclidean norm. For a posi-
tive definite matrix-valued scatter estimatorS(XN ), we might take an appropriate function of
the eigenvaluesλj(S(XN )), j = 1, . . . , d (which are nonnegative in this case), for example,
T1(XN ) =

∑d
j=1(λj(S(XN )) + λj(S(XN ))−1). For simultaneous location and scatter esti-

mation,T (XN ) may be the sum ofT0(XN ) andT1(XN ). For dataXN relative to the linear
regression modelY =

∑d
i=1 θiZi and θ̂(XN ) some estimator ofθ = (θ1, . . . , θd), we take

T (XN ) = ‖θ̂‖. In such contexts, the stability ofT (XN ) under corruption of sample values
measures the robustness of the relevant estimator.

If for N held fixedT (XN ) can be taken to∞ by introducing “contaminants” into the sample,
then the relevant estimator is said to “break down”, and a corresponding “breakdown point”
is based on the minimal number of contaminants needed to produce this result. The notion
of such a “finite sample” version of the asymptotic type breakdown point of Hampel (1968,
1971) was introduced by Donoho and Huber (1983). In the sequel we refer interchangeably
to breakdown ofT (XN ) and of the relevant estimator.

Two types of finite sample breakdown point have become popular, based on whether the con-
taminants are additions or replacements.Addition breakdownof T (XN ) occurs withk points

Y(a)
k added to the sampleXN if

sup
Y(a)

k

|T (XN )− T (XN ,Yk)| = ∞, (1.1)

whereT (XN ,Yk) denotes the evaluation ofT (·) over the combined sample{XN ,Y(a)
k } and

the supremum is over all possible setsY(a)
k of k added points. Defining

kA(T, N,XN ) = min{k : T (XN ) breaks down due tok points added toXN},
theaddition breakdown pointof T (XN ) is then

ABP(T, N,XN ) =
kA(T, N,XN )

N + kA(T, N,XN )
.
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On the other hand,replacement breakdownof T (XN ) occurs withk points ofXN replaced by

Y(r)
k if

max
α

sup
Y(r)

k

|T (XN )− T (X(α)
N−k,Y

(r)
k )| = ∞, (1.2)

whereα indexes the
(
N
k

)
subsetsX(α)

N−k of sizeN − k representing the possible sets of points
in XN not replaced. Defining

kR(T, N,XN ) = min{k : T (XN ) breaks down due tok replacements inXN},
thereplacement breakdown pointof T (XN ) is then

RBP(T, N) =
kR(T, N,XN )

N
.

Some authors prefer the ABP, which often is somewhat easier to evaluate and often has a
cleaner expression. For the ABP one needs not choose a set of points to be replaced, one
merely adds in further points as one may please. This is especially helpful when the ABP
and RBP depend upon the actual data values, for the RBP then depends on which set of points
becomes replaced, among

(
N
k

)
choices, for some choice ofk. On the other hand, many authors

(e.g., Rousseeuw and Leroy, 1987, pp. 117-118), argue the merits of the RBP, which involves
just the single data set at hand and avoids possible conceptual issues associated with adding
further observations to a given data set.

In order to establish some practical perspective on these two choices, Zuo (2001) provides
quantitative correspondences between the ABP and the RBP in the case that

the ABP and RBP depend only on the sample sizeN (1.3)

andkA(T, N,XN ) = kA(T,N) satisfies

kA(T, N,XN ) = kA(T, N) has the form eitherbaN + bcor daN + be, (1.4)

for some constantsa andb, wherebxc denotes the largest integer≤ x andd·e denotes the
smallest integer≥ x. Assumptions (1.3) and (1.4) are satisfied by many examples in the liter-
ature.

In the present note we pursue the relationship between addition and replacement breakdown
points in full generality. Under (1.3), but without assuming (1.4), we develop inequalities for
the ABP and RBP that yield asymptotic results and not only cover the case of (1.3) but also
include examples such as theHodges-Lehmann location estimator, which satisfies (1.3) but
not (1.4). We also extend to the general case that (1.3) does not hold, i..e, that the ABP and
RBP depend upon the actual data values inXN , thus allowing examples such as thesample
halfspace median.

Despite numerical and conceptual differences, the ABP and RBP intuitively seem to be very
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similar ways to define the minimum fraction of contaminants in a sample that can cause break-
down of a statistic. We find that indeed the ABP and RBP areequivalent, in the senses that
(i) each corresponds to the other, through explicit expressions or by inequalities, although
their values can be slightly different, and (ii) their asymptotic limits, whether deterministic
or almost sure, agree exactly. Therefore,as measures of robustness of estimators, the ABP
and RBP perform equivalently for practical purposes, giving the same value with negligible
difference.This grants a pardon to authors who inadvertently commit the crime of comparing
one estimator’s ABP with another’s RBP.

We proceed as follows. Lemma 1.1 below gives a simple basic connection between addition
and replacement breakdown, a result used in the sequel. Section 2 develops general results
under assumption (1.3). Inequalities relatingkA(T,N) andkR(T, N) are provided in Theo-
rem 2.1 and inequalities relating the ABP and the RBP in Theorem 2.2. Further aspects are
developed as well. Corollary 2.2, for example, asserts that the ABP and RBP have a common
asymptotic limit. Example 2.1 treats the special case thatABP(T, N) = N + m for an integer
m, which satisfies both (1.3) and (1.4) and gathers into one convenient general form all of
the examples treated in Zuo (2001). In Section 3, extensions to the general case not requir-
ing (1.3) are carried out. This introduces the difficulty that the RBP involves many subsets
of the given data set and the interdependence of these makes probabilistic analysis somewhat
difficult. However, with the use of general inequalities that we establish, we obtain for the
halfspace median, for example, that the uniform lower bound1/(d + 1) and (under symmetry
conditions) the almost sure upper bound 1/3,d ≥ 2, derived by Donoho and Gasko (1992)
and Chen (1995) for its ABP also apply to its RBP.

We conclude the present section with the following result giving a key connection between
addition and replacement breakdown.

Lemma 1.1. Replacement breakdown ofT (XN ) with k points replaced is equivalent to addi-

tion breakdown ofT (X(α)
N−k) due tok points added for someα ∈ {1, . . . ,

(
N
k

)}.

PROOF. Note that (1.2) holds if and only if for someα ∈ {1, . . . ,
(
N
k

)} we have

sup
Y(r)

k

|T (XN )− T (X(α)
N−k,Y

(r)
k )| = ∞, (1.5)

which by (1.1) is equivalent toadditionbreakdown ofT (X(α)
N−k) with k added points. ¤

2 Breakdown Points in a Special Case

Assume (1.3), which may be expressed as the assumption thatkA andkR are well-defined and
do not depend on the values ofXN , i.e.,

kA(T, N,XN ) = kA(T, N) andkR(T, N,XN ) = kR(T, N) (2.1)
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(possibly subject to some structural assumptions on the data, for example thatXN is in general
position). An important implication of this assumption is that (1.2) holds if and only if

sup
Y(r)

k

|T (XN )− T (X(α)
N−k,Y

(r)
k )| = ∞ (2.2)

holds for eachα = 1, . . . ,
(
N
k

)
. Hence Lemma 1.1 may be restated as

Replacement breakdown ofT (XN ) with k points replaced is equivalent to addi-
tion breakdown ofT (XN−k) due tok points added for any subsetXN−k of size
N − k in XN .

For some results we will assume further that

kA(T,N) is nondecreasing inN (2.3)

(which does not follow from the definitions but would be true for all typical choices ofT (·)).
It is seen in Corollary 2.1 below that (2.3) implies the same property forkR.

We now establish some productive inequalities regardingkA(T,N) andkR(T, N).

Theorem 2.1. The functionskA andkR satisfy

kA(T,N − kR(T, N)) ≤ kR(T,N) ≤ kA(T, N − kR(T, N) + 1) (2.4)

kR(T, N + kA(T, N)) ≤ kA(T, N) ≤ kR(T, N + kA(T, N)− 1). (2.5)

Further, under (2.3) we have equality in (2.5), i.e.,

kR(T, N + kA(T, N)) = kA(T, N) = kR(T, N + kA(T, N)− 1). (2.6)

PROOF. (i) Replacement ofkR(T, N) points ofXN yields breakdown ofT (XN ). Hence,

by Lemma 1.1, addition ofkR(T, N) points to a subsetX(α)
N−kR(T,N) of sizeN − kR(T, N) in

XN causes breakdown ofT (X(α)
N−kR(T,N)). Thus follows the first inequality of (2.4).

(ii) Replacement of anykR(T,N) − 1 points ofXN fails to yield breakdown ofT (XN ).
Hence, again by Lemma 1.1, addition ofkR(T, N)− 1 points to any subsetX(α)

N−kR(T,N)+1 of

sizeN − [kR(T,N)−1] = N −kR(T, N)+1 cannot cause breakdown ofT (X(α)
N−kR(T,N)+1),

whereas addition ofkA(N−kR(T, N)+1) points does cause its breakdown. ThuskA(T, N−
kR(T, N) + 1) > kR(T,N)− 1 and the second inequality of (2.4) follows.

(iii) Addition of kA(T,N) points toXN causes breakdown ofT (XN ). Therefore, by
Lemma 1, replacement of anykA(T, N) points in a sampleXN+kR(T,N) of sizeN +kA(T, N)
causes breakdown ofT (XN+kR(T,N)), giving the first inequality of (2.5).

(iv) Addition of kA(T, N) − 1 points toXN fails to cause breakdown ofT (XN ). Hence
replacement of thekA(T, N) − 1 points ofXN+kA(T,N)−1\XN does not yield breakdown



76 International Journal of Statistical Sciences, Vol. 9s, 2009

of T (XN+kA(T,N)−1), and sokR(T, N + kA(T, N) − 1) > kA(T, N) − 1 and the second
inequality of (2.5) follows.

(v) Finally, suppose that (2.3) holds. Suppose also that

kR(T,N) is nondecreasing inN (2.7)

doesnothold for someN , i.e.,kR(T, N) > kR(T,N +1). Then, by (2.3) and (2.4),kR(T, N)
≤ kA(T, N−kR(T, N)+1)≤ kA(T,N−kR(T, N +1)+1)≤ kR(T, N +1), a contradiction.
Hence (2.7) does in fact hold. Then the extreme terms in (2.5) must be equal, yielding (2.6).
¤
Part (v) of the above proof yields

Corollary 2.1. If kA(T,N) is nondecreasing inN , then so iskR(T, N).
The above inequalities yield corresponding inequalities for breakdown points.

Theorem 2.2. The breakdown points ABP(T,N) and RBP(T,N) satisfy

ABP(T, N − kR(T, N)) ≤ RBP(T, N) < ABP(T,N − kR(T,N) + 1) +
1
N

(2.8)

RBP(T, N + kA(T,N)) ≤ ABP(T,N) < RBP(T, N + kA(T, N)− 1). (2.9)

Further, under (2.3) the first relation in (2.9) becomes equality, i.e.,

RBP(T, N + kA(T, N)) = ABP(T,N) < RBP(T, N + kA(T, N)− 1). (2.10)

PROOF. (i) Using (2.4) we have

RBP(T, N) =
kR(T, N)

N
=

kR(T, N)
[N − kR(T, N)] + kR(T,N)

≥ kA(T,N − kR(T, N))
[N − kR(T,N)] + kA(T,N − kR(T,N))

= ABP(T, N − kR(T, N))

and

RBP(T,N) =
kR(T, N)− 1

N
+

1
N

=
kR(T,N)− 1

[N − kR(T, N) + 1] + [kR(T,N)− 1]
+

1
N

≤ kA(T, N − kR(T,N) + 1)− 1
[N − kR(T, N) + 1] + [kA(T, N − kR(T, N) + 1)− 1]

+
1
N

<
kA(T, N − kR(T,N) + 1)

[N − kR(T, N) + 1] + [kA(T, N − kR(T, N) + 1)]
+

1
N

= ABP(T, N − kR(T,N) + 1) +
1
N

,
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yielding (2.8).
(ii) Using (2.5) we have

ABP(T, N) =
kA(T, N)

N + kA(T, N)
≥ kR(T, N + kA(T,N))

N + kA(T, N)
= RBP(T, N + kA(T,N))

and

ABP(T, N) ≤ kR(T,N + kA(T, N)− 1)
N + kA(T, N)

<
kR(T,N + kA(T, N)− 1)

N + kA(T, N)− 1
= RBP(T, N + kA(T,N)− 1),

yielding (2.9).
(iii) Finally, under (2.3) the “≤” and “≥” in part (ii) each become “=”, yielding (2.10).¤

Remark2.1. The strict inequalityRBP(T,N + kA(T,N)) < RBP(T,N + kA(T,N) − 1)
implied by (2.9) and (2.10) may seem counterintuitive. However, when (2.6) holds, for ex-
ample, this inequality follows immediately from the reverse inequalityN + kA(T,N)− 1 <
N +kA(T, N) satisfied by the denominators in their definitions. This is illustrated in Example
2.1 below. ¤

A useful practical consequence of (2.8) and (2.9) together is that if either of ABP or RBP
has a limit asN →∞, then the other has the same limit. Asymptotically, therefore, the ABP
and RBP are interchangeable:

Corollary 2.2. limN→∞ ABP(T, N) = limN→∞ RBP(T, N).

PROOF. Let the ABP and RBP have respective limitsLA andLR asN → ∞. Then
kA(T,N) ∼ (LA/(1 − LA))N andkR(T, N) ∼ LRN , N → ∞, and hence (2.4) yields
(LA/(1− LA))(1− LR) = LR and thusLA = LR. ¤
Remark2.2. Note thatABP(T, N) is nondecreasing (nonincreasing) inN if and only if
kA(T,N)/N is nondecreasing (nonincreasing) inN . The case thatkA(T,N)/N is nonde-
creasing is a stronger assumption than (2.3). ¤

A direct consequence of the fact in Remark 2.2 along with (2.8) is that whenkA(T, N)/N
is nondecreasing inN , then the ABP is approximately an upper bound to the RBP.

Corollary 2.3. If kA(T,N)/N is nondecreasing inN , then so isABP(T, N) and we have

RBP(T,N) < ABP(T, N) +
1
N

. (2.11)

We now illustrate, by a concrete example that covers many special cases, how the ABP and
RBP can correspond explicitly. It suffices to show a correspondence betweenkA(T, N) and
kR(T, N), and for the following example this is straightfoward by “solving” the simultaneous
inequalities in Theorem 2.1.
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Example 2.1. If kA(T, N) = N + m for some integerm, thenkR(T,N) = bN+m+1
2 c, and

conversely.PROOF. (a) Suppose thatkR(T, N) = bN+m+1
2 c. Then the two inequalities in

(2.5) give

⌊
N + kA(T, N) + m + 1

2

⌋
≤ kA(T,N) ≤

⌊
N + kA(T,N) + m

2

⌋
.

Using the fact thatkA(·) is integral, it follows immediately that

kA(T,N) =
⌊

N + kA(T,N) + m

2

⌋
,

yieldingkA(T, N) = N + m. (b) Conversely, ifkA(T, N) = N + m, then (2.4) gives

N − kR(T, N) + m ≤ kR(T,N) ≤ N − kR(T, N) + m + 1,

and hence
N + m

2
≤ kR(T,N) ≤ N + m + 1

2
,

yielding thatkR(T, N) equals eitherbN+m
2 c or bN+m+1

2 c. By (a), we conclude thatkR(T, N)
= bN+m+1

2 c. ¤
Let us also illustrate the strict inequality discussed in Remark 2.1. We have

RBP(T,N + kA(T, N)) = RBP(T, 2N + m) =

⌊
2N+2m+1

2

⌋

2N + m
=

N + m

2N + m
,

and then by similar steps

RBP(T, N+kA(T, N)−1) = RBP(T, 2N+m−1) =
N + m

2N + m− 1
> RBP(T, N+kA(T, N)).

Form = 0, the ABP is exactly 1/2. Also, for any choice ofm, we have 1/2 as the limit of
both the ABP and the RBP,

lim
N→∞

ABP(T, N) = lim
N→∞

RBP(T,N) = 1/2.

Note thatkA(N)/N in this example is monotone increasing in the (typical) casem < 0, in
which case the ABP is an approximate upper bound to the RBP, i.e., (2.11) holds. ¤

Example 2.1 provides a convenient level of generality. All of the particular examples
mentioned in Zuo (2001) may be conveniently gathered together as special cases of this one
simple example, for various choices ofm ≤ 0, as follows.

(i) The univariate median. m = 0, kA(T,N) = N , andkR(T, N) = bN+1
2 c.



Serfling: Inequalities Relating Addition and Replacement Type 79

(ii) The spatial median inRd. Again,m = 0, kA(T, N) = N , andkR(T,N) = bN+1
2 c.

(iii) The least median of squares estimator in the linear regression modelY =
∑d

i=1 θiZi,
d ≥ 2. m = −2d + 3, kA(T,N) = N − 2d + 3, andkR(T,N) = bN−2d+4

2 c.
(iv) Simultaneous S-estimators of multivariate location and scatterm = −d, kA(T, N) =

N − d, andkR(T, N) = bN−d+1
2 c.

For brief background discussion of these special cases, see Zuo (2001). The correspondence
between the ABP and the RBP in Example 2.1 can be derived also from a somewhat more
general but also more complicated structure covered in Theorems 2.1 and 2.2 of Zuo (2001),
which themselves can also be proved using our inequalities.

Not all estimators with ABP satisfying (1.3) also satisfy (1.4), and not all robust estimators
attain the highest asymptotic BP of 1/2. A typical example is the following.

Example 2.2. The well-known univariate Hodges-Lehmann location estimator (Hodges and
Lehmann, 1964) is simply the median of pairwise averages, median{(Xi+Xj)/2}. Extension
toRd using the spatial median and also consideringm-wise averaging (m ≥ 2) is carried out
by Chaudhuri (1992). It is not difficult to argue, for them-wise case, that

kR(Tm, N) = max
1≤j≤N

{
j :

(
N−j
m

)
(
N
m

) ≥ 1
2

}
,

and that
RBP(Tm,XN ) → 1− (1/2)1/m , N →∞.

As for the corresponding ABP, adequate practical information is given by Corollary 2.2: it has
the same limit as the RBP. ¤

3 Extension to the General Case

Now let kA(·) andkR(·) depend upon bothN and the particular sample values ofXN . For
anyM , denote byXM the set of consecutive values{X1, . . . , XM} taken from the sequence
{X1, X2, . . .} in Rd. For some results we will assume the following analogue of (2.3):

kA(T,N,XN ) ≤ kA(T, N + 1,XN+1). (3.1)

We have the following analogue of Theorem 2.2.

Theorem 3.1. The functionskA andkR satisfy

min
α

kA(T,N − kR(T, N,XN ),X(α)
N−kR(T,N,XN ))

≤ kR(T,N,XN ) (3.2)

≤ min
α

kA(T,N − kR(T, N,XN ) + 1,X(α)
N−kR(T,N,XN )+1) (3.3)
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kR(T, N + kA(T, N,XN ),XN+kA(T,N,XN ))

≤ kA(T, N,XN ) (3.4)

≤ kR(T,N + kA(T, N,XN )− 1,XN+kA(T,N,XN )−1). (3.5)

Further, under (3.1) we have equality in (3.4) and (3.5).

PROOF. (i) For someα, replacement of thekR(T, N,XN ) points of the set

XN\X(α)
N−kR(T,N,XN ) of size N − kR(T, N,XN ) yields breakdown ofT (XN ). Hence, by

Lemma 1.1, addition ofkR(T, N,XN ) points to that particularX(α)
N−kR(T,N,XN ) causes break-

down ofT (X(α)
N−kR(T,N,XN )). Thus follows (3.2).

(ii) Replacement of anykR(T,N,XN ) − 1 points ofXN fails to yield breakdown of
T (XN ). Hence, again by Lemma 1.1, for eachα, addition ofkR(T, N,XN )− 1 points to the

subsetX(α)
N−kR(T,N,XN )+1 of sizeN − [kR(T,N,XN )− 1] = N − kR(T,N,XN ) + 1 cannot

cause breakdown ofT (X(α)
N−kR(T,N,XN )+1), whereas addition ofkA(N − kR(T,N,XN )

+1) points does cause its breakdown. ThuskA(T,N−kR(T, N,XN )+1,X(α)
N−kR(T,N,XN )+1)

> kR(T, N,XN )− 1 and (3.3) follows.
(iii) Addition of kA(T,N,XN ) points toXN causes breakdown ofT (XN ). Therefore, by

Lemma 1.1, replacement of thekA(T,N,XN ) points ofXN+kA(T,N,XN )\XN causes break-
down ofT (XN+kA(T,N,XN )), giving (3.4).

(iv) Addition of kA(T, N,XN ) − 1 points toXN fails to cause breakdown ofT (XN ).
Hence replacement of thekA(T, N,XN )− 1 points ofXN+kA(T,N,XN )−1\XN does not yield
breakdown ofT (XN+kA(T,N,XN )−1), and sokR(T, N + kA(T, N,XN )− 1) >
kA(T,N,XN )− 1 and (3.5) follows.

(v) Finally, suppose that (3.1) holds. Suppose also that

kR(T, N,XN ) > kR(T, N + 1,XN+1)

holds for someN . Then, using (3.1), (3.2), and (3.3), it is easily checked that

kR(T, N,XN ) ≤ min
α

kA(T, N − kR(T, N,XN ) + 1,X(α)
N−kR(T,N,XN )+1)

≤ min
β

kA(T, N − kR(T, N + 1,XN+1) + 1,X(β)
N−kR(T,N+1,XN+1)+1)

≤ kR(T, N + 1,XN+1),

a contradiction. Thus, under (3.1), the relations in (3.4) and (3.5) become equality. ¤
Part (v) of the preceding proof yields the following analogue of Corollary 2.1.

Corollary3.1. If kA(T, N,XN ) is nondecreasing in the sense of (3.1), then so iskR(T, N,XN ).
Theorem 3.1 yields inequalities for breakdown points, as an analogue of Theorem 2.2

proved by the same steps with obvious minor changes.
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Theorem 3.2. The breakdown points ABP(T,N,XN ) and RBP(T, N,XN ) satisfy

min
α

ABP(T,N − kR(T, N,XN ),X(α)
N−kR(T,N,XN ))

≤ RBP(T,N,XN ) (3.6)

< min
α

ABP(T, N − kR(T, N,XN ) + 1,X(α)
N−kR(T,N,XN )+1) +

1
N

(3.7)

and

RBP(T, N + kA(T,N,XN ),XN+kA(T,N,XN ))

≤ ABP(T, N,XN ) (3.8)

< RBP(T, N + kA(T, N,XN )− 1,XN+kA(T,N,XN )−1). (3.9)

Further, under (3.1) we have equality in (3.8).

While the ABP and RBP may depend upon the data values, they might under some as-
sumptions on the parent model forXN have deterministic limits in probability or almost surely
asN →∞. If so, the inequalities of Theorem 3.2 show that these limits must agree.

Corollary 3.2. If ABP(T, N,XN ) andRBP(T,N,XN ) have limitsLA andLR, respectively,
either in probability or almost surely, then these agree:LA = LR.

PROOF. If the ABP and RBP have limitsLA andLR, then it is seen thatN−kR(T,N,XN )+
1 tends to∞ in an appropriate sense and (3.7) yields

LR ≤ lim
N→∞

{
ABP(T, N − kR(T,N,XN ) + 1,XN−kR(T,N,XN )+1) +

1
N

}
= LA.

A similar argument using (3.9) yields the opposite inequality. ¤
In some cases the ABP and RBP are subject to uniform bounds above or below, and the
inequalities of Theorem 3.2 show that the bounds for one of these apply essentially unchanged
to the other.

Corollary 3.3. If mA ≤ ABP(T,N,XN ) ≤MA, thenmA ≤ RBP(T, N,XN ) < MA + 1/N .
If mR ≤ RBP(T, N,XN ) ≤MR, thenmR ≤ ABP(T, N,XN ) < MR. In brief,

max{mA,mR} ≤ ABP(T, N,XN ) < min{MA,MR}, (3.10)

max{mA,mR} ≤ RBP(T, N,XN ) < min{MA +
1
N

,MR}. (3.11)

Remark3.1. In the case that the ABP has a known limitLA, but the situation for the RBP
is unknown, we cannot apply Corollary 3.2. However, we conclude from Corollary 3.3 that
lim supN→∞ RBP ≤ LA.
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It is evident that Remark 2.2 applies with the extendedkA(T,N,XN ), and we readily
obtain via (3.7) the following analogue of Corollary 2.3.

Corollary3.4. If kA(T, N,XN )/N is nondecreasing in the sense of (3.1), thenABP(T,N,XN )
is also nondecreasing in the same sense, and we have

RBP(T, N,XN ) < ABP(T, N,XN ) +
1
N

. (3.12)

Example 3.1. Halfspace Median. Donoho and Gasko (1992) show that ifXN is in general
position, then the ABP of the halfspace median is≥ 1/(d + 1), d ≥ 2. Further, Donoho and
Gasko (1992) and Chen (1995) show that if the underlying probability measure is absolutely
continuous and angularly symmetric, then this ABP has almost sure limitLA = 1/3,N →∞.
From the preceding results, we thus conclude that

RBP(T, N,XN ) ≥ 1
d + 1

for d ≥ 2 andXN is in general position, and that

lim sup
N→∞

RBP(T, N,XN ) ≤ 1
3

if the underlying probability measure is absolutely continuous and angularly symmetric. While
the almost sure upper bound of 1/3 for the RBP is sufficient information for practical purposes,
we conjecture that in fact the almost sure limitLR exists and = 1/3. For some reinforcement of
this conjecture, we note a useful empirical illustration of Zuo (2003, Figures 3 and 4), which
shows that in a sample of size 20 from the standard normal distribution, the halfspace median
can resist replacement of 6 points by outliers but not replacement of 7 points. ¤
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