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Abstract

We explore relationships between the finite-sample addition breakdown point (ABP) and replace-
ment breakdown point (RBP)of a statistic. Each concerns the minimum fraction of contaminants
present in a sample, due to either addition or replacement, that can cause breakdown. Some authors
prefer the ABP, which avoids the need to specify points to replace. Others argue the merits of the
RBP, which avoids the conceptual issue of adding further points to the actual data. Zuo (2001) pro-
vides quantitative correspondences between the ABP and RBP when they depend only on the sample
size and assume a particular form. In the present note we pursue their relationship in full general-
ity, allowing dependence on data values and not restricting to any special form, thus including for
example the Hodges-Lehmann location estimator and the sample halfspace median. We develop
inequalities showing that the ABP and RBP are equivalent in the senses that (i) each corresponds to
the other, through explicit expressions or by inequalites, although their values can slightly differ, and
(ii) asymptotic limits, whether deterministic or almost sure, agree exactly. Therefore, as measures
of robustness the ABP and RBP perform equivalently for practical purposes. This grants a pardon to
authors who inadvertently commit the crime of comparing one estimator’'s ABP with another’'s RBP.
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1 Introduction and a Basic Relation

We explore relationships between the finite-sample addition breakdown point (ABP) and re-
placement breakdown point (RBP) of a statisticX ), for Xy a data set of siz&V in R?

and7T' (X ) some nonnegative real-valued measure of the robustness of some estimator of in-
terest based oK. For example, relative to a vector-valued location estimat@X ), we

might choosél (X ) = [[m(Xy)||, where|| - || denotes the usual Euclidean norm. For a posi-
tive definite matrix-valued scatter estimafiX v ), we might take an appropriate function of

the eigenvalues;(S(Xy)), j = 1,...,d (which are nonnegative in this case), for example,

T (Xy) = Z;’:l()\j(S(XN)) + A;(S(Xn))~1). For simultaneous location and scatter esti-
mation,7'(Xy) may be the sum ofy(Xy) andT; (X ). For dataXy relative to the linear
regression modeY” = Zle 0;Z; and 9(XN) some estimator of = (64,...,6,), we take
T(Xx) = [|6]|. In such contexts, the stability &f(Xy) under corruption of sample values
measures the robustness of the relevant estimator.

If for V held fixedT'(X) can be taken toc by introducing “contaminants” into the sample,
then the relevant estimator is said to “break down”, and a corresponding “breakdown point”
is based on the minimal number of contaminants needed to produce this result. The notion
of such a “finite sample” version of the asymptotic type breakdown point of Hampel (1968,
1971) was introduced by Donoho and Huber (1983). In the sequel we refer interchangeably
to breakdown of'(X ) and of the relevant estimator.

Two types of finite sample breakdown point have become popular, based on whether the con-
taminants are additions or replacemeritddition breakdowmf 7'(X ;) occurs withk points

v\”) added to the sampli&yy if

Sup IT(Xn) — T(Xn, Yi)| = o0, (1.1)
Yka

whereT' (X, Yi) denotes the evaluation @f(-) over the combined sampl&Xy, YEC“)} and
the supremum is over all possible smg) of k£ added points. Defining
ka(T, N,Xy) = min{k : T(Xy) breaks down due tb points added tXy },

theaddition breakdown poirf 7'(X ) is then

kA(T7N7XN)
ABP(T, N. Xy) = .
T N, Xn) N + ka(T,N,Xy)
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On the other handeplacement breakdowsf 7'(X ) occurs withk points ofX y replaced by
v\ if

max sup |T(Xy) — T(X Y| = oo, (1.2)
(0% YEJ)

wherea indexes the(];’) subset§§§\‘;‘)_k of size N — k representing the possible sets of points
in X notreplaced. Defining

kr(T,N,Xy) = min{k : T(X) breaks down due th replacements iX },
thereplacement breakdown poiaf 7'(X ) is then

T,N, X
RBRT,N) = kR(,N’m'

Some authors prefer the ABP, which often is somewhat easier to evaluate and often has a
cleaner expression. For the ABP one needs not choose a set of points to be replaced, one
merely adds in further points as one may please. This is especially helpful when the ABP
and RBP depend upon the actual data values, for the RBP then depends on which set of points
becomes replaced, amoffly) choices, for some choice #f On the other hand, many authors

(e.g., Rousseeuw and Leroy, 1987, pp. 117-118), argue the merits of the RBP, which involves
just the single data set at hand and avoids possible conceptual issues associated with adding
further observations to a given data set.

In order to establish some practical perspective on these two choices, Zuo (2001) provides
guantitative correspondences between the ABP and the RBP in the case that

the ABP and RBP depend only on the sample Kize (1.3)
andk4 (T, N,Xy) = ka(T, N) satisfies
ka(T,N,Xn) = ka(T, N) has the form eithefaN + b|or [aN + b], (1.4)

for some constants andb, where |z | denotes the largest integer  and [-] denotes the
smallest integep x. Assumptions (1.3) and (1.4) are satisfied by many examples in the liter-
ature.

In the present note we pursue the relationship between addition and replacement breakdown
points in full generality. Under (1.3), but without assuming (1.4), we develop inequalities for
the ABP and RBP that yield asymptotic results and not only cover the case of (1.3) but also
include examples such as thiwdges-Lehmann location estimatavhich satisfies (1.3) but

not (1.4). We also extend to the general case that (1.3) does not hold, i..e, that the ABP and
RBP depend upon the actual data valueXj, thus allowing examples such as themple
halfspace median

Despite numerical and conceptual differences, the ABP and RBP intuitively seem to be very
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similar ways to define the minimum fraction of contaminants in a sample that can cause break-
down of a statistic. We find that indeed the ABP and RBPeayaivalent in the senses that

(i) each corresponds to the other, through explicit expressions or by inequalities, although
their values can be slightly different, and (ii) their asymptotic limits, whether deterministic
or almost sure, agree exactly. Therefae,measures of robustness of estimators, the ABP
and RBP perform equivalently for practical purposes, giving the same value with negligible
difference.This grants a pardon to authors who inadvertently commit the crime of comparing
one estimator's ABP with another’s RBP.

We proceed as follows. Lemma 1.1 below gives a simple basic connection between addition
and replacement breakdown, a result used in the sequel. Section 2 develops general results
under assumption (1.3). Inequalities relating(7’, N) andkr(7', N) are provided in Theo-

rem 2.1 and inequalities relating the ABP and the RBP in Theorem 2.2. Further aspects are
developed as well. Corollary 2.2, for example, asserts that the ABP and RBP have a common
asymptotic limit. Example 2.1 treats the special caseAlBR(7T, N) = N + m for an integer

m, Which satisfies both (1.3) and (1.4) and gathers into one convenient general form all of
the examples treated in Zuo (2001). In Section 3, extensions to the general case not requir-
ing (1.3) are carried out. This introduces the difficulty that the RBP involves many subsets
of the given data set and the interdependence of these makes probabilistic analysis somewhat
difficult. However, with the use of general inequalities that we establish, we obtain for the
halfspace median, for example, that the uniform lower bayfid + 1) and (under symmetry
conditions) the almost sure upper bound W3 2, derived by Donoho and Gasko (1992)

and Chen (1995) for its ABP also apply to its RBP.

We conclude the present section with the following result giving a key connection between
addition and replacement breakdown.

Lemma 1.1. Replacement breakdownBfX /) with & points replaced is equivalent to addi-

tion breakdown oT(XE\?)_k) due tok points added for some € {1,..., (})}.
PROOF. Note that (1.2) holds if and only if for somee {1,..., (¥)} we have
sup [T(X) = T, V)] = o, (1.5)
Y,

which by (1.1) is equivalent tadditionbreakdown otF(XS\‘,“)_k) with k£ added points. [

2 Breakdown Points in a Special Case

Assume (1.3), which may be expressed as the assumptiohtlzaidk r are well-defined and
do not depend on the valuesXfy, i.e.,

ka(T,N,Xy) = ka(T, N) andkp(T, N,Xy) = kg(T, N) (2.1)
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(possibly subject to some structural assumptions on the data, for exampe\tiein general
position). An important implication of this assumption is that (1.2) holds if and only if

sup |T(Xy) — T(X§,, Yi7)| = o0 (2.2)
v
holds for eact = 1,..., (}/). Hence Lemma 1.1 may be restated as

Replacement breakdown B X ) with & points replaced is equivalent to addi-
tion breakdown of'(Xy_) due tok points added for any subskty_;. of size
N — kinXy.

For some results we will assume further that
ka(T, N) is nondecreasing itV (2.3)

(which does not follow from the definitions but would be true for all typical choic€E(of).
Itis seenin Corollary 2.1 below that (2.3) implies the same property gor

We now establish some productive inequalities regaréling’, V) andkr (T, N).

Theorem 2.1. The functions 4 and kg satisfy
ka(T,N — kr(T,N)) < kr(T,N) < ka(T,N — kg(T,N) +1) (2.4)
kr(T,N + ka(T,N)) < ka(T,N) < kr(T,N + ka(T,N)—1). (2.5)

Further, under (2.3) we have equality in (2.5), i.e.,

kr(T,N + ka(T,N)) = ka(T,N) = kr(T,N + ka(T,N) — 1). (2.6)
PROOF. (i) Replacement ofr (7, N) points of Xy yields breakdown of (X ). Hence,
by Lemma 1.1, addition ofr (7", N) points to a subsétg\?‘)_kR(T ) of sizeN — kr(T,N) in

X causes breakdown GT(XE\O,‘)_kR(T N)). Thus follows the first inequality of (2.4).

(i) Replacement of anyr (7', N) — 1 points of Xy fails to yield breakdown of (Xy).

Hence, again by Lemma 1.1, additionkgf (7", N) — 1 points to any subsé(ﬁ?lkR(T N+ of

sizeN — [kgr(T,N)—1] = N — kgr(T, N)+ 1 cannot cause breakdownﬁtxg\?)_kR(TvN)H),
whereas addition 0o (N —kr (T, N)+1) points does cause its breakdown. Thus7', N —
kr(T,N)+1) > kg(T, N) — 1 and the second inequality of (2.4) follows.

(iii) Addition of k4(T, N) points toXy causes breakdown &f(Xy). Therefore, by
Lemma 1, replacement of aiy; (T, N) points in a sampl& ., 1., (7, n) Of size N + k4 (T, N)
causes breakdown @f(X . (r,n)), giving the first inequality of (2.5).

(iv) Addition of k4(7', N) — 1 points toX fails to cause breakdown @f(Xy). Hence
replacement of thé (7, N) — 1 points of Xy, (7,n)—1\Xn does not yield breakdown
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of T(Xn4ru(r,N)=1), @nd sOkg(T, N + ka(T,N) — 1) > ka(T,N) — 1 and the second
inequality of (2.5) follows.
(v) Finally, suppose that (2.3) holds. Suppose also that

kr(T, N) is nondecreasing itV (2.7)

doesnothold for someN, i.e.,kr(T, N) > kr(T, N+1). Then, by (2.3) and (2.4%r(T, N)
<kA(T,N—kr(T,N)+1) <ks(T,N—kr(T,N+1)+1) < kr(T, N+1), acontradiction.
Hence (2.7) does in fact hold. Then the extreme terms in (2.5) must be equal, yielding (2.6).
O

Part (v) of the above proof yields
Corollary 2.1 If k4(T, N) is nondecreasing iV, then so iskr(T', N).
The above inequalities yield corresponding inequalities for breakdown points.

Theorem 2.2. The breakdown points ABP, N) and RBRT, N) satisfy
ABP(T, N — kr(T,N)) < RBRT,N) < ABP(T, N — kr(T,N) + 1) + % (2.8)

RBRT, N + k4(T,N)) < ABP(T,N) < RBRT, N + ka(T,N) — 1). (2.9)

Further, under (2.3) the first relation in (2.9) becomes equality, i.e.,

RBRT,N + ka(T,N)) =ABP(T,N) < RBRT,N + ka(T,N) —1). (2.10)
ProOE (i) Using (2.4) we have
_ ke(TLN) _ kn(T, N)
RBRT,N) = N [N —kg(T,N)] +kr(T,N)

> kA(Ta N — kR(Tv N))
N [N - kR(Ta N)] + kA(Tv N — kR(Tv N))

= ABP(T,N — kg(T, N))

and
RBRT,N) = kR(T’JJ\;[) -1 +%
- kr(T,N) — 1 L
[N —kgr(T,N)+ 1]+ [kr(T,N)—1] = N
< kA(T N — kR( ) ) ) -1 + = 1
= [N—kr(T,N)+ 1] + [kA(T.N — kp(T,N) + 1) — 1] ' N
; ka(T, N — kr(T,N) + 1) L
[N — kg(T,N) + 1] + [ka(T, N — kp(T,N) + 1)] ' N
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yielding (2.8).
(i) Using (2.5) we have

ka(T,N) kr(T,N + ka(T,N))

= > =
ABR(T,N) N+ ha(T.N) = N+ (T, N) RBRT,N + ka(T,N))

and

kr(T,N + ka(T,N) — 1)

<
ABRT,N) < N +ka(T,N)
kr(T,N +ka(T,N)—-1) _
N+ ha(T,N) = 1 =RBRT,N + ks(T,N) —1),

yielding (2.9).

(i) Finally, under (2.3) the " and “>" in part (ii) each become=", yielding (2.10).

Remark2.1 The strict inequalityRBRT, N + ka(T,N)) < RBRT,N + ka(T,N) — 1)
implied by (2.9) and (2.10) may seem counterintuitive. However, when (2.6) holds, for ex-
ample, this inequality follows immediately from the reverse inequaiity- k4 (7, N) — 1 <
N +Fka(T, N) satisfied by the denominators in their definitions. This is illustrated in Example
2.1 below. O

A useful practical consequence of (2.8) and (2.9) together is that if either of ABP or RBP
has a limit asV — oo, then the other has the same limit. Asymptotically, therefore, the ABP
and RBP are interchangeable:

Corollary 2.2 limy_,oo ABP(T, N) =limy_.. RBRT, N).

PrROOF. Let the ABP and RBP have respective limits and L asN — oo. Then
ka(T,N) ~ (La/(1 — La))N andkr(T,N) ~ LrN, N — oo, and hence (2.4) yields
(La/(1 = Ly))(1—Lg)=LgrandthusL4 = Lg. ]
Remark2.2 Note thatABP(T, N) is nondecreasing (nonincreasing) W if and only if

kA(T, N)/N is nondecreasing (nonincreasing)M The case that (7, N)/N is nonde-
creasing is a stronger assumption than (2.3). O

A direct consequence of the factin Remark 2.2 along with (2.8) is that Wh€R, N) /N
is nondecreasing itV, then the ABP is approximately an upper bound to the RBP.

Corollary 2.3. If k4(T, N)/N is nondecreasing iV, then so isABP(T, N) and we have
1
RBRT. N) < ABP(T, N) + —. (2.11)

We now illustrate, by a concrete example that covers many special cases, how the ABP and
RBP can correspond explicitly. It suffices to show a correspondence betw¢&n/N) and
kr(T, N), and for the following example this is straightfoward by “solving” the simultaneous
inequalities in Theorem 2.1.
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Example 2.1.If ka(T, N) = N + m for some integern, thenkg(T, N) = [2+24L | and
conversely. PROOF. (a) Suppose thatr (7, N) = LWJ. Then the two inequalities in
(2.5) give

{N-l—kA(T,N)-l—m-i—l

2 JSk‘A(T,N)S{N"FkA(T,N)—FmJ.

2

Using the fact thak 4 (-) is integral, it follows immediately that

ka(T,N) = {N + k?A(j; N)+ mJ |

yieldingk4(7, N) = N + m. (b) Conversely, ifc4 (T, N) = N + m, then (2.4) gives
N_kR(T7N)+m < kR(T7N) < N_kR(TaN)+m+17

and hence ~ N .
T < k(T N) € S

yielding thatkg(T', N) equals eithef 2™ | or | Y21 | By (a), we conclude thaty (T, N)
— {Nﬁ-;n-i-lJ. 0

Let us also illustrate the strict inequality discussed in Remark 2.1. We have

LQN—&—%m—i—lJ B N+m

RBRT, N +ka(T, N)) = RBAT, 2N +m) = 2 —= = o

and then by similar steps

N+m

RBRT, N+ku(T,N)—1) = RBRT,2N+m—1) = DT gr—
m —

> RBA(T, N+k4(T, N)).

Form = 0, the ABP is exactly 1/2. Also, for any choice of, we have 1/2 as the limit of
both the ABP and the RBP,

lim ABR(T,N) = lim RBRT,N) = 1/2,

Note thatk 4 (N)/N in this example is monotone increasing in the (typical) case 0, in
which case the ABP is an approximate upper bound to the RBP, i.e., (2.11) holds. O

Example 2.1 provides a convenient level of generality. All of the particular examples
mentioned in Zuo (2001) may be conveniently gathered together as special cases of this one
simple example, for various choicesmaf < 0, as follows.

(i) The univariate mediann = 0, k4 (T, N) = N, andkg(T, N) = | X+,



Serfling: Inequalities Relating Addition and Replacement Type 79

(i) The spatial median iiR?. Again,m = 0, ka(T, N) = N, andkp(T, N) = [ 2 |.

(i) The least median of squares estimator in the linear regression n’rOdeEle 0:7;,
d>2.m=-2d+3,ka(T,N)=N —2d + 3, andkp (T, N) = | =24 |,

(iv) Simultaneous S-estimators of multivariate location and scatter —d, k4 (T, N) =
N —d, andkg(T, N) = | N=g+L |,

For brief background discussion of these special cases, see Zuo (2001). The correspondence
between the ABP and the RBP in Example 2.1 can be derived also from a somewhat more
general but also more complicated structure covered in Theorems 2.1 and 2.2 of Zuo (2001),
which themselves can also be proved using our inequalities.

Not all estimators with ABP satisfying (1.3) also satisfy (1.4), and not all robust estimators
attain the highest asymptotic BP of 1/2. A typical example is the following.

Example 2.2. The well-known univariate Hodges-Lehmann location estimator (Hodges and
Lehmann, 1964) is simply the median of pairwise averages, mgdigar-X;)/2}. Extension

to R? using the spatial median and also consideringvise averagingrf, > 2) is carried out

by Chaudhuri (1992). It is not difficult to argue, for thewise case, that

N—j
kr(Tm, N) = max {j: ( % ) > 1},

1<j<N » = 2

RBAT,,,Xy) — 1 — (1/2)Y™ | N = co.

As for the corresponding ABP, adequate practical information is given by Corollary 2.2: it has
the same limit as the RBP. O

and that

3 Extension to the General Case

Now letk4(-) andkr(-) depend upon botfV and the particular sample valuesXf;. For

any M, denote byX, the set of consecutive valu¢X, ..., X 5, } taken from the sequence
{X1,X,,...} inR% For some results we will assume the following analogue of (2.3):
kA(T7N7XN) < kA(T7N+17XN+1)' (31)

We have the following analogue of Theorem 2.2.
Theorem 3.1. The functions 4 and k satisfy

minka (T, N = kg(T, N, X), XE?Z@(T,N,XNQ

< minka(T, N = k(T N,Xn) + 1LXG,ovs ) (3.3)
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kr(T, N + ka(T, N,XN), XNpbp (T,NXx))
< ka(T,N,Xy) (3.4)
< KkR(T,N +ka(T, N,XN) — 1, XNyt ) (7,N,xn)—1)- (3.5)
Further, under (3.1) we have equality in (3.4) and (3.5).

PROOF. (i) For somex, replacement of ther (7', N, X ) points of the set

XN\Xg\C;)—k;R(TNxN) of size N — kr(T, N,Xy) yields breakdown off'(Xy). Hence, by
Lemma 1.1, addition oz (7, N, Xy) points to that particuIaK(a) causes break-

N—kgr(T,N,XnN)
down of T(XYy), 7 v ))- Thus follows (3.2).
(i) Replacement of anycr (7T, N,Xy) — 1 points of X fails to yield breakdown of
T(Xy). Hence, again by Lemma 1.1, for eaghaddition ofkr (T, N, Xy ) — 1 points to the

subse1§§§\?‘)7,m(TJV’XN)+1 of sizeN — [kr(T,N,Xy) — 1] =N — kg(T, N,Xy) + 1 cannot
cause breakdown df(Xg\C,“)_kR(TjNXN)H), whereas addition 0t (N — kr(T, N,Xy)

+1) points does cause its breakdown. TRU$7, N —kr(7T, N,Xy)+1, XS\‘;‘)_,CR(TW,XN)H)
> kr(T,N,Xy) — 1 and (3.3) follows.

(iii) Addition of k4 (T, N,Xy) points toX causes breakdown @f(Xy ). Therefore, by
Lemma 1.1, replacement of the (7', N, Xy ) points of Xy 1, (v x,) \Xn causes break-
down OfT(XN—HcA(T,N,XN))! glvmg (34)

(iv) Addition of k4 (T, N,Xy) — 1 points toXy fails to cause breakdown &f (Xy).
Hence replacement of thie (7', N, X ) — 1 points of Xy 1, (7, v x5 )—1\Xn does not yield
breakdown ofl'(Xy 1, (7, n.xy)—1), @nd SCkr(T, N + ka(T, N, Xy) — 1) >
ka(T,N,Xy) — 1 and (3.5) follows.

(v) Finally, suppose that (3.1) holds. Suppose also that

kr(T,N,Xn) > kp(T,N +1,Xn1)
holds for someV. Then, using (3.1), (3.2), and (3.3), it is easily checked that

kr(T.N,Xy) < minka(T,N = kp(T, N,Xy) + 1’X§\?)—kR(T,N,XN)+1)
< minka(T, N = bp(T, N + 1, X 41) + 17X§5)—kR(T,N+1,xNH>+1)

S kR(T7N+17XN+1)7

a contradiction. Thus, under (3.1), the relations in (3.4) and (3.5) become equality. [
Part (v) of the preceding proof yields the following analogue of Corollary 2.1.
Corollary3.1 If k4 (T, N, Xy) is nondecreasing in the sense of (3.1), then @ {§", NV, Xy ).

Theorem 3.1 yields inequalities for breakdown points, as an analogue of Theorem 2.2
proved by the same steps with obvious minor changes.
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Theorem 3.2. The breakdown points ABP, N, Xy) and RBRT, N, X ) satisfy

min ABR(T, N — k(T N, Xx), xggo_kR(T,N,XN))

< RBRT, N, Xy) (3.6)
< min ABP(T, N — kn(T, N, Xn) + LX) v i) + % (3.7)
and
RBRT, N + ka(T, N,Xn), Xy k) (1N 1))
< ABP(T, N, Xy) (3.8)
< RBRT, N + ka(T, N,Xn) = 1, X4 py (1N X )-1)- (3.9)

Further, under (3.1) we have equality in (3.8).

While the ABP and RBP may depend upon the data values, they might under some as-
sumptions on the parent model f§; have deterministic limits in probability or almost surely
asN — oo. If so, the inequalities of Theorem 3.2 show that these limits must agree.

Corollary 3.2 If ABR(T, N,Xy) andRBRT, N, Xy ) have limitsL 4 and L, respectively,
either in probability or almost surely, then these agtieg:= Lg.

PROOF. Ifthe ABP and RBP have limit& 4 andLg, thenitis seen thaV —kr(T, N, Xy )+
1 tends toco in an appropriate sense and (3.7) yields

. 1
Lpr < ]\}Enoo {ABP(Tv N — kR(Tv Na XN) + 17XN7kR(T,N,XN)+1) + N} = Lay.

A similar argument using (3.9) yields the opposite inequality. O

In some cases the ABP and RBP are subject to uniform bounds above or below, and the
inequalities of Theorem 3.2 show that the bounds for one of these apply essentially unchanged
to the other.

Corollary 3.3 If my < ABP(T, N,Xy) < My, thenmy < RBRT,N,Xy) < M4+ 1/N.
If mp < RBF{T, N, XN) < Mg, thenmp < ABP(T, N, XN) < Mpg. In brief,

max{mg,mp} < ABPT,N,Xy) < min{My, Mg}, (3.10)
1
max{ma,mr} < RBRT,N,Xy) < min{M4 + N’ Mpg}. (3.11)

Remark3.1 In the case that the ABP has a known limhify, but the situation for the RBP
is unknown, we cannot apply Corollary 3.2. However, we conclude from Corollary 3.3 that
limsupy_,.o RBP < Ly4.
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It is evident that Remark 2.2 applies with the extended7, N, Xy ), and we readily
obtain via (3.7) the following analogue of Corollary 2.3.

Corollary3.4. If k4(T, N,Xx)/N is nondecreasing in the sense of (3.1), tA&P(T", N, Xy )
is also nondecreasing in the same sense, and we have

RBRT,N,Xy) < ABR(T,N,Xy) + % (3.12)
Example 3.1. Halfspace Median Donoho and Gasko (1992) show thakKif; is in general
position, then the ABP of the halfspace mediaid/(d + 1), d > 2. Further, Donoho and
Gasko (1992) and Chen (1995) show that if the underlying probability measure is absolutely
continuous and angularly symmetric, then this ABP has almost surelligit 1/3, N — oc.
From the preceding results, we thus conclude that
1

RBRT N, Xy) > ——
R’,N)_d+1

for d > 2 andXy is in general position, and that

limsup RBRT, N, Xy) <

N—o0

Wl

if the underlying probability measure is absolutely continuous and angularly symmetric. While
the almost sure upper bound of 1/3 for the RBP is sufficient information for practical purposes,
we conjecture that in fact the almost sure lithjt exists and = 1/3. For some reinforcement of

this conjecture, we note a useful empirical illustration of Zuo (2003, Figures 3 and 4), which
shows that in a sample of size 20 from the standard normal distribution, the halfspace median
can resist replacement of 6 points by outliers but not replacement of 7 points. O
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