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Abstract

Re-sampling methods have long been used in survey sampling, dating back to
Mahalanobis (1946). More recently, jackknife and bootstrap resampling methods
have also been proposed for small area estimation; in particular for mean squared
error (MSE) estimation and for constructing confidence intervals. We present a
brief overview of early uses of resampling methods in survey sampling, and then
provide an appraisal of more recent re-sampling methods for variance estimation
and inference for small areas.
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1 Re-sampling Variance Estimation

The importance of measurement errors in sample surveys was recognized as early as the
1940’s. Mahalanobis (1946) developed the technique of interpenetrating sub-samples (also
called replicated sampling, Deming 1960) for assessing both sampling and measurement er-
rors, and used it extensively in large-scale sample surveys in India. The sample is drawn in the
form of two or more independent sub-samples according to the same sampling design such that
each sub-sample provides a valid estimate of the finite population total or mean. By assigning
the sub-samples to different interviewers (or teams), a valid estimate of the total variance, that
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takes proper account of the correlated response variance due to interviewers, is obtained. Hall
(2003) provides a scholarly historical account of Mahalanobis’ seminal contributions to early
development of survey sampling in India.

For the case of independent and identically distributed (IID) observatigns, v,,, Que-
nouille (1956) developed an ingenious method of bias reduction in a full-sample estimator,
6, of a model parametet. The sample of size is first divided at random intg groups
Gi,...,Gg, each of sizen, assuming that = gm. The groups(s;, are deleted in turn and
the “delete-group” estimat@j), j=1,...,g, are computed, wher@j) denotes the estima-
tor of # based on the sample of size— m = g — m after deletingG;. Quenouille (1956)
showed that the estimator
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leads to bias reduction, in the sense that the bi@@(ﬁs of orderO(n~2) if the bias off is of
the form
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whereé(,) =g ! Z@(j). In the sample survey context, Durbin (1959) applied Quenouille’s
method to ratio estimation, using = 2 groups. Rao (1965) and Rao and Webster (1966)
studied the optimal choice gffor bias reduction in ratio estimation, and showed that n
is the optimal choice. In the latter case, we have the delete-1 jackknife.

Tukey (1958) noted that foy = n andéd = 7, the sample mean, the “pseudo-valué ;i
reduce to@Qj = y; and hence IID. Motivated by this result, Tukey suggested regarding the

fq; as IID for generad and then using

as the “jackknife” variance estimator &f, or §. Note that the implementation of;(d) is
computer-intensive it requires iterative calculation, becauseets of iterative calculation

need to be performed to calcul#tg), j = 1, ..., n, and hence the jackknife variance estimate.

In the 50's this was indeed a problem, given the state of high-speed computing in those days.
Miller (1964) established the asymptotic consistency dior smooth functions of meana,

and studied the question “Is the jackknife trustworthy?” We refer the reader to Shao and Tu
(1995, Chapter 2) for later work on the jackknife.
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Wu (1986) studied the linear regression mogek= z! 3 + ¢;, where the independent
model errors:; have zero mean and possibly unequal variancesLet 3 be the ordinary
least squares estimator gfandd = g(B) for some vector smooth function(.). Under
the weighted jackknife method, proposed by Wu (1986), pairsc;) are deleted in turn for
j=1,---,nandthe resulting estimatg;, andd;) = g(3;)) are computed. The weighted

jackknife variance estimator éfis then given by

vw(0) = (1 =w;) (B — )0 — )7,
j=1

wherew; = ] (3oiL, wix])~'az;. Wu (1986) established the asymptotic consistency of
v, (0) under the conditiomax(w;) — 0 asn — oo. He also showed that in the linear case
6 = 3, the weighted jackknife variance estimator is exactly unbiased if the error variances
o? are equalo? = o?). In section 3, we show that both Quenouille’s bias reduction method
and Tukey'’s jackknife or Wu's weighted jackknife play important roles in MSE estimation for
small areas.

Bootstrap re-sampling was first introduced by Efron (1979). Efron’s pioneering 1979 pa-
per on the bootstrap for the IID case and the subsequent enormous amount of research on
bootstrap had a huge impact on the practice of statistics, especially after the ready availability
of high-speed computing. Bootstrap offers wider flexibility than the jackknife, and in the 11D
case the bootstrap variance estimator for non-smooth estimators, like the median, remains con-
sistent unlike the delete-1 jackknife. Moreover, it can provide “better” confidence intervals
than the normal approximation-based methods. We refer the reader to the excellent books by
Hall (1992) and Shao and Tu (1995) for detailed theoretical accounts of the bootstrap method.

Stratified multi-stage cluster sampling is commonly used in large-scale socio-economic
surveys. Pioneering work on “delete-cluster” jackknife and balanced repeated replication
(BRR) for variance estimation under stratified multi-stage cluster sampling is due to McCarthy
(1969) and Kish and Frankel (1974). Krewski and Rao (1981) provide theoretical justification
by establishing the asymptotic consistency of delete-cluster jackknife and BRR variance esti-
mators for surveys with a large number of strata and small numbers of sampled clusters within
strata. They considered estimatérthat can be expressed as smooth functions of estimated
totals or means. We refer the reader to Shao and Tu (1995, Chapter 6) for various extensions
including the consistency of BRR variance estimator for non-smooth estimators such as the
median; consistency or inconsistency of the delete-cluster jackknife in the non-smooth case is
not known.

Bootstrap sampling of first-stage clusters within strata was studied by Rao and Wu (1988),
Rao, Wu and Yue (1992), Sitter (1992) and others. Bootstrap offers flexibility in terms of
number of re-sampled3, especially for surveys with a large number of first-stage sample
clusters, unlike the delete-cluster jackknife. The data file reports the sample data as well as
the associated full sample weights and fhéootstrap weights. The user simply computes
0,01, ...,05 fromthe data file, using the full sample weights andthigootstrap weights. The
bootstrap variance estimator @fs then simply obtained as
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vpoor(®) = 5 3 (B~ B)(y )"
b=1

Bootstrap withB = 500 is currently used in Statistics Canada for variance estimation.
Shao (2003) and Lahiri (2003) provide nice accounts of the impact of the bootstrap in survey
sampling.

2 Small Area Estimation

Traditional direct estimators for large areas or domains, based only on area-specific data, are
not reliable for small areas due to small sample sizes. As a result, model-based small area es-
timation has received a lot of attention in recent years due to its potential in providing reliable
area-level estimates, even with small area-specific sample sizes, by borrowing information
across areas through linking models based on auxiliary information. Here, we focus on a ba-
sic area-level model, called the Fay-Herriot (FH) model.&;et ¢(Y;) be a suitable function

of the small area tota}; linearly related to area-level predictor variablési = 1,--- ,m.

The linking model is given by

T .
97;:2,’1'5—’—2)7;7 /L:]-u”'7m7

where thev; are independent and identically distributed (11D)/é§0, 02). A matching sam-
pling model is of the form

él:g(ﬁ)zel"i'e’n izly"'amv

where thee; are independently distributed @86(0, ¢;) with known sampling variance;,
andY; is a direct estimator o¥; (Fay and Herriot, 1979). A mismatched sampling model
Y; = Y; + f; with E(f;) = 0 is more realistic for small area samples becafigg(Y;)} can
differ significantly fromé; if ¢(.) is non-linear. However, we focus here on the simple case
0; = Y; in which case the two sample models are identical.

The best estimator (under squared losg)df given byl = E(6:(0;, 3, 02) = h(d;, 3, 02).
We estimate the model parametgrandos? by a suitable method, such as maximum likeli-
hood (ML), residual maximum likelihood (REML) or the FH method of moments. Here we

focus on REML estimators of ando?2. Substituting the estimatorsando? in @f, we get

. : ~EB ~a A .
the empirical best (EB) estimato; = h(6;,3,62%) = 4,0; + (1 — 4;)zF 3 under the FH
area level model, wherg, = o2/(02 + ;). This estimator is also the empirical best linear
unbiased prediction (EBLUP) estimator without normality assumption.

~EB .
Mean squared error (ﬂf may be written as
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MSE@TYY = EB@CF - 6,)?
= BB — 0+ B0 —0,)?
= Mu(oy) + Mai(a?). (2.1)

For the FH model, the leading term in (2.1)%;(02) = g1:(02) = ~;1; which shows effi-
ciency gain over the direct estimatgrwith M SE(0;) = E(0; — 6;)? = 1, . No closed-form
expression forMy;(0?) exists. Prasad and Rao (1990), Datta and Lahiri (2000) and Datta,
Rao and Smith (2005) obtained a Taylor linearization approximation4go?) for largem
asMo;(02) ~ goi(02) +gsi(c2), where the neglected terms are of or@&rn—2), andgo; (02)
andgs;(c2), depend on the asymptotic varianceﬁb&nd&?}, respectively. Note that the ne-
glected terms in the second order approximatieno2) + g2i(02) + g3i(02), to MSE(@iEB)
are of ordeiO(m=2).

Turning to MSE estimation, a nearly-unbiased estimator under REML is given by (Datta
and Lahiri, 2000)

mse(d; ) = 91i(62) + 92i(52) + 295:(5%) (22)

The bias of (2.2) is of lower order than—! for largem. Note that the MSE estimator
(2.2) is not area-specific in the sense that it does not deperigl dkiternatives to the term
2¢3:(62) in (2.2) that make use @f, have been proposed (Rao, 2003, section 7.1.5).

If 8; = g(Y;), then the best estimator &, E(Yi\ffi,ﬁ,a?)) = h(Yi, 3,02) has no closed
form expression. As a result, MSE estimation using Taylor linearization becomes complex or
difficult. In Section 3 and 4, we show that the jackknife and bootstrap can be used to handle
such general cases including generalized linear mixed models.

3 Jackknife MSE Estimation for Small Areas

Jiang, Lahiri and Wan (2002) proposed a jackknife estimatdmﬁE(éf B) that avoids the
explicit evaluation ofyy;(.) andgs;(.) terms in (2.2), but it still requires the derivationgf(.)
term which is simple for the EB estimatéfB above. They applied Tukey's jackknife idea to
get a delete-area jackknife estimatorid;(o2). Let¢ = (3,02) and&ﬁ(u) denote the delete
u-th area estimator af; u = 1, - -- ,m. Then, the Jiang, Lahiri and Wan (JLW) un-weighted
jackknife estimators oMy;(o2) is given by

Mg = "2 3 (hlfis ) — 1616 G
u=1

Quenouille’s bias reduction method is applied\;(52) in (2.1) to get
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My = gui(6 Z {91(620) — 91:(62)}° (3.2)

JLW proved thatMi,J = Mu,J + Mgu is a nearly unbiased estimator MSE(@ZEB)
in the sense that its bias is of lower order thanm! . A weighted version is obtained
by applying Wu’'s weighted jackknife method (Chen and Lahiri, 2002) with weights=

— (2T ) O zizd ;) 7Lz, replace(m — 1) /min (3.1) and (3.2) byv,(u = 1,--- ,m)
and take it inside the summation terms. Note tﬁ&gﬂ; and its weighted version are area-
specific in the sense of depending thn The weighted jackknife version performed better in
small sample$m = 12) than}M; ; (Chen and Lahiri, 2002).

As noted by Bell (2001) in the context of FH model, the jackknife estimMQr, due

to bias correction in (3.2), can take negative values under certain scenarios. Chen and Lahiri
(2005) used jackknife linearization, under the REML estimaiprto get a weighted version

- . . ¥3 . v a7 )
M; 1 = 91:(63) + g2:(67) + WUM(U%) + m(e — 21 B)*v,.(62) (3.3)

whereuv,,;(67) = Y, wu (65, — 65)% is a weighted jackknife variance estimatoradf.

The estimator (3.3) is always non-negative, unmkgj or its weighted version, but requires
additional analytical work as in the case of (2.2). A simulation study indicated superior per-
formance of the proposed jackknife linearization MSE estimator (3.3).

The JLW jackknife method is applicable to general small area models, including mis-
matched models and non-normal cases (binary or count unit level responses). We simply start
with the best estimator of small area parameter of interest, given the model param&aets
it may not have a close form expression and hence may require numerical integration for spec-
ified . Moreover the leading/y; (or g1; ) term of the MSE can involve complex numerical
computations, and it is required for bias correction as in the FH model. Lohr and Rao (2009)
proposed an alternative jackknife MSE estimator that avoids the extra integration or summa-
tion with respect to marginal distribution, and as a result it is computationally simpler than the
JLW estimator of MSE. Also, its leading term in nonlinear cases is area-specific, in the sense
of depending on the area-specific data, unlike the JLW estimator.

To illustrate that Lohr-Rao method, consider the simple casg of;;; B(n;,p;), given
p; andp; ~;;q Beta(a, ﬁ) i =1,---,m, and the parameter of interestis In this case, the
best estimator of; is P = E(pilyi, ;) = h(yi, ¢) and the EB estimator ig”% = h(y;, ¢),
where¢ = (&, 3) is a consistent estimator gf= («, 3) . We have

MSE(p;") = EV (pilys. &) + (07" — p7)* = My + Mo, (3.4)

JLW needM;; in (3.4) as function ofp to get their bias correction estimatlohw which is
not area-specific. Area specific estimam?fgi, 7, of M>; is given by (3.1) withd; replaced
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by yi. Let V(pilyi,#) = d1i(yi, ¢) which depends on area-specific data, unlike in the FH
case studied above. Following a suggestion of Rao (2003, section 9.4), Lohr and Rao (2009)
applied a jackknife bias correction §g;(y;, ¢) to get the following estimator af/y;:

Mui(yi) = Gui(yi, & Z {61 (Wi b)) — G1(wir )} (3.5)
Jj#i=1

The JLW estimatoMQi,J is used forMs; in (3.4). The Lohr-Rao (LR) estimatd\?[M =

My, (y;) + Mo, 5 is nearly conditionally unbiased givem, unlike the JLW estimator, and also
nearly unbiased unconditionally as in the case of JLW, but it is less stable unconditionally
than the JLW estimator. Note that in the FH model case, the posterior varianceqgiven
V' (6;]6:, ¢), does not depend ah, unlike in the non-linear case. Hence, it is not possible to
obtain an area-specific estimator of the leading t&fm = g;;(c2) in the FH case.

4 Bootstrap MSE and Interval Estimation

4.1 MSE Estimation

Parametric bootstrap versions of the JLW jackknife MSE estimaflgp, have been pro-
posed by Butar and Lahiri (2003) and Pfeffermann and Glickman (2004). For the FH model

under normality,B parametric bootstrap sample%b, zi);i=1,---,m, b=1,--- Bare
generated as follows: (i) Generatpandé? independently fromV (0, 52) and N (0, ;) re-
spectively, (ii) Letd, = 2T+ o0 4+ el = 6% + éb. Using theb-th bootstrap sample, we
calculate the estimatorg (b) and3(b) and the resulting EB estimatogd,, (b)).

The components correspondingXé; ; and Mo; ; are then given by (Butar and Lahiri
(2003)):

My g = g1(63) — Z {g1:(6 — g1:(67)}
= 291:(6 Zgh (4.2)
. 13 o
Maip = EZ{ (6:,9(b)) — h(6:, )}, (4.2)
b=1

leading toM; p = My; g + Mo; p as the bootstrap MSE estimator&ﬁB. Pfeffermann and
Glickman (2004) proposed a different versionZ\EIELB but]\lei,B is not changed:
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B

Wi = > {n(8, 50)) — 021> (4.3)

b=1

They provide a heuristic argument that the resulting MSE estim@"q@,rg + Mgi’B has “the
advantage of potential robustness against sampling from non-normal distributions”. The above
bootstrap methods extend to more general models, as in the jackknife case. A possible dis-
advantage of the bootstrap method is that the bias of the MSE estimator may be sensitive to
the choice of number of bootstrap samplBs, It may be advisable to study sensitivity Bs
changes.

As noted before, for general small area models it is difficult to evaluaté/heterm.
Instead, it is possible to develop a bootstrap analogue of the Lohr-Rao method and get a
computationally simpler and area-specific MSE estimator that is conditionally as well as un-
conditionally unbiased. Hall and Maiti (2006a) and Chatterjee and Lahiri (2007) developed a
general double bootstrap method that is computer-intensive and avoids the evaluation of the
My;-term. We illustrate the method for the FH model but it is applicable for general paramet-
ric models. First, we note that the SE(@, ") = E{h(8;, ) — 0;}2 which suggests that a
naive estimator based on the (level 1) bootstrap samplgis, given byMa; g in (4.3). Next,

we perform bootstrap bias correction/ah; g using level 2 bootstrap samples. Tdth level
2 bootstrap sampl{e(@b(c), zi);i=1,---,m}, ¢=1,---,C associated with thé-th level
1 bootstrap sample is obtained by generatif(g) andv?(c) independently froniv (0, 52(c)),
andN(0,v,) and then Ietting@f(c) = 2T B(b) 4 90(c) + e2(c) = 6%(c) + é%(c). Using the
(be)-th level 2 bootstrap sample we calculate the estimaitptsc) and3(bc) and the resulting
EB estimators: {6, (c), d(be)}. Let

B C
~ - 1 ~b n b 2
Wawnc = 5 23 { n{0(e), dbe)} — 0(c) (4.4)
Then the bias-corrected estimatoerSE(@iEB) is given by
M; pe = 2Ms;, g — Ma; e (4.5)

The estimatoMi,Bc is nearly unbiased aB andC' tend to infinity.

Hall and Maiti (2006a) studied MSE estimation under a unit level nested error linear re-
gression mode};; = x£ﬂ+vi+€ij, j=1,---,i4=1,--- ,m,withv; ande;; independent
and having zero means and finite second and fourth moments, whierthe number of sam-
ple observationsy;;, z;;) in small area and the population meak; is known. Customary
normality assumption on; ande;; is thus relaxed. Hall and Maiti (2006a) proposed drawing
B level 1 bootstrap samples from distributions that match the estimated second and fourth mo-
ments ofv; ande;; and then computing the empirical best linear unbiased prediction (EBLUP)
estimators of small area meansyofrom the level 1 bootstrap samples. The resulting MSE
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estimator of the form (4.3) is then bias-corrected using a double bootstrap’vwetlel 2 boot-

strap samples from each level 1 bootstrap sample using the same moment matching method.
The resulting MSE estimator of the form (4.5) is nearly unbiased for very l@rgedC. The
Hall-Maiti method could also be used under the FH model without normality assumption, but

it could be quite involved for general linear mixed models, such as two level models, because
the fourth moments need to be estimated, Again, the bias of the MSE estimator could be quite
sensitive to the choice a8 andC.

4.2 Interval Estimation

Normal approximatioril —«)-level confidence intervals on the small area parantgtéased

~EB . . ~EB . . ~
on#, and a nearly unbiased MSE estimatase(d, ) or a re-sampling estimatd/; ; or

M; pc, are of the formo;" — 20 2(mse)l/?, v ¢ 2 /2(mse)/2}, wherez, , is the upper
a/2-point of a N (0, 1) variable andnse denotes a second-order MSE estimator. However,
the normal theory intervals are not second-order accurate, even under normaijtarat
e; , in the sense that the error in the coverage probability is of the @dder—) for large

m. Chatterjee, Lahiri and Li (2008) used the parametric bootstrap sarﬁ@l?&,&i); i =
1,---,m}, b =1,---, B and the leading terrgli(&f)) = gy; of the MSE estimator (2.2)

Y

to determine quantiles;; andts; such that the resulting bootstrap-based intel{@gﬁB —

t1s(g10)/2, 07" +12i(g15)/2) has coverage error of order—*/2 so that the proposed interval
is second-order accurate. Hall and Maiti (2006b) proposed a different bootstrap-based interval

. ) .. ~EB
that is also second-order accurate, but it does not make use of the area-specific e&fimator

It would be more appealing to the practitioner to use a nearly unbiased MSE estimator in
constructing confidence intervals 8n However, replacing,; by mse in the Chatterjeet al.
(2008) bootstrap calibration method does not seem to yield second-order accurate intervals.
Further research on accurate confidence interval estimation for small areas would be useful.
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