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Abstract

Re-sampling methods have long been used in survey sampling, dating back to

Mahalanobis (1946). More recently, jackknife and bootstrap resampling methods

have also been proposed for small area estimation; in particular for mean squared

error (MSE) estimation and for constructing confidence intervals. We present a

brief overview of early uses of resampling methods in survey sampling, and then

provide an appraisal of more recent re-sampling methods for variance estimation

and inference for small areas.
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1 Re-sampling Variance Estimation

The importance of measurement errors in sample surveys was recognized as early as the
1940’s. Mahalanobis (1946) developed the technique of interpenetrating sub-samples (also
called replicated sampling, Deming 1960) for assessing both sampling and measurement er-
rors, and used it extensively in large-scale sample surveys in India. The sample is drawn in the
form of two or more independent sub-samples according to the same sampling design such that
each sub-sample provides a valid estimate of the finite population total or mean. By assigning
the sub-samples to different interviewers (or teams), a valid estimate of the total variance, that
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takes proper account of the correlated response variance due to interviewers, is obtained. Hall
(2003) provides a scholarly historical account of Mahalanobis’ seminal contributions to early
development of survey sampling in India.

For the case of independent and identically distributed (IID) observationsy1, ..., yn, Que-
nouille (1956) developed an ingenious method of bias reduction in a full-sample estimator,
θ̂, of a model parameterθ. The sample of sizen is first divided at random intog groups
G1, ..., Gg, each of sizem, assuming thatn = gm. The groups,Gj , are deleted in turn and
the “delete-group” estimateŝθ(j), j = 1, ..., g, are computed, wherêθ(j) denotes the estima-
tor of θ based on the sample of sizen − m = g − m after deletingGj . Quenouille (1956)
showed that the estimator

θ̂Q = 1
g

g∑
j=1

{gθ̂ − (g − 1)θ̂(j)}

≡ gθ̂ − (g − 1)θ̂(.) ≡ 1
g

g∑
j=1

θ̂Qj

leads to bias reduction, in the sense that the bias ofθ̂Q is of orderO(n−2) if the bias of̂θ is of
the form

B(θ̂) =
a

n
+

b

n2
+ O

(
1
n3

)
,

whereθ̂(.) = g−1
∑

θ̂(j). In the sample survey context, Durbin (1959) applied Quenouille’s
method to ratio estimation, usingg = 2 groups. Rao (1965) and Rao and Webster (1966)
studied the optimal choice ofg for bias reduction in ratio estimation, and showed thatg = n
is the optimal choice. In the latter case, we have the delete-1 jackknife.

Tukey (1958) noted that forg = n andθ̂ = ȳ, the sample mean, the “pseudo-values”θ̂Qj

reduce tôθQj = yj and hence IID. Motivated by this result, Tukey suggested regarding the
θ̂Qj as IID for general̂θ and then using

vJ(θ̂Q) = 1
n(n−1)

g∑
j=1

(θ̂Qj − θ̂Q)2

= n−1
n

g∑
j=1

(θ̂(j) − θ̂(.))2

as the “jackknife” variance estimator ofθ̂Q or θ̂. Note that the implementation ofvJ(θ̂Q) is
computer-intensive if̂θ requires iterative calculation, becausen sets of iterative calculation
need to be performed to calculateθ̂(j), j = 1, ..., n, and hence the jackknife variance estimate.
In the 50’s this was indeed a problem, given the state of high-speed computing in those days.
Miller (1964) established the asymptotic consistency ofvj for smooth functions of means,θ̂,
and studied the question “Is the jackknife trustworthy?” We refer the reader to Shao and Tu
(1995, Chapter 2) for later work on the jackknife.
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Wu (1986) studied the linear regression modelyi = xT
i β + εi, where the independent

model errorsεi have zero mean and possibly unequal variancesσ2
i . Let β̂ be the ordinary

least squares estimator ofβ and θ̂ = g(β̂) for some vector smooth functiong(.). Under
the weighted jackknife method, proposed by Wu (1986), pairs(yi, xj) are deleted in turn for
j = 1, · · · , n and the resulting estimatesβ̂(j) andθ̂(j) = g(β̂(j)) are computed. The weighted

jackknife variance estimator of̂θ is then given by

vJw(θ̂) =
n∑

j=1

(1− wj)(θ̂(j) − θ̂)(θ̂(j) − θ̂)T ,

wherewj = xT
j (

∑n
i=1 xix

T
i )−1xj . Wu (1986) established the asymptotic consistency of

vJw(θ̂) under the conditionmax(wj) → 0 asn →∞. He also showed that in the linear case
θ̂ = β̂, the weighted jackknife variance estimator is exactly unbiased if the error variances
σ2

i are equal(σ2
i = σ2). In section 3, we show that both Quenouille’s bias reduction method

and Tukey’s jackknife or Wu’s weighted jackknife play important roles in MSE estimation for
small areas.

Bootstrap re-sampling was first introduced by Efron (1979). Efron’s pioneering 1979 pa-
per on the bootstrap for the IID case and the subsequent enormous amount of research on
bootstrap had a huge impact on the practice of statistics, especially after the ready availability
of high-speed computing. Bootstrap offers wider flexibility than the jackknife, and in the IID
case the bootstrap variance estimator for non-smooth estimators, like the median, remains con-
sistent unlike the delete-1 jackknife. Moreover, it can provide “better” confidence intervals
than the normal approximation-based methods. We refer the reader to the excellent books by
Hall (1992) and Shao and Tu (1995) for detailed theoretical accounts of the bootstrap method.

Stratified multi-stage cluster sampling is commonly used in large-scale socio-economic
surveys. Pioneering work on “delete-cluster” jackknife and balanced repeated replication
(BRR) for variance estimation under stratified multi-stage cluster sampling is due to McCarthy
(1969) and Kish and Frankel (1974). Krewski and Rao (1981) provide theoretical justification
by establishing the asymptotic consistency of delete-cluster jackknife and BRR variance esti-
mators for surveys with a large number of strata and small numbers of sampled clusters within
strata. They considered estimatorsθ̂ that can be expressed as smooth functions of estimated
totals or means. We refer the reader to Shao and Tu (1995, Chapter 6) for various extensions
including the consistency of BRR variance estimator for non-smooth estimators such as the
median; consistency or inconsistency of the delete-cluster jackknife in the non-smooth case is
not known.

Bootstrap sampling of first-stage clusters within strata was studied by Rao and Wu (1988),
Rao, Wu and Yue (1992), Sitter (1992) and others. Bootstrap offers flexibility in terms of
number of re-samples,B, especially for surveys with a large number of first-stage sample
clusters, unlike the delete-cluster jackknife. The data file reports the sample data as well as
the associated full sample weights and theB bootstrap weights. The user simply computes
θ̂, θ̂1, ..., θ̂B from the data file, using the full sample weights and theB bootstrap weights. The
bootstrap variance estimator ofθ̂ is then simply obtained as
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vBOOT (θ̂) =
1
B

∑

b=1

(θ̂b − θ̂)(θ̂b − θ̂)T .

Bootstrap withB = 500 is currently used in Statistics Canada for variance estimation.
Shao (2003) and Lahiri (2003) provide nice accounts of the impact of the bootstrap in survey
sampling.

2 Small Area Estimation

Traditional direct estimators for large areas or domains, based only on area-specific data, are
not reliable for small areas due to small sample sizes. As a result, model-based small area es-
timation has received a lot of attention in recent years due to its potential in providing reliable
area-level estimates, even with small area-specific sample sizes, by borrowing information
across areas through linking models based on auxiliary information. Here, we focus on a ba-
sic area-level model, called the Fay-Herriot (FH) model. Letθi = g(Yi) be a suitable function
of the small area totalYi linearly related to area-level predictor variablesZi, i = 1, · · · ,m.
The linking model is given by

θi = zT
i β + vi, i = 1, · · · ,m,

where thevi are independent and identically distributed (IID) asN(0, σ2
v). A matching sam-

pling model is of the form

θ̂i = g(Ŷi) = θi + ei, i = 1, · · · ,m,

where theei are independently distributed asN(0, ψi) with known sampling varianceψi,
and Ŷi is a direct estimator ofYi (Fay and Herriot, 1979). A mismatched sampling model
Ŷi = Yi + fi with E(fi) = 0 is more realistic for small area samples becauseE{g(Ŷi)} can
differ significantly fromθi if g(.) is non-linear. However, we focus here on the simple case
θi = Yi in which case the two sample models are identical.

The best estimator (under squared loss) ofθi is given bŷθ
B

i = E(θi|θ̂i, β, σ2
v) ≡ h(θ̂i, β, σ2

v).
We estimate the model parametersβ andσ2

v by a suitable method, such as maximum likeli-
hood (ML), residual maximum likelihood (REML) or the FH method of moments. Here we

focus on REML estimators ofβ andσ2
v. Substituting the estimatorsβ andσ2

v in θ̂
B

i , we get

the empirical best (EB) estimator:θ̂
EB

i ≡ h(θ̂i, β̂, σ̂2
v) = γ̂iθ̂i + (1 − γ̂i)zT

i β̂ under the FH
area level model, whereγi = σ2

v/(σ2
v + ψi). This estimator is also the empirical best linear

unbiased prediction (EBLUP) estimator without normality assumption.

Mean squared error of̂θ
EB

i may be written as
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MSE(θ̂
EB

i ) = E(θ̂
EB

i − θi)2

= E(θ̂
B

i − θi)2 + E(θ̂
EB

i − θi)2

≡ M1i(σ2
v) + M2i(σ2

v). (2.1)

For the FH model, the leading term in (2.1) isM1i(σ2
v) = g1i(σ2

v) = γiψi which shows effi-
ciency gain over the direct estimatorθ̂i with MSE(θ̂i) = E(θ̂i− θi)2 = ψi . No closed-form
expression forM2i(σ2

v) exists. Prasad and Rao (1990), Datta and Lahiri (2000) and Datta,
Rao and Smith (2005) obtained a Taylor linearization approximation toM2i(σ2

v) for largem
asM2i(σ2

v) ≈ g2i(σ2
v)+g3i(σ2

v), where the neglected terms are of orderO(m−2), andg2i(σ2
v)

andg3i(σ2
v), depend on the asymptotic variance ofβ̂ andσ̂2

v, respectively. Note that the ne-

glected terms in the second order approximation,g1i(σ2
v)+g2i(σ2

v)+g3i(σ2
v), toMSE(θ̂

EB

i )
are of orderO(m−2).

Turning to MSE estimation, a nearly-unbiased estimator under REML is given by (Datta
and Lahiri, 2000)

mse(θ̂
EB

i ) = g1i(σ̂2
v) + g2i(σ̂2

v) + 2g3i(σ̂2
v) (2.2)

The bias of (2.2) is of lower order thanm−1 for largem. Note that the MSE estimator
(2.2) is not area-specific in the sense that it does not depend onθ̂i. Alternatives to the term
2g3i(σ̂2

v) in (2.2) that make use of̂θi have been proposed (Rao, 2003, section 7.1.5).
If θi = g(Yi), then the best estimator ofYi, E(Yi|Ŷi, β, σ2

v) ≡ h(Ŷi, β, σ2
v) has no closed

form expression. As a result, MSE estimation using Taylor linearization becomes complex or
difficult. In Section 3 and 4, we show that the jackknife and bootstrap can be used to handle
such general cases including generalized linear mixed models.

3 Jackknife MSE Estimation for Small Areas

Jiang, Lahiri and Wan (2002) proposed a jackknife estimator ofMSE(θ̂
EB

i ) that avoids the
explicit evaluation ofg2i(.) andg3i(.) terms in (2.2), but it still requires the derivation ofg1i(.)
term which is simple for the EB estimatorθ̂

EB

i above. They applied Tukey’s jackknife idea to
get a delete-area jackknife estimator ofM2i(σ2

v). Let φ = (β, σ2
v) andφ̂(u) denote the delete

u-th area estimator ofφ;u = 1, · · · ,m. Then, the Jiang, Lahiri and Wan (JLW) un-weighted
jackknife estimators ofM2i(σ2

v) is given by

M2i,J =
m− 1

m

m∑

u=1

{h(θ̂i, φ̂(u))− h(θ̂i, φ̂)}2 (3.1)

Quenouille’s bias reduction method is applied toM1i(σ̂2
v) in (2.1) to get
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M̂1i,J = g1i(σ̂2
v)−

m− 1
m

m∑

u=1

{g1i(σ̂2
v(u))− g1i(σ̂2

v)}2 (3.2)

JLW proved thatM̂i,J = M̂1i,J + M̂2i,J is a nearly unbiased estimator ofMSE(θ̂
EB

i )
in the sense that its bias is of lower order thanm−1 . A weighted version is obtained
by applying Wu’s weighted jackknife method (Chen and Lahiri, 2002) with weightswu =
1− (zT

u /ψu)(
∑

ziz
T
i /ψi)−1zu: replace(m− 1)/m in (3.1) and (3.2) bywu(u = 1, · · · ,m)

and take it inside the summation terms. Note thatM̂2i,J and its weighted version are area-
specific in the sense of depending onθ̂i. The weighted jackknife version performed better in
small samples(m = 12) thanM̂i,J (Chen and Lahiri, 2002).

As noted by Bell (2001) in the context of FH model, the jackknife estimatorM̂i,J , due
to bias correction in (3.2), can take negative values under certain scenarios. Chen and Lahiri
(2005) used jackknife linearization, under the REML estimatorσ̂2

v, to get a weighted version

M̂i,JL = g1i(σ̂2
v) + g2i(σ̂2

v) +
ψ2

i

(σ̂2
v + ψi)3

vwJ(σ̂2
v) +

ψ2
i

(σ̂2
v + ψi)4

(θ̂ − zT
i β̂)2vwJ(σ̂2

v) (3.3)

wherevwJ(σ̂2
v) =

∑m
u=1 wu(σ̂2

v(u) − σ̂2
v)

2 is a weighted jackknife variance estimator ofσ̂2
v.

The estimator (3.3) is always non-negative, unlikeM̂i,J or its weighted version, but requires
additional analytical work as in the case of (2.2). A simulation study indicated superior per-
formance of the proposed jackknife linearization MSE estimator (3.3).

The JLW jackknife method is applicable to general small area models, including mis-
matched models and non-normal cases (binary or count unit level responses). We simply start
with the best estimator of small area parameter of interest, given the model parametersφ. But
it may not have a close form expression and hence may require numerical integration for spec-
ified φ. Moreover the leadingM1i (or g1i ) term of the MSE can involve complex numerical
computations, and it is required for bias correction as in the FH model. Lohr and Rao (2009)
proposed an alternative jackknife MSE estimator that avoids the extra integration or summa-
tion with respect to marginal distribution, and as a result it is computationally simpler than the
JLW estimator of MSE. Also, its leading term in nonlinear cases is area-specific, in the sense
of depending on the area-specific data, unlike the JLW estimator.

To illustrate that Lohr-Rao method, consider the simple case ofyi ∼iid B(ni, pi), given
pi andpi ∼iid Beta(α, β), i = 1, · · · ,m, and the parameter of interest ispi. In this case, the
best estimator ofpi is p̂B

i = E(pi|yi, φi) ≡ h(yi, φ) and the EB estimator iŝpEB
i = h(yi, φ̂),

whereφ̂ = (α̂, β̂) is a consistent estimator ofφ = (α, β) . We have

MSE(p̂EB
i ) = EV (pi|yi, φ) + E(p̂EB

i − p̂B
i )2 ≡ M1i + M2i (3.4)

JLW needM1i in (3.4) as function ofφ to get their bias correction estimator̂M1i,J which is
not area-specific. Area specific estimator,M̂2i,J , of M2i is given by (3.1) witĥθi replaced
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by yi. Let V (pi|yi, φ) = g̃1i(yi, φ) which depends on area-specific data, unlike in the FH
case studied above. Following a suggestion of Rao (2003, section 9.4), Lohr and Rao (2009)
applied a jackknife bias correction tõg1i(yi, φ̂) to get the following estimator ofM1i:

M̃1i(yi) = g̃1i(yi, φ̂)−
m∑

j 6=i=1

{g̃1i(yi, φ̂(u))− g̃1i(yi, φ̂)}2. (3.5)

The JLW estimatorM̂2i,J is used forM2i in (3.4). The Lohr-Rao (LR) estimator̃Mi,J =
M̃1i(yi)+ M̂2i,J is nearly conditionally unbiased givenyi, unlike the JLW estimator, and also
nearly unbiased unconditionally as in the case of JLW, but it is less stable unconditionally
than the JLW estimator. Note that in the FH model case, the posterior variance givenφ,
V (θi|θ̂i, φ), does not depend on̂θ , unlike in the non-linear case. Hence, it is not possible to
obtain an area-specific estimator of the leading termM1i = g1i(σ2

v) in the FH case.

4 Bootstrap MSE and Interval Estimation

4.1 MSE Estimation

Parametric bootstrap versions of the JLW jackknife MSE estimator,M̂i,J , have been pro-
posed by Butar and Lahiri (2003) and Pfeffermann and Glickman (2004). For the FH model

under normality,B parametric bootstrap samples(θ̂
b

i , zi); i = 1, · · · ,m, b = 1, · · · , B are
generated as follows: (i) Generatev̂b

i and êb
i independently fromN(0, σ̂2

v) andN(0, ψi) re-

spectively, (ii) Letθ̂
b

i = zT
i β̂ + v̂b

i + êb
i ≡ θb

i + êb
i . Using theb-th bootstrap sample, we

calculate the estimatorŝσ2
v(b) andβ̂(b) and the resulting EB estimatorsh(θ̂

b

i , φ̂(b)).
The components corresponding tôM1i,J andM̂2i,J are then given by (Butar and Lahiri

(2003)):

M̂1i,B = g1i(σ̂2
v)−

1
B

B∑

b=1

{g1i(σ̂2
v(b))− g1i(σ̂2

v)}

= 2g1i(σ̂2
v)−

1
B

B∑

b=1

g1i(σ̂2
v(b)) (4.1)

M̂2i,B =
1
B

B∑

b=1

{h(θ̂i, φ̂(b))− h(θ̂i, φ̂)}2, (4.2)

leading toM̂i,B = M̂1i,B + M̂2i,B as the bootstrap MSE estimator ofθ̂
EB

i . Pfeffermann and
Glickman (2004) proposed a different version ofM̂2i,B butM̂1i,B is not changed:
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M̃2i,B =
1
B

B∑

b=1

{h(θ̂
b

i , φ̂(b))− θb
i}2. (4.3)

They provide a heuristic argument that the resulting MSE estimatorM̂1i,B + M̃2i,B has “the
advantage of potential robustness against sampling from non-normal distributions”. The above
bootstrap methods extend to more general models, as in the jackknife case. A possible dis-
advantage of the bootstrap method is that the bias of the MSE estimator may be sensitive to
the choice of number of bootstrap samples,B. It may be advisable to study sensitivity asB
changes.

As noted before, for general small area models it is difficult to evaluate theM1i term.
Instead, it is possible to develop a bootstrap analogue of the Lohr-Rao method and get a
computationally simpler and area-specific MSE estimator that is conditionally as well as un-
conditionally unbiased. Hall and Maiti (2006a) and Chatterjee and Lahiri (2007) developed a
general double bootstrap method that is computer-intensive and avoids the evaluation of the
M1i-term. We illustrate the method for the FH model but it is applicable for general paramet-

ric models. First, we note that theMSE(θ̂
EB

i ) = E{h(θ̂i, φ̂) − θi}2 which suggests that a
näive estimator based on the (level 1) bootstrap samples,b , is given byM̃2i,B in (4.3). Next,
we perform bootstrap bias correction ofM̃2i,B using level 2 bootstrap samples. Thec-th level

2 bootstrap sample{(θ̂b
(c), zi); i = 1, · · · ,m}, c = 1, · · · , C associated with theb-th level

1 bootstrap sample is obtained by generatingvb
i (c) andvb

i (c) independently fromN(0, σ̂2
v(c)),

andN(0, ψi) and then lettinĝθ
b

i(c) = zT
i β̂(b) + v̂b

i (c) + êb
i(c) ≡ θb

i(c) + êb
i(c). Using the

(bc)-th level 2 bootstrap sample we calculate the estimatorsσ̂2
v(bc) andβ̂(bc) and the resulting

EB estimatorsh{θ̂b

i(c), φ̂(bc)}. Let

M̃2i,BC =
1

BC

B∑

b=1

C∑

c=1

{
h{θ̂b

i(c), φ̂(bc)} − θb
i(c)

} 2
. (4.4)

Then the bias-corrected estimator ofMSE(θ̂
EB

i ) is given by

M̃i,BC = 2M̃2i,B − M̃2i,BC (4.5)

The estimatorM̃i,BC is nearly unbiased asB andC tend to infinity.
Hall and Maiti (2006a) studied MSE estimation under a unit level nested error linear re-

gression modelyij = xT
ijβ+vi+eij , j = 1, · · · , i; i = 1, · · · ,m, with vi andeij independent

and having zero means and finite second and fourth moments, whereni is the number of sam-
ple observations(yij , xij) in small areai and the population mean̄Xi is known. Customary
normality assumption onvi andeij is thus relaxed. Hall and Maiti (2006a) proposed drawing
B level 1 bootstrap samples from distributions that match the estimated second and fourth mo-
ments ofvi andeij and then computing the empirical best linear unbiased prediction (EBLUP)
estimators of small area means ofy from the level 1 bootstrap samples. The resulting MSE
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estimator of the form (4.3) is then bias-corrected using a double bootstrap withC level 2 boot-
strap samples from each level 1 bootstrap sample using the same moment matching method.
The resulting MSE estimator of the form (4.5) is nearly unbiased for very largeB andC. The
Hall-Maiti method could also be used under the FH model without normality assumption, but
it could be quite involved for general linear mixed models, such as two level models, because
the fourth moments need to be estimated, Again, the bias of the MSE estimator could be quite
sensitive to the choice ofB andC.

4.2 Interval Estimation

Normal approximation(1−α)-level confidence intervals on the small area parameterθi, based

on θ̂
EB

i and a nearly unbiased MSE estimator,mse(θ̂
EB

i ) or a re-sampling estimator̂Mi,J or

M̃i,BC , are of the form{θ̂EB

i −zα/2(mse)1/2, θ̂
EB

i +zα/2(mse)1/2}, wherezα/2 is the upper
α/2-point of aN(0, 1) variable andmse denotes a second-order MSE estimator. However,
the normal theory intervals are not second-order accurate, even under normality ofvi and
ei , in the sense that the error in the coverage probability is of the orderO(m−1) for large

m. Chatterjee, Lahiri and Li (2008) used the parametric bootstrap samples{(θ̂b

i , zi); i =
1, · · · ,m}, b = 1, · · · , B and the leading termg1i(σ̂2

v) ≡ ĝ1i of the MSE estimator (2.2)

to determine quantilest1i and t2i such that the resulting bootstrap-based interval{θ̂EB

i −
t1i(g1i)1/2, θ̂

EB

i +t2i(g1i)1/2} has coverage error of orderm−3/2 so that the proposed interval
is second-order accurate. Hall and Maiti (2006b) proposed a different bootstrap-based interval

that is also second-order accurate, but it does not make use of the area-specific estimatorθ̂
EB

i .

It would be more appealing to the practitioner to use a nearly unbiased MSE estimator in
constructing confidence intervals onθi. However, replacinĝg1i by mse in the Chatterjeeet al.
(2008) bootstrap calibration method does not seem to yield second-order accurate intervals.
Further research on accurate confidence interval estimation for small areas would be useful.
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