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Abstract

We propose a new Metropolis-Hastings algorithm for sampling from smooth, unimodal distributions;

a restriction to the method is that the target be optimizable. The method can be viewed as a mixture

of two types of MCMC algorithm; specifically, we seek to combine the versatility of the random walk

Metropolis and the efficiency of the independence sampler as found with various types of target dis-

tribution. This is achieved through a directional argument that allows us to adjust the thickness of the

tails of the proposal density from one iteration to another. We discuss the relationship between the ac-

ceptance rate of the algorithm and its efficiency. We finally apply the method to a regression example

concerning the cost of construction of nuclear power plants, and compare its performance to the random

walk Metropolis algorithm with Gaussian proposal.
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1 Introduction

Metropolis-Hastings algorithms have countless applications in science. They aim to provide
a sample from a distribution of interest, the target distribution, often too complex or high-
dimensional to allow for direct sampling. These efficient sampling methods are particularly
popular in Bayesian statistics, where the distribution of interest in often intractable. In statis-
tics however, their application is far from limited to the Bayesian framework, and they can be
useful in the classical (or frequentist) approach. In hypothesis testing for instance, it may be
of interest to determine an exactp-value; this may be the case when examining new or existing
methods for computingp-values, or simply when performing a study about their accuracy (see
Bédard et al. 2007).

Common to all Metropolis-Hastings algorithms is the need for selecting a proposal density
q, which is used to propose values to be potentially included in the sample. The characteristics
of the chosenq define the type of algorithm that is used. The most popular class of Metropolis-
Hastings algorithms is undoubtedly that of the random walk Metropolis (RWM) algorithms.
The proposal density of these algorithms is centered around the current value of the Markov
chain (or, in other words, the current value of the sample); standard choices for the proposal
distribution are the normal and the uniform distributions. The proposal density of a RWM
algorithm thus evolves over time, and this results in an algorithm that is versatile and extremely
easy to apply. In fact, practitioners need to make very few adjustments before using this
algorithm; they only need to tune the variance of the proposal distribution in the case of a
normal proposal, or its range in the case of a uniform proposal. There already exist guidelines
in the literature to facilitate this step (Roberts et al. 1997; Roberts and Rosenthal 2001; Bédard
2006 and 2007). As a drawback to the wide applicability of RWM algorithms, we notice
however that their convergence may be lengthy. This should not come as a surprise when
taking into account the versatility of the sampling method, which may be applied to sample
from virtually any target distribution.

A second class of Metropolis-Hastings algorithms contains the independence samplers.
For this class of algorithm, the proposal densityq is independent of the previous values in
the Markov chain. From one iteration to another, the proposal density thus remains the same.
When applying MCMC methods, the selection of the proposal distribution always involves
a compromise: the closer it is to the target distribution, the more difficult it is to generate
moves from the proposal distribution but the more efficient is the sampling method. Under
this scheme, we have the opportunity to select a proposal distribution which is close to the
target distribution in a certain sense. Hence, the independence sampler has the potential of
enjoying better convergence properties than the RWM algorithm, but it necessitates a better
understanding of the target distribution. Generally, independence samplers are more problem-
specific than RWM algorithms, but they also require more work in order to come up with a
well-suited proposal density.

In this paper, we introduce a new sampling algorithm that could be classified between
RWM algorithms and independence samplers. In other words, we attempt to combine the
versatility of the RWM algorithm and the performance of the independence sampler to obtain
samples from smooth and unimodal target densities. As is the case for the independence sam-
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pler, the location of the new proposal distribution is fixed over time; the tails of the proposal
distribution however are fine tuned by what we call a directional adjustment. This feature
ensures that the tails of the target distribution are not neglected; this is an important detail,
particularly when the estimation of tail probabilities is of interest as was the case in Bédard et
al. (2007).

The paper is arranged as follows. In Section 2, we introduce some notation and describe
the type of target distribution for which the new algorithm is designed. In Section 3, we de-
velop the theory behind the directionally adjusted argument, and in Section 4 we summarize
the necessary steps for implementing the algorithm. To illustrate its application and its perfor-
mance, we consider 3- and 8-parameter regression examples in Sections 5 and 6, and compare
the new method to both the independence sampler and the RWM algorithm. We conclude the
paper with a discussion in Section 7.

Compared to the RWM algorithm, the resulting algorithm reduces significantly the vari-
ances of estimates; it also produces a high acceptance rate. The acceptance rate of an algo-
rithm is defined as the proportion of proposed moves that are accepted as suitable values for
the sample. In the case of RWM algorithms, a high acceptance rate is by no mean an indi-
cator of efficiency for the algorithm; on the contrary it generally is a sign that the algorithm
is exploring the state space too slowly and thus performing sub-efficiently. In the case of an
independence sampler, we are not aware of any theoretical result stating that efficiency is im-
plied by, or somehow related to a high acceptance rate. For instance, an independence sampler
with a high acceptance rate might indicate that we sample too much from regions with high
target density, and consequently that the proposal distribution is poorly suited to the problem
at hand. Intuitively however, we can deduce that a high acceptance rate is a favorable attribute
in our case. Indeed, if we are positive that we are not undersampling the tails of the target
density, then a high acceptance rate indicates that we are not wasting energy in proposing too
great a number of unsuitable values for the target; in other words, the proposal is a good fit!

2 Some Notation

Consider ann-dimensional target densityπ (x), x = (x1, . . . , xn). Suppose that we are
interested in obtaining a sample from this density of interest, but that unfortunately there
is no simple way to achieve this directly. We might then use the very general Metropolis-
Hastings algorithm (Metropolis et al. 1953; Hastings 1970), which is implemented through
the following procedure.

Given that the current sample value isxj , we propose a new value for the sample by gener-
ating a valueyj+1 from a preferred proposal distribution with densityq (yj+1 |xj ). Then, we
accept this proposed value as the new sample value (i.e. we setxj+1 = yj+1) with probability
α (xj ,yj+1), where

α (xj ,yj+1) = 1 ∧ π (yj+1) q (xj |yj+1 )
π (xj) q (yj+1 |xj )

; (2.1)
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otherwise, we repeat the current value in the sample and setxj+1 = xj . If we then repeat this
N − 1 times from an initialx0 we will obtain a nominal sample of sizeN .

This sampling method is very general and might exhibit peformances that are dramatically
different depending on which type of proposal density is selected. As mentioned previously,
one approach is to use the extremely popular RWM algorithm. Usually, the RWM algorithm
employs a proposal density with independent components:

q (yj+1 |xj ) =
n∏

i=1

qi (yj+1,i |xj ) ,

whereqi (yj+1,i |xj ) is the density for theith component ofyj+1. For instance, one might set
Yj+1 ∼ N

(
xj , σ

2In

)
for someσ > 0, with In then-dimensional identity matrix. The center

of the proposal distribution is thus spanning the state space over time. This is a convenient
practice, but as soon as we are dealing with a multi-dimensional target distribution which does
not possess independent components, as is usually the case, this independence assumption
between the proposal components becomes suboptimal.

Nonetheless, applying the method does not require a very thorough study of the target
density, and may not be much hassle to implement. If we are lucky, we might even benefit from
a reasonable convergence rate to the stationary distribution. However in particular situations,
where the density of interest is heavy-tailed for instance, the RWM algorithm may take more
time to explore the space and may exhibit a slower convergence to stationarity, which may be
frequent in the asymptotic context (asn →∞).

Now in the case where the target densityπ is smooth and unimodal and if we are able to
maximize the density function, then we may be able to take advantage of this extra information
to come up with a refined proposal distribution. In fact, the initial idea would be to design a
proposal density that mimics the target density at its maximum. In other words, we would
like our proposal density not only to have the same mode as the target density, but also similar
curvature properties at the maximum.

For this, letx̂ = arg supx π (x) be the point at which the target density attains its maxi-
mum (the mode), and letπ (x̂) be the value of the density at that maximum. Recall that the
Hessian matrix of the target density is defined as




∂2π
∂x2

1

∂2π
∂x1∂x2

· · · ∂2π
∂x1∂xn

∂2π
∂x2∂x1

∂2π
∂x2

2
· · · ∂2π

∂x2∂xn

...
...

...
...

∂2π
∂xn∂x1

∂2π
∂xn∂x2

· · · ∂2π
∂x2

n




, (2.2)

and will typically be negative definite when evaluated at the modex̂; accordingly we takêH =
−∂2 log π (x) /∂x∂xT |x=x̂ to be the negative Hessian of the log-density at the maximumx̂.

A natural choice for a proposal distribution would then be to select a normal density,
whose location and scaling are adjusted to matchx̂ and Ĥ−1 respectively. This, however,
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illustrates well the problem at hand: the resulting proposal distribution is one that is static, i.e.
whose location does not vary through time, but whose maximum does mimic that of the target
distribution. Using a proposal distribution whose location is static calls for a certain level of
caution, mainly to ensure that we are not undersampling from certain areas of the state space.
Indeed, it is well-known that the normal density has short tails. It is therefore reasonable to
wonder what would happen if we aimed at sampling from a target distribution with long tails?
Since the normal distribution seldom proposes moves located far out in the tails, we might
expect to either neglect the tails of the target distribution, or have to run the algorithm for a
very long time before it converges to the stationary distribution. In order to design an efficient
proposal distribution whose location is fixed through time, it is thus necessary to ensure that
it has tails that are heavy enough to match those of the target distribution.

How does the acceptance rate of an algorithm relate to the efficiency of the proposed
method? For the case of RWM algorithms, it is commonly acknowledged that a high pro-
portion of accepted moves is usually far from guaranteeing any level of perfomance in the
algorithm. In the case of a Gaussian proposal distribution for instance, a high acceptance
rate might reveal that very small steps are taken at every iteration, and consequently that
the algorithm explores its state space inefficiently. In fact, theoretical results prove that for
high-dimensional target distributions, the proportion of accepted moves that yields the fastest
convergence to the stationary distribution is smaller or equal to 25% (Roberts et al. 1997;
Bédard 2006, 2007).

In the case of a proposal distribution whose location is fixed, the acceptance rate must
be interpreted differently. Indeed, because the location of the proposal distribution does not
span the state space but rather remains fixed, it is important that it does not neglect any region
where the target density is positive. In the cases we consider, where the location of both the
target and proposal densities are identical, excessively high or low acceptance rates could be
indicators of two different concerns. A high acceptance rate could indicate that the proposal
distribution is concentrated in regions where the target possesses a high density only, thus
ignoring other regions with lower, but positive density; such a proposal distribution could
then wrongly lead us to oversample from some regions. At some opposite, the tails of the
proposal distribution could be considerably heavier than those of the target distribution and
too great a number of improbable values for the target would be proposed; this would translate
into a reduced acceptance rate, and would consequently alter the speed of convergence of the
algorithm.

As long as we are totally sure that the proposal distribution selected does not neglect any
region of the state space, a high acceptance rate is then an indicator that the proposal is a
good fit for the target considered. Although this is quite intuitive, we are not aware of any
general theoretical result confirming this as yet. This might be related to the fact that for a
general form of the target density, it is not straight-forward to design a well-suited proposal
distribution with a fixed location that would allow to observe such an implication. In the
following section, we introduce a directionally adjusted proposal distribution that attempts to
resolve this issue.
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3 A Directionally Adjusted Proposal Distribution

3.1 Centering and Scaling the Student Distribution

We aim at sampling efficiently from a smooth and unimodaln-dimensional target density
π. Under this setting, the regions most likely to be neglected using a proposal density that
is centered around̂x and scaled according tôH−1 are the tails of the target density. As
mentioned in the previous section, a normal proposal would not be a wise choice due to its
short tails. To overcome this problem, we consider a distribution with heavier tails, then-
dimensional Student density withf degrees of freedom; in its canonical form, designated
Studentf (0, In), this density satisfies

qf (t) =
Γ

(
f+n

2

)

πn/2Γ
(

f
2

) (
1 + t21 + . . . + t2n

)− f+n
2

=
Γ

(
f+n

2

)

πn/2Γ
(

f
2

) (
1 + t′t

)− f+n
2 , (3.1)

wheret′ = (t1, . . . , tn). Samples from this distribution are easily generated from any statis-
tical package. Indeed, an observation from ann-dimensional canonical Student distribution
with f degrees of freedom can be obtained as

t′ =
(

z1

χf

, . . . ,
zn

χf

)
, (3.2)

wherez1, . . . , zn are independent observations from a standard normal distribution andχ2
f is

an observation from a chi-square distribution withf degrees of freedom.
The negative Hessian of the log density att = 0 for then-dimensional canonical Student

(3.1) is equal to(f + n) In. Adjusting the location and scaling to match the location and Hes-

sian of the target density at its mode, the proposal then becomes a Studentf

(
x̂, (f + n) Ĥ−1

)
.

For this we then relocate and rescale the generatedt’s to obtain

y = x̂ + (f + n)1/2 Ĥ−1/2t, (3.3)

whereĤ1/2 is a right square root matrix of̂H = (Ĥ1/2)′(Ĥ1/2), or alternatively we might
use the relation

y = x̂ + w/χf ,

wherew designates an observation from a multivariate normalMN
(
0, (f + n) Ĥ−1

)
.
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The general form of the relocated and rescaled proposal density is given as

qf (y) =
Γ

(
f+n

2

)

πn/2Γ
(

f
2

)
(

1 +
(y − x̂)′ Ĥ (y − x̂)

f + n

)− f+n
2

∣∣∣Ĥ1/2
∣∣∣

(f + n)n/2
. (3.4)

Now all that is left is choosing the degrees of freedomf of the distribution. What value of
f would produce the optimal speed of convergence for the algorithm? On the one hand, the
parameterf has to be small enough to yield tails that are at least as heavy as those of the
target density; on the other hand, a too-small value forf could yield unnecessarily heavy
tails that would slow down the convergence of the algorithm. Furthermore, we have not yet
considered the fact that the picture might vary as we study different directions with the target
density; indeed, the target densities considered are often far from spherically symmetrical and
the behavior of the tails can vary widely over the state space.

Because of the generality of the target densities studied, a natural decision for the degrees
of freedomf of the proposal distribution would be to allow it to vary over time as opposed
to choosing a value fixed for the duration of the algorithm. We find this approach to be more
efficient, particularly for target densities departing from the spherical assumption.

3.2 Expressing Sample Values in Terms of Direction and Departure

The choice off will then be redetermined at each iteration of the algorithm. For this, we favor
an approach that allows us to match as closely as possible the target and proposal distributions,
while ensuring that the tails of the target are not neglected. The idea we propose for selecting
the degrees of freedomf in any given iteration is based on the following decomposition, and
is outlined in Section 3.3.

The discussion is easier if̂x = 0, the HessianĤ = In is the identity, and thus the root
Ĥ1/2 = In; accordingly we assume this here and address the more general case later. Looking
from the maximum of the target density, we examine the targetπ in the direction of the current
state. Suppose that the current state of the algorithm isxj ; we refer touj = xj/ |xj | as the
direction ofxj , where|x| =

√
x2

1 + . . . + x2
n is the norm of the vectorx. The directional

argumentuj is approximately uniformly distributed on a unit sphere inRn; its density,̃π (uj),
can then be approximated bỹπ (u) ≈ 1/An, whereAn = 2πn/2/Γ (n/2) is the surface area
of the sphere. Furthermore a random uniform valueu can easily be generated by taking
z1, . . . , zn from a unit normal and then standardizing

u′ =
(z1, . . . , zn)

|z| . (3.5)

According to this method, every sample point can then be expressed asxj = uj · sj ; uj is
itself ann-dimensional vector indicating the direction of the current sample pointxj from the
mode of the target density, whilesj = |xj | gives the radial departure of this sample point from
the mode. Analogously, the target density can be reexpressed in terms of the directional and
departure variables as̃π (uj , sj) = π̃ (sj |uj ) π̃ (uj).
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Using this information and continuing with the assumption thatx̂ = 0 and Ĥ = In,
we would like to sample from some proposal densityq that is as similar as possible toπ;
although we chose a Student proposal, we momentarily generalize this choice in the following
way. A proposedyj+1 can be decomposed in a similar manner into its own directional and
departure arguments:yj+1 = uprop

j+1 · sprop
j+1 . We can then reexpress the proposal density

q (yj+1) accordingly as

q̃
(
uprop

j+1 , sprop
j+1

)
= q̃

(
sprop
j+1

∣∣∣uprop
j+1

)
q̃
(
uprop

j+1

)
.

Here we now take the marginal uniform density approximation ofπ̃ (u) as an appropriate
sampling process for the proposed direction,uprop

j+1 . In other words, it suffices to generate
the proposed direction from (3.5). To have maximum agreement between the target and pro-

posal densities, we then chooseq̃
(
sprop
j+1

∣∣∣uprop
j+1

)
as being an accessible approximation to the

conditional target̃π (sj |uj ).
In our case, we are restricting the proposal distribution to be a Student distribution withf

degrees of freedom. The standardized Studentf density function, designated Studentf (0, (f +
n)In), is given by

qf (T) =
Γ

(
f+n

2

)

πn/2Γ
(

f
2

)
(

1 +
T′T
f + n

)− f+n
2

(f + n)−n/2; (3.6)

it is such that̂T = 0 andĤ = In. Furthermore,T = (f + n)1/2 t can be generated by using
t as in (3.2).

For a givenuprop
j+1 , we then choosẽq

(
sprop
j+1

∣∣∣uprop
j+1

)
= qf

(
sprop
j+1

∣∣∣uprop
j+1

)
, wheref =

f
(
uprop

j+1

)
is chosen to makeqf

(
sprop
j+1

∣∣∣uprop
j+1

)
close toπ̃

(
sprop
j+1

∣∣∣uprop
j+1

)
. The resulting pro-

posal is thus a Student distribution whose degrees of freedom depend on the proposed direction
uprop

j+1 . For generatingsprop
j+1 from the standardized Studentf (3.6) but given the directionuprop

j+1 ,
we can use the(z1, . . . , zn) that gave us the directionuprop

j+1 and then obtain the departure as

sprop
j+1 = (f + n)1/2|z|/χf ; this gives the sample valueuprop

j+1 · sprop
j+1 . This is easily imple-

mented due to the rotational symmetry of the standardized Studentf distribution and we are
thus in fact sampling from the conditional Student given the direction and having the degrees
of freedom determined by the direction.

3.3 Selecting the Degrees of Freedom

We have already argued that a Student density would be a sensible choice for the proposal
distribution in the case of a smooth, unimodal target density centered at the origin with Hessian
Ĥ = In. In this special context, how do we choose an appropriate degrees of freedom for a
given iteration? By first generatinguprop

j+1 , we determine in which direction we are going to
propose a new value for the algorithm. We then choose a fixed departure, says∗, which yields
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a point that is appropriately out in the tail of the target density. The degrees of freedom of the
proposal density,fprop

j+1 , is then chosen so that the target and proposal densities have the same
drop-off from the value at the origin to the value at the pointuprop

j+1 · s∗; this reasonably results
in good agreement for the tails of the two densities in the directionuprop

j+1 .
After having determined the degrees of freedomf for a given iteration, we then generate a

proposed departuresprop
j+1 by first generating aχf to use in (3.2) together with the(z1, . . . , zn)

that generated theuprop
j+1 , as mentioned in the previous section. In effect we are using a condi-

tional Student distribution special to the direction in order to mimic the target in that direction
as much as possible. The proposed value is thusuprop

j+1 · sprop
j+1 , which is then accepted or

rejected according to the usual acceptance function for the Metropolis-Hastings algorithm.
This procedure results in a proposal density that reproduces the behavior of the target at the

maximum and accomodates the form of the tails. At each iteration, the proposal is chosen to
match the tail in that generated direction of interest. The choice offprop

j+1 for the simplistic case
of a one-dimensional target density is illustrated in Figure 1. The target density represented
in this figure (solid curve) possesses a relatively heavy tail on the right hand side, and a light
tail on the left hand side. When sampling in a direction pointing to the right for such a target
density, we propose the Student distribution (dashed curve) with a heavier tail (i.e., smaller
degrees of freedom) than if we were sampling in the opposite direction. From the graph, we
also notice the point at which the proposal and target densities intersect; for this the target has
been rescaled vertically so the drop-off is from a common maximum.

Finding the degrees of freedomfprop
j+1 for a given iteration involves solving the equation

π
(
uprop

j+1 · s∗
)

π (0)
=

qfprop
j+1

(
uprop

j+1 · s∗
)

qfprop
j+1

(0)

=


1 +

(
uprop

j+1 · s∗
)′ (

uprop
j+1 · s∗

)

fprop
j+1 + n




− f
prop
j+1

+n

2

, (3.7)

whereuprop
j+1 is the generated direction for a new value, ands∗ is the distance from the mode

to the point where we want the proposal and target densities to intersect in the directionuprop
j+1 .

There does not exist a closed-form solution forfprop
j+1 in the previous equation. In prac-

tice, it is not necessary to solve for the exact value offprop
j+1 in (3.7); for pragmatic reasons,

we restrictfprop
j+1 to be an integer value between 1 (Cauchy distribution) and 50 (near normal

distribution). If we letr2 = 2 log
{

π (0) /π
(
uprop

j+1 · s∗
)}

be the target likelihood ratio quan-

tity and letQ2 =
(
uprop

j+1 · s∗
)′ (

uprop
j+1 · s∗

)
be the quadratic departure for the standardized

Student, we can solve forfprop
j+1 + n = f using

f log
(

1 +
Q2

f

)
= r2. (3.8)
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Figure 1: Graph of the target (solid) and proposal (dashed) densities when proposing a value

in the direction pointing to the right of the graph. The intersection point isuprop
j+1 · s∗.
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This can be achieved by scanning the values forfprop
j+1 in {1, 2, . . . , 50} and choosing the

closest fit.

3.4 Choosings∗

There remains one issue to be discussed before being ready to implement the outlined method.
We mentioned that we choose the degrees of freedom of the proposal distribution at every
iteration so that both the target and proposal densities intersect at an appropriate point in the
tail in the given direction. How do we chooses∗, the departure from the mode at which we
would like to force an agreement between the target and proposal densities?

To address this issue we once again focus on the standardized version of the target density
where we havêx = 0 andĤ = In; it should be emphasized that this adjustment does not
limit the proposed method as we shall see in Section 4. If the target happened to correspond
to the case where the coordinates are independent and approximately normal, then we would
haveY ∼ N(0, In) and the distribution of(sprop

j+1 )2 = |yj+1|2 givenuprop
j+1 = yj+1/ |yj+1|

would be a chi square withn degrees of freedom. Consequently, the conditional distribution
for departure of the proposed value given its direction,sprop

j+1 |uprop
j+1 , would simply be chi in

distribution withn degrees of freedom; an approximate mean value for this is
√

n. We thus
suggest forcing the target and proposal densities to intersect at a departure ofs∗ = λ

√
n from
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the mode, whereλ is a tuning parameter. From our experience,λ can be chosen to be 2 or 3
for instance; when chosen in this range, the exact value of the tuning parameter usually has an
insignificant impact on the performance of the algorithm.

Accordingly we examine the target distribution drop off at such a distance in the chosen
direction and use a degrees of freedomf that boosts the tails of the proposal distribution to

match those of the target. We thus choosef to giveπ̃
(
s∗|uprop

j+1

)
/qf

(
s∗|uprop

j+1

)
to the degree

possible withf in a sensible range of1, . . . , 50.
The resulting proposal density is thus one that has the same location and the same cur-

vature at the maximum as the target density but that also replicates the tail thickness in the
direction of the proposed sample value. The Metropolis-Hastings algorithm can then be car-
ried through as usual, by proposing a value from a multivariate Student with the designated
degrees of freedom, and then accepting or rejecting this proposed value according to the usual
acceptance probability. Overall this results in an algorithm whose proposal has central form
that stays fixed throughout time, but whose tails becomes thicker or lighter from one iteration
to another depending on the direction from the center of the distribution.

We do note a small technical point concerning the overall effective proposal density. We
have spoken of having a particular curvature and Hessian at the maximum. By varying the
degrees of freedom with direction we will have differing heights coming to the maximum from
differing directions and indeed have a discontinuity at the maximum; this is of no practical
significance.

4 The Algorithm

The sampling algorithm introduced herein is valid for general target densitiesπ. To implement
the method, it is however convenient to work with a standardized version of the target density.
Specifically, we considerx∗ = Ĥ1/2 (x− x̂), whereĤ1/2 is a right square root matrix of

Ĥ such thatĤ = (Ĥ1/2)′
(
Ĥ1/2

)
. This can easily be obtained with the functionspdMat

andpdFactor , located in the packagenlme of the statistical freewareR. This adjustment
implies thatx̂∗ = 0 andĤ∗ = In. The standardized target density satisfies

π∗ (x∗) = π
(
x̂ + Ĥ−1/2x∗

) ∣∣∣Ĥ−1/2
∣∣∣ ∝ π

(
x̂ + Ĥ−1/2x∗

)
= π (x) ,

whereĤ−1/2 is the inverse ofĤ1/2 and
∣∣∣Ĥ−1/2

∣∣∣ is the determinant of the former; we can

thus access standardized density atx∗ by using the originalπ with thex value obtained from
the mappingx = x̂ + Ĥ−1/2x∗.

We also assume that determinations ofx̂ andĤ are available; in the statistical freeware
R for instance,̂x can usually be obtained with the functionnlm . The Hessian can either be
computed directly using the second derivatives of the density, or obtained numerically with
the functionfdHess . For the algorithm we assume that this standardization has been applied
and is used for the following.
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Given thatxj is the time-j state of the algorithm, we perform the following two prelimi-
nary steps if not available from preceding calculations:

a. Determine the direction of the standardized current sample valuex∗j = Ĥ1/2(xj − x̂):

uj = x∗j/
∣∣∣x∗j

∣∣∣.

b. Choose the integer value among{1, 2, . . . , 50} which is closest to the solution to (3.8)
for uj ; call it fj .

Once these steps are executed, we are ready to iterate:

1. Generateuprop
j+1 , ann-dimensional proposed direction, by using the relation in (3.5) (also

record the magnitude|zj+1|, as it shall be used in Step 3).

2. Choose the integer value among{1, 2, . . . , 50} which is closest to the solution to (3.8)
for uprop

j+1 ; call it fprop
j+1 .

3. Obtain a proposed departuresprop
j+1 by generating a valueχfprop

j+1
from a chi distribution

with fprop
j+1 degrees of freedom and lettingsprop

j+1 = (fprop
j+1 +n)1/2 |zj+1| /χfprop

j+1
(where

|zj+1| has been obtained in Step 1).

4. Obtain the standardized proposed value through the relation

y∗j+1 =
(
uprop

j+1 · sprop
j+1

)
.

5. Compute the acceptance probability of the proposed sample value

α
(
x∗j ,y

∗
j+1

)
= 1 ∧

π
(
x̂ + Ĥ−1/2y∗j+1

)
qfj

(
x∗j

)

π
(
x̂ + Ĥ−1/2x∗j

)
qfprop

j+1

(
y∗j+1

) , (4.1)

whereqf (x) is as in (3.6).

6. Generate a valuerj+1 from a uniform distribution on(0, 1).

7. If rj+1 ≤ α
(
x∗j ,y

∗
j+1

)
, then accept the proposed move and setx∗j+1 = y∗j+1, fj+1 =

fprop
j+1 ; otherwise, reject the move and letx∗j+1 = x∗j , fj+1 = fj .

8. Obtainxj+1 = x̂ + Ĥ−1/2x∗j+1.

9. Replacej by j + 1 and repeat these steps forN iterations.
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As can be noticed, the preliminary steps (a) and (b) have to be carried out only at the very
beginning of the algorithm, for the initial statex0. After that, they are naturally available from
the preceding steps of the algorithm.

When performing Metropolis-Hastings algorithms, the normalization constants for the
target and proposal densities are usually superfluous. Indeed, these densities only appear in
ratio form in the acceptance probability. In the present case, since the choice for the degrees
of freedom of the proposal density depends upon the direction in which the move is proposed,
the normalization constants of the proposal density do not in general cancel, and they must
then be explicitly included in the acceptance ratio; see (4.1).

Before introducing some examples in which we make use of the directionally adjusted
algorithm, we verify that the reversibility condition is satisfied for this new method. This
condition ensures that Metropolis-Hastings algorithms converge to the right distribution (i.e.,
the target distribution), and here can be expressed as

π∗
(
x∗j

)
q
(
y∗j+1

∣∣x∗j
)
α

(
x∗j ,y

∗
j+1

)
dx∗j dy∗j+1

= π∗
(
y∗j+1

)
q
(
x∗j

∣∣y∗j+1

)
α

(
y∗j+1,x

∗
j

)
dy∗j+1 dx∗j .

In our particular case, the proposal density satisfies

q
(
y∗j+1

∣∣x∗j
) ≡ q

(
y∗j+1

)
= qfprop

j+1

(
y∗j+1

∣∣∣uprop
j+1

)
q̃
(
uprop

j+1

)
,

whereq̃ is the uniform density on a sphere inRn. Sinceq̃ is in fact constant, we can reexpress
the acceptance probability in Step 5 as

α
(
x∗j ,y

∗
j+1

)
= 1 ∧

π∗
(
y∗j+1

)
qfj

(
x∗j |uj

)
q̃ (uj)

π∗
(
x∗j

)
qfprop

j+1

(
y∗j+1

∣∣∣uprop
j+1

)
q̃
(
uprop

j+1

) .

Consequently, the left hand side of the reversibility condition becomes

π∗
(
x∗j

)
qfprop

j+1

(
y∗j+1

∣∣∣uprop
j+1

)
q̃
(
uprop

j+1

)

1 ∧

π∗
(
y∗j+1

)
qfj

(
x∗j |uj

)
q̃ (uj)

π∗
(
x∗j

)
qfprop

j+1

(
y∗j+1

∣∣∣uprop
j+1

)
q̃
(
uprop

j+1

)



= π∗
(
x∗j

)
qfprop

j+1

(
y∗j+1

∣∣∣uprop
j+1

)
q̃
(
uprop

j+1

)
∧ π∗

(
y∗j+1

)
qfj

(
x∗j |uj

)
q̃ (uj)

= π∗
(
y∗j+1

)
qfj

(
x∗j |uj

)
q̃ (uj)


1 ∧

π∗
(
x∗j

)
qfprop

j+1

(
y∗j+1

∣∣∣uprop
j+1

)
q̃
(
uprop

j+1

)

π∗
(
y∗j+1

)
qfj

(
x∗j |uj

)
q̃ (uj)


 ,

and the last equality is equivalent to the right hand side of the reversibility condition.
In the next two sections, we apply the sampling method described to obtainp- ands-values

in two different regression studies.
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5 Toy Example

5.1 Background

As a first example of the applicability and efficiency of the method, we shall focus on the
regression example discussed in Bédard et al. (2007). Specifically we consider the following
data, which has been generated from the null linear regression modelyi = α+βxi +σzi with
α = 0, β = 1, σ = 1, andk = 7:

xi -3 -2 -1 0 1 2 3

yi -2.68 -4.02 -2.91 0.22 0.38 -0.28 0.03

The response variability is the Student density with 7 degrees of freedom (no connection with
k = 7) and thus the density of the response can be expressed as

f (y; α, β, σ) dy = σ−7
7∏

i=1

h

(
yi − α− xiβ

σ

)
dyi,

whereh (z) is the Student density with 7 degrees of freedom.
Let us suppose that we are interested in testing the hypothesisβ = 1. This can be achieved

from the Bayesian and the classical perspectives, by respectively computing the posterior sur-
vivor value (s-value) and thep-value. We shall examine the performance of the directionally
adjusted algorithm under both approaches. This type of example is particularly appealing in
the present context; indeed, it is interesting to see how the method performs for the evaluation
of tail probabilities.

In the Bayesian setting, we select the default priordα dβ d log σ to perform the anal-
ysis; this choice of prior distribution yieldss- andp-values that are equivalent under both
frameworks, as discussed in Bédard et al. (2007). The default prior selected points towards a
more natural choice for the parameter of interest; we shall then use(α, β, log σ) rather than
(α, β, σ), a convenient parameterization which also has the advantage of avoiding boundary
problems. The posterior distribution of(α, β, log σ) is then

π1

(
α, β, τ

∣∣y0
)
dα dβ dτ = c e−7τ

7∏

i=1

{
1 +

(y0
i − α− βxi)2

7e2τ

}−4

dα dβ dτ. (5.1)

To obtain the exacts-value for testing the hypothesis thatβ is equal to 1, it suffices to
obtain a sample from this posterior density and to record the number of values ofβ located to
the right of the value of interest:

s(β) =
1
N

N∑

j=1

I
(
βj ≥ β

)
=

1
N

N∑

j=1

I
(
βj ≥ 1

)
, (5.2)
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whereN is the size of the sample generated.
The approach for obtaining the exactp-value under the classical approach is discussed in

details in Section 6, which considers a similar model. For now, we shall just mention that a
sample needs to be obtained from a reparameterized density of interest

π2

(
a, b, g

∣∣d0
)
da db dg = c e5g

7∏

i=1

(
1 +

(a + bxi + egd0
i )

2

7

)−4

da db dg, (5.3)

whered0
i = (y0

i − xib0)/eg0 andb0, g0 are the least-squares estimates from the data. The
p-value can then be computed by using

p(β) =
1
N

N∑

j=1

I

(
bj

egj
<

b0 − β

eg0

)
=

1
N

N∑

j=1

I

(
bj

egj
<

b0 − 1
eg0

)
. (5.4)

5.2 Simulations

We compares- and p-values obtained when applying three different types of Metropolis-
Hastings algorithms. In particular, we sample from the target densitiesπ1 in (5.1) andπ2

in (5.3) by using a random walk Metropolis algorithm with a normal proposal, an indepen-
dence sampler with a Student7(x̂, (f + n)Ĥ−1) proposal distribution, and the directionally
adjusted algorithm described previously. We choose a proposal variance of 0.16 for the RWM
algorithm; this parameter, just like the parameters of the independence proposal, have been
selected so as to yield a reasonable speed of convergence for the algorithms.

In order to estimate the accuracy of the values obtained through each of the methods
considered, we use the following approach. For each combination of algorithm and target
density, we obtain a sample of sizeN = 4, 000, 000. We split this vector into 4,000 batches
that each contains 1,000 consecutive sample values. In each batch, we drop the first 50 sample
values and thus keep the remaining 950 sample values only. We can then compute thes-
or p-values obtained from each batch using (5.2) or (5.4) respectively; this yields a vector
containing 4,000s- orp-values that are approximately independent from each other. The exact
s- or p-value is estimated by recording the sample average of the 4,000s- or p-values from
the vector. The simulation standard deviation can then be obtained by computing the sample
standard deviation of the vector and dividing this number by

√
4, 000; for more details, we

refer the reader to the appendix in Bédard et al. (2007). The numbers obtained under both the
Bayesian and classical frameworks appear in Table 1. We also recorded the acceptance rate
of each of the algorithms, as well as the average value of the proposed degrees of freedom
(
∑N

j=1 fprop
j+1 /N ) for the directionally adjusted algorithm.

The s- andp-values obtained are very similar for each of the three methods studied. It
is interesting to note a significant decrease in the simulation standard deviation of the DA
algorithm when compared to the RWM algorithm; in the Bayesian framework, the simulation
standard deviation of the DA algorithm is reduced by a factor of about 1.8 compared to that
of the RWM algorithm while in the classical framework, this factor is close to 2.2. We also
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Table 1: Bayesians-values and frequentistp-values for testing the hypothesisβ = 1 using

three different Metropolis-Hastings algorithms with4.106 iterations.

Test procedure p-value s-value

RWM - Normal(xj , 0.16) .10821 .10778
(Simulation SD) (.03400) (.03475)
{Acceptance rate} {32.8%} {36.7%}

Independence sampler - Student7(x̂, (f + n)Ĥ−1) .10821 .10761
(Simulation SD) (.03195) (.03355)
{Acceptance rate} {76.0%} {62.7%}

DAMcMC .10773 .10781
(Simulation SD) (.03184) (.03268)
{Acceptance rate} {89.3%} {66.5%}
[Meanfprop] [37.88] [28.57]

observe that the Bayesian target densityπ1 possesses longer tails than the frequentist target
densityπ2. This can be witnessed by checking the mean value of the proposed degrees of
freedom recorded in Table 1.

The DA algorithm also shows some improvement over the independence sampler in terms
of the simulation standard deviation although, as expected, the difference in efficiency is not
as flagrant. Nonetheless, it is generally difficult to be certain of the appropriateness of the
proposal distribution selected for an independence sampler, especially when working in large
dimensions. When applying the DA algorithm, a suitable degrees of freedom is selected
automatically at every iteration; since one needs not fix a conservative degrees of freedom to
ensure a rapid convergence as is the case for the independence sampler, this results in a gain
in efficiency.

It is not appropriate to compare the acceptance rate of the RWM algorithm with the ac-
ceptance rates of the independence sampler and DA algorithm. Indeed, the acceptance rate
of the RWM algorithm might be tuned through the variance of the normal proposal; here, we
used existing theory on the subject to select a proposal variance that should roughly yield a
chain converging as fast as possible to its stationary distribution. We can however compare the
acceptance rates obtained with the independence sampler and the DA algorithm. We notice
that the acceptance rate of the DA algorithm is consistently and significantly higher than that
obtained with the independence sampler; this intuitively tells us that the proposal density of
the DA algorithm consists in a better fit for both our Bayesian and frequentist target densities.
In particular, the acceptance rate of the DA algorithm for computing thep-value recorded in
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Table 1 is surprisingly high, which means that the proposal density is even better suited for
the target density (5.3) in the classical framework than for (5.1) in the Bayesian framework.
In general, a large discrepancy between the acceptance rates of the independence sampler and
DA algorithm might reveal an important variation in the tails behavior in different directions;
it might also mean that the independence proposal is much too conservative.

Although longer to run than its competitors, we finally mention that the relative efficiency
gained by using the DA algorithm makes it worth programming. For instance, running the DA
algorithm for this toy example is no longer than about twice the running time of the RWM
algorithm, and this factor decreases as the dimension of the target density increases. The
difference between the running times of the independence sampler considered here and the
DA algorithm are even less important; added to the extra advantages of the DA algorithm
discussed earlier, it is preferable to use the latter.

6 Example

6.1 Background

We consider a dataset concerning the cost of construction of nuclear power plants (Example
G; Cox and Snell, 1981). Specifically, we have information about 32 light water reactor
(LWR) power plants constructed in the USA. The dataset includes 10 explanatory variables,
in addition to a constant; it can be found in the Appendix, along with the description of the
various explanatory variables.

The chosen response is the natural logarithm of the capital cost (log C), and all the other
quantitative variables have also been taken in log form (log S, log T1, log T2, and log N ).
According to the analysis in Cox and Snell (1981) and in Brazzale et al. (2007), a linear
regression model seems suitable for this example. There are 4 explanatory variables that are
dismissed as non significant (log T1, log T2, PR, and BW); see the ANOVA table on page
86 of Cox and Snell (1981). The indicated model thus uses the remaining 7 variables, these
being the constant plus D,log S, NE, CT, log N , and PT. Of particular interest is how the
capital costC depends onN , the cumulative number of power plants constructed by each
architect-engineer.

Brazzale et al. (2007) first investigated the suitability of a Student distribution with 4
degrees of freedom as the error distribution. The corresponding model is then

y = Xβ + σz,

where the design matrixX is the 32 x 7 matrix containing the chosen explanatory vari-
ables, andz is distributed according to a Student distribution with 4 degrees of freedom. The
density of the response is then

f (y;β, σ) dy = σ−n
n∏

i=1

h

(
yi −Xiβ

σ

)
dyi,
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whereh (z) is the Student density with 4 degrees of freedom andXi is the ith row of the
design matrix.

The observed standardized residuals can be recorded asd0 =
(
y0 −Xb0

)
/s0 where for

convenience we use the least squares regression coefficientsb and the related error standard
deviations satisfyings2 =

∑n
i=1(yi − ŷi)2/(n − r) with n = 32 andr = 7. The observed

likelihood function is then

L0 (β, σ) = σ−n
n∏

i=1

h

(
y0

i −Xiβ

σ

)

= σ−n
n∏

i=1

h

(
s0d0

i −Xi

(
β − b0

)

σ

)
.

The residualsd0 have an effect on the precision of the estimates ofβ andσ when there is
error structure other than the usual normal. This is partly reflected in the observed likelihood
functionL0 (β, σ) and would then be available for default Bayesian analysis using the familiar
default priorσ−1 dβ dσ. By contrast with a full modelf (y; β, σ) analysis the available
precision is not taken account of. Accordingly we use the conditional modelf

(
y

∣∣d0 ;β, σ
)

obtained by conditioning on the identified standardized residualsd0:

f
(
b, s

∣∣d0 ; β, σ
)
db ds = cσ−n

n∏

i=1

h

(
sd0

i −Xi (β − b)
σ

)
sn−r−1db ds,

wheren = 32 andn− r − 1 = 24.
Now suppose we are interested in thekth regression coefficient; herek = 6 corresponding

to the explanatory variablelog N . The corresponding standardized departure istk = (bk −
βk)/c

1/2
kk s whereckk is the (k, k) element of the matrixC = (X ′X)−1; it has observed

valuet0k(βk) = (b0
k − βk)/c

1/2
kk s0 and does of course depend on the valueβk being assessed.

Due to invariance properties of the model it suffices to comparet0k with the distribution of

tk = bk/c
1/2
kk s from the null model withβ = 0 andσ = 1

f
(
b, s

∣∣d0
)
db ds = c

n∏

i=1

h
(
sd0

i + Xib
)
sn−r−1db ds

on ther + 1 dimensional space{b, s}, or with the distribution oftk = bk/c
1/2
kk ea from

f
(
b, a

∣∣d0
)
db da = c

n∏

i=1

h
(
ead0

i + Xib
)
ea(n−r)db da (6.1)

onRr+1; the latter can avoid boundary problems.
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We thus wish to sample from the target (6.1) and evaluate thep-value functionp(βk) that
gives the percentage position of the observed data relative to the valueβk for the particular
explanatory variable:

p (βk) =
# tk (b, s) < t0k (βk)

N
; (6.2)

hereN is the size of the simulation and the numerator gives the number of instances(b, s)
yielding a value less than the observedt0k(βk).

6.2 Simulations

We comparep-values for testingβ6 = −0.1, β6 = −0.01, andβ6 = 0.02; for each of these
hypotheses, thep-values are obtained by applying the three Metropolis-Hastings algorithms
considered in Section 5.2. To obtain an efficient speed of convergence for the RWM algo-
rithm, we however select a proposal variance of 0.0001 (i.e. a proposal standard deviation of
0.01). The approach chosen for carrying the MCMC simulations and obtaining the desired
p-values is the same as that described in that section. Specifically, we generate a sample of
size 4,000,000 that we split into 4,000 batches, each containing 1,000 sample values. We then
drop the first 50 values in each of the batches and compute thep-values from (6.2) by using
the last 950 values of each batch only. From the resulting vector of 4,000p-values, we obtain
the sample mean and the simulation standard deviation (sample SD/

√
4, 000; see B́edard et al.

2007) for each of the three sampling methods selected for comparison. Once again, we record
the average acceptance rate of each algorithm, and the average value of the proposed degrees
of freedom for the DA algorithm. The results of the simulations are recorded in Table 2; for
each hypothesis, we also included the frequentist third orderp-value. The general relation-
ship between hypotheses and their correspondingp-value for different sampling methods is
depicted in Figure 2.

Contrarily to the toy example of Section 5, thep-values obtained with the three sampling
methods selected are not all very close for a given hypothesis. In this higher-dimensional set-
ting, the RWM algorithm does not perform well for the task at hand, i.e. the computation of
tail probabilities. In fact, the results obtained under this sampling scheme are very unstable;
this can be witnessed by examining Figure 2, which shows two different runs of the RWM
algorithm (the dashed curves). Although these two runs embrace thep-values obtained by ap-
plying the third order approximation and the DA algorithm, these results are far from agreeing
with the latter. We do not however address this instability here; this issue shall be perused
separately. The independence sampler and the DA algorithm both yield much more accurate
and consistent results. The solid curve depicting the behavior of the DA algorithm agrees very
closely with the plotted symbols representing the third orderp-values. For clarity purposes,
we did not include in the graph a curve for the independence sampler; we however precise
that if such a curve were added, it would be impossible to dissociate from the DA curve.

Compared to the example of Section 5, the differences among the simulation standard
deviations of the algorithms considered are greatly amplified; in particular, the simulation SD
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Table 2: Frequentistp-values for testing the hypothesesβ6 = −0.1,−0.01, 0.02 using three

different Metropolis-Hastings algorithms with4.106 iterations. The frequentist third order

p-values are also included for comparison.

Test procedure β6 = −0.1 β6 = −0.01 β6 = 0.02

Thrid order .75283 .10936 .03646

RWM - Normal(xj , 0.0001) .88263 .09019 .01354

(Simulation SD) (.02399) (.02388) (.02135)

{Acceptance rate} {34.5%} {34.6%} {34.5%}

Independence sampler - Student7(x̂, (f + r + 1)Ĥ−1) .75675 .11679 .03766

(Simulation SD) (.03482) (.03341) (.03185)

{Acceptance rate} {36.9%} {36.9%} {36.9%}

DAMcMC .75712 .11695 .03746

(Simulation SD) (.03328) (.03232) (.03140)

{Acceptance rate} {71.6%} {71.6%} {71.6%}
[Meanfprop] [48.24] [48.24] [48.24]

of the DA algorithm is more than 16 times smaller than that of the RWM algorithm when
testingβ6 = −0.01. Combining this with the fact that the discrepancies between the running
times of the different sampling methods become less important as the dimension of the target
density increases, this makes the DA algorithm a clear winner. An interesting detail to notice
in this particular situation is the average proposed degrees of freedom recorded for the DA
algorithm, which is close to 50, the maximum value allowed by this algorithm. This is a clear
indication that overall, the tails of the target density are almost as short as those of a normal
density. Even in such a case, where the target density is short-tailed and seems to behave
nicely, the DA algorithm outdoes the RWM algorithm.

The acceptance rate of the DA algorithm is quite high compared to that of the indepen-
dence sampler; in fact, the independence proposal used here (a Student7 distribution) seems
quite conservative compared to the average proposed degrees of freedom obtained from the
DA algorithm and recorded in Table 2 (≈ 48). Hence, we can presume that the DA algorithm
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results in a Markov chain that is mixing more efficiently, by proposing moves that are more
appropriate (and thus accepted more often) than those proposed by the independence sampler.
This might also explain the fact that the simulation SDs obtained with the DA algorithm are
significantly smaller than those obtained with the independence sampler.

Figure 2: Graph ofp-values versus hypothesesH0 obtained by using the DA (solid) and RWM

(dashed) algorithms, as well as the third order approximation (symbols).
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7 Discussion

We have introduced a new type of Metropolis-Hastings algorithm for sampling from smooth
and unimodal target densities, the directionally adjusted (DA) algorithm. The idea behind this
method can be divided in two steps: we first use the location and Hessian of the target density
to build a proposal density that reproduces the target behavior at its maximum; we then let the
tail thickness of the proposal be adjusted at every iteration, by an automatic procedure that
attempts to match the tails of the target as closely and efficiently as possible.

We tested this sampling method on two different regression examples; the first example
used simulated data, and the second one real data. Specifically, we evaluated the performance
of the new algorithm by comparing it with the results produced by a RWM algorithm and
an independence sampler. Performance was based on the accuracy of the estimates (p- and
s-values along with their simulation standard deviations), the running times of the algorithms,
as well as the acceptance rate produced by the methods.

In brief we have found that the DA algorithm consistently outperforms its competitors
when looking at the accuracy of the estimates produced. The superiority of the DA algorithm
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is even more shocking when working in relatively high-dimensional settings, as the discrep-
ancies between the running times of the RWM algorithm, independence sampler, and DA
algorithm tend to vanish as the dimension of the target density increases. The results from
Section 6 are particularly surprising, as they revealed that traditional sampling methods can
go badly wrong when working in higher dimensions. The comparison of the acceptance rates
obtained also allowed us to conclude that the DA algorithm yields Markov chains that are
mixing more efficiently than those produced by the independence sampler.

8 Appendix

The dataset used in the example of Section 6 appears in Table 3; the description of the ex-
planatory variables can be found in Table 4.
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Table 3: Data on 32 LWR power plants in the USA

C D T1 T2 S PR NE CT BW N PT

460.05 68.58 14 46 687 0 1 0 0 14 0

452.99 67.33 10 73 1065 0 0 1 0 1 0

443.22 67.33 10 85 1065 1 0 1 0 1 0

652.32 68.00 11 67 1065 0 1 1 0 12 0

642.23 68.00 11 78 1065 1 1 1 0 12 0

345.39 67.92 13 51 514 0 1 1 0 3 0

272.37 68.17 12 50 822 0 0 0 0 5 0

317.21 68.42 14 59 457 0 0 0 0 1 0

457.12 68.42 15 55 822 1 0 0 0 5 0

690.19 68.33 12 71 792 0 1 1 1 2 0

350.63 68.58 12 64 560 0 0 0 0 3 0

402.59 68.75 13 47 790 0 1 0 0 6 0

412.18 68.42 15 62 530 0 0 1 0 2 0

495.58 68.92 17 52 1050 0 0 0 0 7 0

394.36 68.92 13 65 850 0 0 0 1 16 0

423.32 68.42 11 67 778 0 0 0 0 3 0

712.27 69.50 18 60 845 0 1 0 0 17 0

289.66 68.42 15 76 530 1 0 1 0 2 0

881.24 69.17 15 67 1090 0 0 0 0 1 0

490.88 68.92 16 59 1050 1 0 0 0 8 0

567.79 68.75 11 70 913 0 0 1 1 15 0

665.99 70.92 22 57 828 1 1 0 0 20 0

621.45 69.67 16 59 786 0 0 1 0 18 0

608.80 70.08 19 58 821 1 0 0 0 3 0

473.64 70.42 19 44 538 0 0 1 0 19 0

697.14 71.08 20 57 1130 0 0 1 0 21 0

207.51 67.25 13 63 745 0 0 0 0 8 1

288.48 67.17 9 48 821 0 0 1 0 7 1

284.88 67.83 12 63 886 0 0 0 1 11 1

280.36 67.83 12 71 886 1 0 0 1 11 1

217.38 67.25 13 72 745 1 0 0 0 8 1

270.71 67.83 7 80 886 1 0 0 1 11 1
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Table 4: Notation for data in Table 3

C Cost in dollars×10−6, adjusted to 1976 base

D Date construction permit issued

T1 Time between application for and issue of permit

T2 Time between issue of operating licence and construction permit

S Power plant net capacity (MWe)

PR Prior existence of an LWR on same site (= 1)

NE Plant constructed in north-east region of USA (= 1)

CT Use of cooling tower (= 1)

BW Nuclear steam supply system manufactured by Babcock-Wilcox (= 1)

N Cumulative number of power plants constructed by each architect-engineer

PT Partial turnkey plant (= 1)
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