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Abstract

This study utilizes a Bayesian binary logit regression cohort model for explicating the contra-
ceptive use dynamics of Bangladesh. Cohort analysis encounters an identification problem
in age, period and cohort effects which appear difficult to decompose uniquely that has been
got around through Bayesian smoothness priors approach. The marginal log-likelihood com-
putation furnishes estimates of hyperparameters and maximizing penalized log-likelihood
using a numerical optimization technique receives emphatic attention for prudent maximum
a posteriori (MAP) estimates of the effect parameters of the model. The optimal model
is selected appraising Akaike’s Bayesian information criterion (ABIC) from a number of
candidate models. Monte Carlo simulation studies are carried out to judge the performance
of the method for estimating the cohort models. An application to contraceptive use data
reveals that age, period, and cohort, and the instantaneous influence of important covariates
along with the interaction effects consistently run toward different directions.
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1 Introduction

Cohort is an important concept in the study of social change. Data of cohort table are
constituted from a set of repeated surveys classified by age and survey period. Cohort
analysis is a method to investigate age, period (calender year), and cohort (birth
time) effects and is widely utilized in the fields of demography, sociology, political
science (Ryder, 1965; Glenn, 1977; Mason and Fienberg, 1985; Nakamura, 1986, 2002;
Hayashi et al.,1992; Miller and Nakamura, 1996, 1997 and Sakamoto, 1999 among
many). In this data, an exact equality condition exists among cohort, period, and age
variables. So the partition of the variation in the response variable into the effects of
age, period, and cohort in a linear functional form can not be unique. This is known
as identification problem in cohort analysis, and modus operandi to deal with the
problem have been independently discovered a number of times in different research
fields (Schaie, 1965; Mason et al., 1973; Osmond and Gardner, 1982; Nakamura, 1986,
1996, 2002; and Robertson and Boyle, 1998). In statistical terms, cohort models are
under-identified since there are more parameters to be estimated than there are degrees
of freedom. Additional assumptions are, therefore, needed, and these assumptions
should be hinged on some prior knowledge of the variables under study. Warshaw
(1992) suggested that studying three dimensional graphs of a variable over time can
provide information on which assumptions are appropriate for solving the identification
problem. Nakamura (1986) proposed a Bayesian logit cohort model for grouped data
and solved this problem by imposing smoothness constraints on the age, period and
cohort effects. He assumed that the first order difference of the successive parameters
for age, period, and cohort are close to zero. Akaike’s (1980) Bayesian Information
Criterion (ABIC) for model selection as well as estimation of the parameters of the
prior distributions maintains the best balance between them.

Here an attempt has been made to analyze the binary cohort data accentuating on
a new Bayesian model with a slightly modified computational procedure of Nakamura
(1986). The layout design of the paper is as follows: Section 2 portrays the binary
logit cohort regression model along with relevant notations and terminologies. A brief
discussion on the identification problem of cohort analysis and making use of gradually
changing parameter assumption in order to surmount the problem of decomposition
of age, period, and cohort effects is an important focus of Section 3. The penalized
log-likelihood of the Bayesian model and the maximum a posteriori (MAP) estimate
of its parameters are also discussed here at large. Section 4 presents the numerical
procedure for computation of the log-likelihood of the model and a technique for
estimating starting values of the parameters of the log-likelihood computation. To
check the effectiveness of the method, the results of simulation studies for two specific
model cases are juxtaposed and analyzed in section 5. Reduction of high growth
of population is a major concern of Bangladesh for which birth control by adopting
contraception is the pivotal factor. Section 6 attempts to delineate the results of a
real world application of proposed method to demographic data on individual level
contraceptive use among women. Section 7 sums up with some concluding remarks.
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2 Binary Logit Cohort Model

2.1 Development of the Model

Let a data set for several consecutive surveys be denoted by {(yn, an, pn, xn)|n =
1, 2, . . . , N} where N is the total sample size, yn is a dichotomous response variable
related to the respondent, yn taking values 1 or 0, an is his/her age, pn is the date
of his/her interview or the survey year2, and xn = (x1n, . . . , xmn)T is the vector of m
covariates. Assuming that yn takes value 1 with the probability Pr(yn = 1) = πn, 0 <
πn < 1, a binary logit regression cohort model is defined by

πn =
exp η(an, pn, xn)

1 + exp η(an, pn, xn)
(2.1)

or equivalently
log

πn

1− πn
= η(an, pn, xn) (2.2)

with a structure η(a, p, x) = g0(x) + gA(a,x) + gP (p,x) + gC (c, x) where c (= p− a)
is the birth time of a respondent (hereafter the suffix n is omitted). Subscripts A, P ,
and C indicate age, period, and cohort, respectively.

Supposing that the surveys have been conducted J times at ∆-year intervals and
each survey was completed within a day of a certain year, the survey year p takes J
different values {P1, . . . , PJ} such that Pp̃ = P1+(p̃−1)∆, p̃ = 1, . . . , J where P1 is the
earliest survey year. Thus age groups Aã can be defined as intervals Aã = [a∗ã, a∗ã+1),
a∗ã = a∗1 + (ã − 1)∆, ã = 1, . . . , I where a∗1 is the age of the youngest respondents or
suitably chosen lowest age and I is the number of age groups. Similarly, cohort groups
Cc̃ are represented as intervals Cc̃ = (c∗c̃ , c∗c̃+1], c∗c̃ = Pp̃− a∗ã, c̃ = I − ã + p̃ = 1, . . . , K
where K(= I + J − 1) is the number of cohort groups. Using the above notations, the
functions g’s are specified as beneath

g0(x) = β0 +
m0∑

j=1

β0jxj ,

gA(a,x) =
I∑

ã

vA(ã, x)δA(a, ã), δA(a, ã) = 1 if a ∈ Aã, and 0 otherwise,

gP (p,x) =
J∑

p̃

vP (p̃,x)δP (p, p̃), δP (p, p̃) = 1 if p = Pp̃, and 0 otherwise,

gC (c,x) =
K∑

c̃

vC(c̃,x)δC(c, c̃), δC(c, c̃) = 1 if c ∈ Cc̃, and 0 otherwise,

2an and pn are not necessarily measured in years but they could be in months or in days.
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where functions vA(ã,x), vP (p̃, x), and vC(c̃, x) are further expressed by vA(ã,x) =

βA
ã +

m
A∑

j

βA
ãjxj , vP (p̃, x) = βP

p̃ +
m

P∑

j

βP
p̃jxj , and vC(c̃, x) = βC

c̃ +
m

C∑

j

βC
c̃jxj . β0 is the

grand mean; βA
ã , βP

p̃ , and βC
c̃ , the main effects due to age, period, and cohort, re-

spectively. β0j is the main effect of the j-th covariate, and βA’s, βP ’s, βC ’s with
double subscripts are the interaction effects of age-by-covariate, period-by-covariate,
and cohort-by-covariate, respectively. For example, βA

ãj is the interaction effect be-
tween the ã-th age group and the j-th covariate. m0 ≤ m and mA , mP and mC are
suitable number of variables included in the model for covariates, age, period, and
cohort respectively. Parameters β’s are subject to the following zero-sum constraints:

I∑

ã=1

βA
ã =

J∑

p̃=1

βP
p̃ =

K∑

c̃=1

βC
c̃ = 0, and

I∑

ã=1

βA
ãj =

J∑

p̃=1

βP
p̃j =

K∑

c̃=1

βC
c̃j = 0. Model (2.2)

named G{x}A{x}P{x}C{x} becomes an ordinary age-period-cohort (GAPC) model
if yn does not depend on xn:

log
πn

1− πn
= η(an, pn) = β0 +

I∑

ã

βA
ã δA(an, ã) +

J∑

p̃

βP
p̃ δP (pn, p̃) +

K∑

c̃

βC
c̃ δC(cn, c̃).

(2.3)
Considering the zero-sum constraints mentioned above, the main and interaction

effects are expressed by vector notation as β0 = (β0, β01, . . . , β0m0
)T , βA = (βA

1 , . . . ,

βA
I−1)

T , βA
j = (βA

1j , . . . , β
A
I−1,j)

T , j = 1, . . . ,mA ; βA
? = ((βA

1 )T , . . . , (βA
m

A
)T )T , βP =

(βP
1 , . . . , βP

J−1)
T , βP

j = (βP
1j , . . . , β

P
J−1,j)

T , j = 1, . . . ,mP ; βP
? = ((βP

1 )T , . . . , (βP
m

P
)T )T ,

βC = (βC
1 , . . . , βC

K−1)
T , βC

j = (βC
1j , . . . , β

C
K−1,j)

T , j = 1, . . . , mC ; βC
? = ((βC

1 )T , . . . ,

(βC
m

C
)T )T , where T indicates the vector/matrix transpose. Further let β = (βT

0 , βT
∗ )T ,

β∗ = ((βA)T , (βA
? )T , (βP )T , (βP

? )T , (βC)T , (βC
? )T )T . It is important to that β and β∗

are (1 + m0 + M) and M dimensional vectors, respectively, where M = (I − 1) +
mA(I − 1) + (J − 1) + mP (J − 1) + (K − 1) + mC (K − 1).

Let dn be a row vector of order (1 + m0 + M) for the n-th sample respondent,

dn = (1, xT
n , δA

n , xT
n ⊗ δA

n , δP
n , xT

n ⊗ δP
n , δC

n , xT
n ⊗ δC

n ),

which is the n-th row of the complete design matrix, X. The operator ⊗ indi-
cates the Kronecker product. The row vectors δA

n , δP
n , and δC

n take the forms as
δA

n = (δA(an, 1), . . . , δA(an, I − 1)) if an 6∈ AI ; δA
n = −1T

I−1 if an ∈ AI .
δP

n = (δP (pn, 1), . . . , δP (pn, J − 1)) if pn 6= PJ ; δP
n = −1T

J−1, otherwise. δC
n =

(δC(cn, 1), . . . , δC(cn,K − 1)) if cn 6∈ CK ; δC
n = −1T

K−1, elsewhere. 1u is a u-
dimensional unit vector, i.e., 1u = (1, . . . , 1︸ ︷︷ ︸

u

)T .
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2.2 Identification Problem

For an arbitrary real number ∆, let γ0 = β0−{I−(rA−rP +rC)}∆, γA
ã = βA

ã +(ã−rA)∆,
γP

p̃ = βP
p̃ − (p̃− rP )∆, γC

c̃ = βC
c̃ + (c̃− rC)∆, where rA, rP , and rC are suitably chosen

so that γ’s satisfy the zero sum constraints. Then

γ0 + γA
ã + γP

p̃ + γC
c̃ = γ0 + βA

ã + βP
p̃ + βC

c̃ + {ã− p̃ + c̃− (rA − rP + rC)}∆
= β0 + βA

ã + βP
p̃ + βC

c̃ (since I = ã− p̃ + c̃)
= η(an, pn),

which proves that the model (2.3) has infinite number of decompositions and similar
reasons apply to model (2.2). This is known as identification problem in cohort anal-
ysis. Taking the sum of squares of the first-order differences of the effect parameters
of each factor gives

I−1∑

ã=1

(γA
ã − γA

ã+1)
2 =

I−1∑

ã=1

(βA
ã − βA

ã+1)
2 − 2(βA

1 − βA
I )∆ + ∆2,

J−1∑

p̃=1

(γP
p̃ − γP

p̃+1)
2 =

J−1∑

p̃=1

(βP
p̃ − βP

p̃+1)
2 − 2(βP

1 − βP
J )∆ + ∆2,

K−1∑

c̃=1

(γC
c̃ − γC

c̃+1)
2 =

K−1∑

c̃=1

(βC
c̃ − βC

c̃+1)
2 − 2(βC

1 − βC
K)∆ + ∆2,

which suggests that minimizing these sums is the key to get a parsimonious decompo-
sition and to overcome the identification problem.

2.3 Log-Likelihood Function and Smoothing Priors

Since yn is a binary random variable, the log-likelihood of the model (2.1) is given by

`(β) = log L(β) = yT log π + (1− y)T log(1− π) (2.4)

where y = (y1 , . . . , yN )T , and π = (π1 , π2 , . . . , πN )T . The zero-sum constraints to
parameters are not sufficient conditions for the uniqueness of ML estimates. Moreover,
without further constraints the ML method will usually provide a rapidly fluctuating
trajectory of age, period, and cohort effects.

To overcome the identification problem in the decomposition (2.2), it would be
sensible to make the assumption that the successive parameters of the ages, periods,
and birth cohorts change gradually (Nakamura, 2004). This can be expressed as min-
imizing the weighted sum of squares of the first-order differences of the parameters:
1
σ2

A

I−1∑

ã=1

(βA
ã −βA

ã+1)
2 +

1
σ2

P

J−1∑

p̃=1

(βP
p̃ −βP

p̃+1)
2 +

1
σ2

C

K−1∑

c̃=1

(βC
c̃ −βC

c̃+1)
2 +

mA∑

j=1

1
σ2

Axj

I−1∑

ã=1

(βA
ãj −
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βA
ã+1,j)

2+
mP∑

j=1

1
σ2

Pxj

J−1∑

p̃=1

(βP
p̃j−βP

p̃+1,j)
2+

mC∑

j=1

1
σ2

Cxj

K−1∑

c̃=1

(βC
c̃j−βC

c̃+1,j)
2, where σ2’s are called

hyperparameters and this expression can compactly be expressed as (Xsβ∗)T S−1(Xsβ∗),
which acts as a ‘smoothness’ penalty with respect to β for the log-likelihood given in
(2.5) (Nakamura, 1986). The amount of smoothness of parameters is realized by
the hyperparameters which act as the tradeoff among parameter effects by producing
smoothed estimates (Lindley and Smith, 1972). Xs is an M ×M matrix representing
the first order differences of the parameters and S is an M ×M diagonal matrix, S =
diag

(
σ2

A1T
I−1, (ImA ⊗ 1I−1)σA, σ2

P1T
J−1, (ImP ⊗ 1J−1)σP , σ2

C1T
K−1, (ImC ⊗ 1K−1)σC

)
,

where σA = (σ2
Ax1

, . . . , σ2
Axm

A
)T , σP = (σ2

Px1
, . . . , σ2

Pxm
P

)T , σC = (σ2
Cx1

, . . . , σ2
Cxm

C
)T .

Here Iu is a u× u identity matrix.
Instead of (2.4), the following penalized log-likelihood is maximized

`p(β|σ) = [yT log π + (1− y)T log(1− π)]− 1
2
(Xsβ∗)

T S−1(Xsβ∗) (2.5)

with respect to β and σ = (σ2
A, σT

A , σ2
P , σT

P , σ2
C, σT

C )T , a (mA+mP +mC +3) dimensional
vector of hyperparameters. The maximum estimate of `p(β|σ) should be achieved with
a trade-off between the log-likelihood of the model and the smoothness constraints
(i.e., first order differences) to the parameters β∗. The maximization of (2.5) can be
interpreted as the computation of the mode of the Bayesian posterior distribution of
β (Akaike, 1980; Jiang et al., 2001) when the prior distribution of β∗ is assumed a
multivariate Gaussian distribution defined by

φ(β∗|σ) = (2π)−
M
2 |XT

s S−1Xs|
1
2 exp

{
−1

2
(Xsβ∗)

T S−1(Xsβ∗)
}

. (2.6)

To this end, estimating the parameters requires to take into account two conditions
simultaneously — (i) to maximize the log L(β) that ensures the goodness of fit of
a model to data, and (ii) to maximize φ(β∗|σ) that should smooth the parameter
estimates. The estimate of β is to be obtained by maximizing the penalized log-
likelihood (2.5) for given σ.

2.4 ABIC and MAP Estimate

As a criterion for model selection as well as for the determination of σ, ABIC is defined
(Akaike, 1980) by

ABIC = −2 log L(β0, σ) + 2 (dim σ + m0 + 1), (2.7)

where dim indicates the dimension of a vector and the marginal likelihood function of
σ is obtained as

L(β0, σ) =
∫

L(β) · φ(β∗|σ)dβ∗ =
∫

exp{log L(β)} · φ(β∗|σ)dβ∗,



Huq, Ishiguro and Rahman: Estimating Binary Logit Regression Cohort 323

= c0

∫
exp

{
yT log π + (1− y)T log(1− π)− 1

2
(βT
∗XT

s S−1Xsβ∗)
}

dβ∗ (2.8)

where c0 = (2π)−
M
2 |XT

s S−1Xs|
1
2 . The exponent in (2.8) is nothing but the penalized

log-likelihood defined in (2.5). Since the penalized log-likelihood is certainly based
on non-Gaussian, the analytical solution of the integral in (2.8), unlike the linear
models in Akaike (1980), is not possible. But the prior φ in (2.6) is Gaussian, so the
Gaussian approximation of the posterior is plausible (Ishiguro and Sakamoto, 1983;
for non-parametric regression, refer to Good and Gaskins, 1971; Silverman, 1982).
An approximate computation of the integral is discussed in the next section. The
estimate σ̂ of σ is obtained by maximizing (2.8) or equivalently by minimizing ABIC
(2.7) and the maximum a posteriori (MAP) estimate β̂ of β for given σ̂ is then
obtained by maximizing (2.5) with the numerical non-linear optimization procedure
(Davidon, 1968; Ishiguro and Akaike, 1989; for MAP estimate, Green, 1997; and Jiang
et al., 2001). ABIC will result a parsimonious model which maximizes the likelihood
function while minimizing the influence of the somewhat arbitrary gradually changing
parameter assumptions.

3 Numerical Procedure

To compute the maximum value of log L(β0, σ) numerically, we first maximize `p(β|σ)
with respect to β for given σ. Assume that `p(β|σ) is well approximated by the
following quadratic form

`p(β|σ) ≈ `p(β̂|σ)− 1
2
(β − β̂)T H(β̂|σ)(β − β̂),

where H(β̂|σ) = −∂2`p(β̂|σ)

∂β∂βT
is the negative of the Hessian matrix of the penalized

log-likelihood at β̂. After partitioning H(β̂|σ) for β0 and β∗, the marginal log-
likelihood (2.8) of the model for fixed σ is approximated to

log L(β0, σ) ≈ log c0 + `p(β̂|σ)− 1
2
(β0 − β̂0)

T H0(β̂0|σ)(β0 − β̂0)

+ log
∫

exp
{
− 1

2
(β∗ − β̂∗)

T H∗(β̂∗|σ)(β∗ − β̂∗)
}

dβ∗.

To obtain the minimum ABIC, log L(β0, σ) should be maximum at β0 = β̂0 and
becomes

log L(β̂0,σ) ≈ 1
2

log |XT
s S−1Xs| − 1

2
log |Ĥ∗(β̂∗|σ)|+

{
yT log π̂

+(1− y)T log(1− π̂)− 1
2
(Xsβ̂∗)

T S−1(Xsβ̂∗)
}

. (3.1)
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This quantity is the trade-off between the estimated maximum log-likelihood (2.4) of
the model and the other penalty for the ‘smoothness’ of the estimated parameters.

3.1 Calculation of Initial Estimates

The numerical computation of (2.5) of the binary regression cohort model requires ini-
tial values for the parameters and hyperparameters. The modus operandi is proposed
here as follows: The estimate of β is obtained by minimizing the quantity

M(β,σ) =
1

2σ2

∑
n

1
w2(δ)

(ẙn − dnβ)2 +
1

2σ2
(Xsβ∗)

T S−1(Xsβ∗),

=
1

2σ2
(̊y −Xβ)T W−1(̊y −Xβ) +

1
2σ2

(Xsβ∗)
T S−1(Xsβ∗), (3.2)

where X = [X0,X∗], X0 and X∗ are the design matrices associated with β0 and
β∗, respectively. ẙ is an N -dimensional vector whose n-th element, ẙn = log(yn +
δ)/(1− yn + δ), and W = w2(δ)IN . w2(δ) is the variance of the modified logit trans-
formation for binary data, i.e., w2(δ) = (log(1 + δ)/δ)−1 ' (log δ)−1. The weighted
least squares estimate of β are obtained for fixed σ and δ. In the situation of binary
response data, one may adopt δ = 0.5, but here we choose 0 < δ ¿ 0.5 because
the approximation of (3.2) should be close to true one when δ tends to zero. Again
let L∗(β) be the pseudo-likelihood of the model is given by (2πσ2)−

N+M
2 |W |− 1

2 ×
exp

{− 1
2σ2

(̊y −Xβ)T W−1(̊y −Xβ)
}
, then the estimate of σ2 is obtained by max-

imizing L∗(β0,σ) =
∫
L∗(β) · φ(β∗|σ)dβ∗ for given β. Thus the marginal pseudo

penalized log-likelihood is derived as

logL∗(β̃0,σ) = −N

2
(1 + log 2πσ̃2)− 1

2
log |W | − 1

2
log |W ∗|+ 1

2
log |V |, (3.3)

where W ∗ = XT
∗W−1X∗ + V and V = XT

s S−1Xs. The estimate of σ are obtained
by maximizing (3.3) using the numerical optimization procedure (Ishiguro and Akaike,
25). It is noted that the estimate β̃ can be considered as a function of σ because β̃ is
computed for given σ.

3.2 Estimation of Confidence Interval

The estimate β̂∗ in (3.1) is obtained by numerical optimization procedure. This is
interpreted as the mode or MAP estimate of our Bayesian model. The Hessian matrix
H∗(β̂∗|σ), the negative of the second derivatives of the penalized log-likelihood with
respect to β∗, calculated numerically at β∗ = β̂∗. According to the Bayesian inter-
pretation, the inverse Hessian H−1

∗ (β̂∗|σ) = [hij ], say, (i = 1, . . . ,M ; j = 1, . . . , M) is
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considered as the variance-covariance matrix of the posterior distribution of the pa-
rameters. The standard error of the estimate, for example, β̂i∗ [i-th element of β∗] is
given by

√
hii, the square root of the corresponding diagonal element of H−1

∗ (β̂∗|σ).
The reliability of the parameter estimate with 90% confidence can be inspected visually
when β̂i∗ ± 1.65

√
hii are attached to the plot of the estimate β̂i∗ (i = 1, . . . , M).

4 Simulation Study

Judging the performance of our proposed method by Monte Carlo simulation stud-
ies, a total of thirty five candidate models can be constructed practically when only
a single covariate viz. x is considered and these are G, GA, GP, GC, GAP, GAC,
GPC, GAPC,G{x}, G{x}A, G{x}P, G{x}C, G{x}AP, G{x}AC, G{x}PC, G{x}APC,
G{x}A{x}, G{x}P{x}, G{x}C{x}, G{x}A{x}P, G{x}AP{x}, G{x}A{x}P{x}, G{x}
A{x}C, G{x}AC{x}, G{x}A{x}C{x}, G{x}P{x}C, G{x}PC{x}, G{x}P{x}C{x},
G{x}A{x}PC, G{x}AP{x}C, G{x}APC{x}, G{x}A{x}P{x}C, G{x}A{x}PC{x},
G{x}AP{x}C{x}, G{x}A{x}P{x}C{x}. In the first simulation, data have been simu-
lated based on the effects of age, period and cohort for a simple cohort model without
covariate effects (i.e., GAPC model case), and in the second simulation, data with
the effects of age, period, cohort and a single covariate on the response variable (i.e.,
G{x}A{x}P{x}C{x} model case) are generated. Data for five hypothetical repeated
surveys have been generated. A total sample of size N = 15000 was taken with equal
sizes for each of the surveys. The ages of women were randomly generated based
on the empirical age distribution of currently married women of childbearing ages of
Bangladesh (CPSs, 1983-1991; and DHSs, 1993-1997). The numbers for a dichotomous
covariate according to the positive responses of probability 0.2 were also independently
generated.
GAPC As True Model Case: In this case the data for the response variable are gener-
ated without the effect of any covariate. The dichotomy values of the response variable
for N individuals were made according to the probability of positive response: Pr(yn =
1) = exp η(an, pn, xn)/{1 + exp η(an, pn, xn)}. The structure of the GAPC model is

given by η(an, pn, xn) = µ+
I∑

ã

µA
ã δA(an, ã)+

J∑

p̃

µP
p̃ δP (pn, p̃)+

K∑

c̃

µC
c̃ δC(cn, c̃), which

indicates that the true model has the age, period, and cohort effects but no covariate
effect. Data have been generated with the model for a hypothetical assumed patterns
of age, period and cohort effects. All of the practically possible candidate models are
fitted to the data and their estimated minimum ABIC values are shown in Table 1
(first four columns) for top ten out performed models, where the fact stands out that
ABIC has chosen GAPC model as the best model.
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Table 1: ABIC Values of the Top Ten Models for Simulated Data: (a) When the
GAPC Model is Assumed True, and (b) When the G{x}A{x}P{x}C{x} is assumed
true.

aModels dimension ABIC bModels dimension ABIC
θ σ value θ σ value

GAPC 21 3 15454.9 G{x}A{x}P{x}C{x} 42 6 15925.6
G{x}AP{x}C 26 4 15455.1 G{x}A{x}PC{x} 38 5 15929.0
G{x}A{x}P{x}C 32 5 15458.4 G{x}APC{x} 32 4 15931.7
G{x}AP{x}C{x} 36 5 15460.3 G{x}A{x}P 18 3 15933.3
G{x}APC 22 3 15461.2 G{x}A{x}P{x} 22 4 15934.3
G{x}A{x}PC{x} 38 5 15462.9 G{x}AP{x}C 26 4 15935.4
G{x}A{x}P{x}C{x} 42 6 15464.7 G{x}A{x}C{x} 34 4 15936.4
GPC 15 2 15467.7 G{x}AP{x}C{x} 36 5 15937.5
G{x}PC 16 2 15468.0 G{x}A{x}P{x}C 32 5 15937.9
G{x}A{x}P 18 3 15469.0 G{x}AC{x} 28 3 15938.2

G{x}A{x}P{x}C{x} As True Model Case: In this simulation study, data are produced

following the model structure η(an, pn, xn) = µ + β0xn +
I∑

ã

(µA
ã + βA

ã xn)δA(an, ã) +

J∑

p̃

(µP
p̃ + βP

p̃ xn)δP (pn, p̃) +
K∑

c̃

(µC
c̃ + βC

c̃ xn)δC(cn, c̃), where x is a single dichotomous

covariate. The response variable evolves with a hypothetical assumed structures of
the age, period, cohort and covariate effects. It is conspicuous from Table 1 (last four
columns) that the true model appears as the optimal model with minimum ABIC
value among the plausible models applied to the data.

5 An Application to Contraceptive Use Data

Contraceptive use dynamics data of Bangladesh stems from a series of six repeated
retrospective surveys (CPSs 1983, 1985, 1989, and 1991; and DHSs 1993-94, 1996-
97). In the previous section, Bayesian method for estimating cohort model has been
evaluated by Monte Carlo simulation for data of equally spaced repeated surveys. But
the survey years of real data are not equally distant and therefore are modified using
spline basis function with appropriate order (Huq, 2002). Current contraceptive use
status (CCUS) is considered as a response variable and seven explanatory variables
such as children wanted in future (CWF), visit of family planning worker by six months
(FPW), educational attainment of respondent (EDU), employment status by earning
cash (EMP), place of residence (RES), religion (REL) and education of husband (EDH)
(these variables’ significance are recognized by voluminous research works, viz.
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Table 2: Top ten candidate models arranged according to their minimum ABIC values.
Variables aM1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Constant + + + + + + + + + +

CWF + + + + + + + + + +
FPW + + + + + + + + + +
EDU + − + − + + − + − −
EMP + + − + − + + + + −
RES + + − + + + + − + +
REL + + + + + + + + + +
Age + + + + + + + + + +

CWF + + + + + + + + + +
FPW − − + − − + − + − −

A EDU − − − − − − − + − −
g EMP − − − − − − − − − −
e RES + − − + + + + − + +

REL + + + + + + + + + +
Period + + + + + + + + + +

p CWF + + + + + + + + + +
e FPW + + + + + + + + + +
r EDU − − − − − − − + − −
i EMP − − − + − − + − − −
o RES + + + + + + + − + +
d REL − − − + − + + + − +

Cohort + + + + + + + + + +
c CWF + + + + + + + + + +
o FPW + + + + + + + + + +
h EDU − − + − + − − + − −
o EMP − − − − − − + − − −
r RES − + − + − + − − + +
t REL + + + + + + + + + +
dim of θ 94 97 102 117 103 117 117 116 103 109
dim of σ 12 12 13 15 13 15 15 15 13 14

A
BIC

48
17

2.
4

48
17

6.
1

48
17

8.
5

48
18

1.
2

48
18

7.
5

48
18

8.
8

48
19

3.
2

48
19

9.
0

48
20

5.
1

48
20

8.
4

aM’s in column headings indicate model of type G{x}A{x}P{x}C{x} and the number indicates rank. ‘+’ and
‘−’ indicates the inclusion and exclusion of the covariates in the models, respectively.

Bernhaart and Uddin, 1990; DeGraff, 1991; Ullah and Chakraborty, 1993; Kamal,
1994; and Islam and Mahmud, 1995) are primarily considered for age-period-cohort-
covariate analysis.

For simplicity, dichotomy categorization of the variables are considered as follows:
CCUS = 1 if respondent is currently using contraceptive, otherwise 0; CWF = 1 if she
wants child in future, otherwise 0; FPW = 1 is she was visited by FPW, elsewhere 0;
EDU = 1 for some education, 0 for no education; EMP = 1 if earns cash, otherwise
0; RES = 1 if she resides in rural, RES = 0 for urban woman; REL = 1 for Muslim
woman and REL = 0 for other than Muslim; and EDH = 1 if her husband has some
education, EDH = 0 if no education or she does not know. Firstly a best-fitting model
GAPC has been chosen that has minimum ABIC value from all possible model com-
binations without any covariates. To reduce the exhaustive search of all the possible
models in case of a large number of covariates, secondly four models of type GAPC
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(denoted by G{x}APC, G{x}A{x}PC, G{x}AP{x}C, G{x}APC{x}) for each single
variable are fitted and their minimum ABIC values are reckoned. From the results,
husband’s education has found to be the lowest impact on the contraceptive practice
for three of four categories of models and therefore is not considered for further model
investigations. Finally, based on the performances for each of the covariates on the
response variable, several dozens of candidate models for main and interaction effects
for a number of covariates with age, period and cohort effects are fitted to the data.
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Figure 1: Estimated age, period, and cohort effects (represent by bullets) for the minimum
ABIC model and the square brackets indicate the estimated 90% confidence intervals of the
corresponding effect parameter.

Table 2 reveals the summaries of top ten models arranged in ascending order with
their minimum ABIC values. Model M1 (denoted by G{vG}A{vA}P{vP}C{vC} where
vG=(CWF, FPW, EDU, EMP, RES, REL), vA=(CWF, RES, REL), vP =(CWF,
FPW, RES), and vC=(CWF, PFW, REL)) is found to be the optimal model which
has the smallest minimum ABIC value. Inclusion of main and interaction terms in a
model are so flexible by considering the stepwise approach for selecting a best model
among all possible candidate models. The best minimum-ABIC model (model M1)
presented in Table 2 includes six of seven main effect of covariates and nine interaction
terms between age, period and cohort with different combinations of four variables of
CWF,FPW, RES and REL out of seven variables. Other nine models labelled M2 to
M10 with various combination of main and interaction effects of covariates are also
presented in this table. The estimate of grand mean is found to be −0.726 (32.6%)
and the estimates of main effect of covariates in vG are −0.76, 0.41, 0.22, 0.27, −0.29
and −0.21 respectively which are harmonious with the prior expectations amongst de-
mographers, and the findings of many of the variables effect agreed with them. Effects
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of CWF, RES and REL on currently using contraceptive method are found negative
and while the factors FPW, EDU and EMP are positively associated with the con-
traceptive prevalence rate. Negative effect of CWF interprets that woman who yet to
complete family size is inversely related to contraceptive prevalence.
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Figure 2: Estimated interaction effects (indicated by bullets) between the covariates and age
of the minimum-ABIC model and the square brackets indicate the estimated 90% confidence
intervals of the corresponding interation-effect parameter.

Figure 1 displaying age, period, and cohort changes over time. Movement to the
right signifies an increase in contraceptive use while movement to the left indicates a
decrease. It is obvious that contraceptive prevalence is higher among women of 20-
30 years of age and the trajectory of age effects gradually declines as age increases.
Increased time period clearly leads to increased contraceptive prevalence. The rising
pattern of time effects is quite linear, though there are slight variations around it.
That is, period effects indicate an increasing level of contraceptive use during the
years surveys are conducted. Older cohorts of women have been found to possess
less inclination in contraceptive use as many of them became out of risk in getting
pregnancy. Women of middle cohorts exhibit more modernized attitude with regard
to contraception than the younger cohorts. The premise behind this may be higher
unmet need for contraception and/or higher discontinuation (those who abandon of
use) among younger cohorts. Both the age and cohort effects show non-linear patterns
but the period effects depict a sharp linear steep (rising) pattern.

Figure 2 shows the interaction effects between age, period, and cohort and covari-
ates with their 90% confidence limits. This joint plot of the estimated effects with
confidence intervals is used to assess the fit of the Bayesian models. The pattern for
age-CWF interaction effects in panel (a) implies that women of age ranges from 15-35



330 International Journal of Statistical Sciences, Vol. 9s, 2009

-1 0 1

1997

1995

1993

1991

1989

1987

1985

1983

period x CWF

[

[

[

[

[

[

[

[

]

]

]

]

]

]

]

]

(a)

-1 0 1

1997

1995

1993

1991

1989

1987

1985

1983

period x FPW

[

[

[

[

[

[

[

[

]

]

]

]

]

]

]

]

(b)

-1 0 1

period x RES

[

[

[

[

[

[

[

[

]

]

]

]

]

]

]

]

(c)

Figure 3: Estimated interaction effects between the covariate and period of the minimum
ABIC model and the square brackets indicate the estimated 90% confidence intervals of the
corresponding interaction-effect parameter.

who want additional children are practising contraceptive method more frequently to
avoid conception than the 35-49 years of age, i.e., increased age of those women who
want child in future leads to decreased contraceptive prevalence and the prevalence
rate is hovering about women of age 35 and higher. Young woman may wants to give
space for the next birth and they have higher prevalence in the use of contraception.
Interaction effects between age and place of residence and age and religion shown in
panel (b) and (c) respectively appear to be weakly consistent in their direction, i.e.,
increased age with women living in urban area follows a slightly increased contracep-
tive use and increased age of Muslim women leads to slowly decreased contraceptive
use rate. As can be seen that the main effect of religion has negative influence on
contraceptive use for religious regulations and/or prohibitions are widely perceived
and respected by the Muslim women of the country which reflects in their older ages.

In Figure 3 the 80s shows a steady increased rate of contraception (panel (a)) but
the rate after 1990 plummets to a stagnant state among women who desire child in
future. Among women who desired additional children it was observed in Figure 4
that, younger to middle cohorts show a consistent decreased contraceptive use, while
effects in older cohorts are inconsistent (panel (a)). Recent cohorts may want to give
space for the next birth by practising contraceptives. Younger cohorts of Muslim
eligible respondents showed a higher prevalence of contraception (panel (b)).

Interactions between time period and FPW in panel (b) of Figure 3 leads to in-
creasing pattern of contraceptive prevalence during the middle survey periods though
the direction changes at 1995, i.e., stable effects observed to both the ends and in
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Figure 4: Estimated interaction effects between the covariate and cohort of the minimum-
ABIC model and the square brackets indicate the estimated 90% confidence intervals of the
corresponding parameter.

panel (c) of Figure 4, the joint effects of family planning assistance with cohorts prior
to 1950s appear to be weak but slightly inconsistent, which may suggest that family
planning women workers assistance did not reach to these cohorts of women. While
the contraceptive prevalence dropped significantly in early 1950s and afterwards there
is a sharp increase but constant effect observed from late-1960s to younger cohorts.
The reason might be due to the withdrawals of governmental policy to nationwide
continuing family planning services since late 90s. This fact may be reflected in panels
(b) of Figure 3 and (c) of Figure 4.

6 Summary

Contraceptive use dynamics in Bangladesh has been investigated by using Bayesian
binary logit regression cohort model which not only helps to examine the effects of
age, period, and cohort but also to explore the instantaneous influence of covari-
ates along with the interaction effects of age-by-covariate, period-by-covariate, and
cohort-by-covariate. This model confronted an identification problem in that the age,
period, and cohort effects cannot be partitioned uniquely and the problem is solved
by a Bayesian method with gradually-changing-parameter assumption. Numerical op-
timization technique is utilized to maximize the likelihood for finding the estimates of
the parameters. Effectiveness of the method have been checked by two simulation stud-
ies. The fit of candidate models are evaluated by the model selection statistic ABIC,
and the best-fitting model that yields with the smallest ABIC value. The reliability of
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estimates of the parameters and the solutions of the identification problem have also
been inspected visually by the joint display of the effects with their confidence bounds.

A real application of the models to the contraceptive use dynamics discloses many
factors that have significant influence on fertility control in Bangladesh. Results sug-
gest that period effects are somewhat strong and consistent. There appears to be a
clear indication of increased changes in contraceptive use patterns. The patterns of
contraceptive prevalence by age is typically U-shaped; relatively old or young women
of childbearing ages have lower contraceptive prevalence rate than others because bi-
ologically older women’s decline their fecundability but younger’s may yet reach to a
desired family size or a desired sex composition of children. The older cohorts have
the lowest tendency in the contraceptive use practice, the highest prevalence observed
in the mid 50s while from 1960s cohort effects are decreasing steadily but relatively
stable. While taking interactions of CWF, RES and REL with age into account, the
trajectory of these effects do not show U-shaped but have different effect patterns.

The findings reveal that women in younger cohorts are conscious enough about the
expected number of offsprings compared to older cohorts; higher rate of contraception
use grows apace as a sequel of changing attitude of Muslim women cohorts which is
also boosted up by the field workers’ visit; rural women of the periods between 80s and
90s are found not very receptive about contraception; field workers’ visit increased its
efficiency towards higher rate of contraception use during the historical periods. More
importantly, application of sophisticated model brings into light that age, period, and
cohort effects and many of the interaction effects with socioeconomic and demographic
variables tend to be present and run in different directions, which might be suggested
that this method can be plausible for analyzing data of repeated surveys.
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