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Abstract

In many consumer surveys, demographic and other data are used as covariates for predictions of
consumer preferences and other decision variables. However, to protect the confidentiality of the
consumers, the data are only available in marginal frequency distribution format. This creates a
problem in predicting joint frequencies required for further decision-making. In this paper we con-
sider the dependence structure in formulating the joint distribution given in the form of a Dirichlet
prior. The computations in the casek 2 table are extended to multiway contingency tables and

shown to provide similar results as obtained using the Monte Carlo methods.
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1 Introduction

In this paper we consider estimating the joint distribution of several demographic variable
when only information about their marginal distributions is available. Petlex. (1996)
considered a Bayesian approach using Dirichlet prior for the cell proportions. They also com-
pared iterative proportional fitting (IPF) method (see Bishop, Feinberg, and Holland 1975).
They presented the case2k 2 table in detail. However, the higher contingency tables have

to be analyzed using Monte Carlo methods, because they require multidimensional numerical
integration. However, the Bayesian method is preferred as it readily presents an estimate of
the standard error derived from the posterior variance.

The proposal in this paper is to reduce the contingency table into sevegatontingency
tables, estimate the target cell frequency along with its standard error and combine the results
obtained from various tables in an appropriate manner. We highlight here that computations
in the case of x 2 table can be easily performed. For example, suppose, we aveax 2
contingency table, with unknown cell proportions writtergg; i = 1,2, j = 1,2, k = 1,2.
For estimatinge11, we can consider the following, 2 x 2 contingency tables:

Table 1: Three x 2 Contingency Tables for Estimating; from a2 x 2 x 2 Table

1=2|2 xa1 X221

J=111 xi11 @112

J=22 x121 122
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t=1|1 z111 2112

1=2|2 To11 X212

Let, :z{?l andse?)(3111) denote the posterior mean and posterior variance based on the

I*M table comprising of; observation, the final estimates:of;; and its proposed estimator
of error is given by;

3 ~ (1)
R . TE
111 — Zlié Y111 (11)
D=1 Tl
3 201) (4
862(1‘111) = 2i=1 TISSG (F111) (1.2)
D=1 Tl

In section 2, we present the Bayesian analysis dfxa2 contingency table as given in
Putleret al. (1996). Section 3 outlines the computational details along with an example.
Section 4 presents computational summary of the examples considered irePatl¢t 996)
and some additional examples from a marketing consumer survey data irélsllontr

2 The Bayesian Approach in2 x 2 Case

Consider as if we have the observed data in the form2ka2 contingency table:

Table 2: A Typical2 x 2 Contingency Table

Column Factor Levels
1 2 Marginal
Row 1 nril nrio nri.
Factor
Levels 2 nroy nTo9 nT9.
Marginal nx nT .o nr. =n

where
zi; € [0,1], E xi =1,
ij
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andn is the sample size. The set-up we are concerned with iscthare unknown, however
the row-totals and column-totals are known. Of course, under some given assumptions such as
independence, the known marginal probabilities can be used to estimate the joint probabilities

pij = Pr[Xy =i, Xo = j],

whereX; refers to the row attribute ankl; refers to the column attribute. Putletral. (1996)
consider a joint Dirichlet prior op = (p11, p12, 21, P22) given by

ij—1
m(p) o< [ o™,
tj

whereq; refer to the prior information abouwt;, often available from some bench-mark data
or a larger survey, so that

aij €[0,1), Y ai; =1,
ij

andm refers to the weight assigned to the prior information. The prior implicitly assumes that
in m observations of prior data, the total in thigj)—cell ismay;;.

With this set-up, because of the constraints on the cell-proportions, only one of the cell-
totals is independent. We choose arbitrarily (Be2) — cell, and define the random variable
z = nxay. The posterior inference abouiimay be based on the densitfz|data), given by

g(2) = E{D(ny. —no+2z+mai)T(ns — 2+ mays) (2.1)
[(ng. — z + mao1)'(z + mage)/
P(ni, —mo+z+1)I'(na—2+1)T(ne, —2z+ DIz + 1)},

wheren;. = nx;, n; = nx j;i,j = 1,2. Putleret al. (1996) suggest that the posterior mean

can be computed in a two step procedure. The first step consists of computing the constant
k of proportionality, through a trapezoidal rule over a large number of intervals. The second
step consists of evaluating the integral

z = E(Z|data) = / o zg(z)dz,

Zmin

again using the trapezoidal rule, where
Zmin = Max(0,1.2 — N1.), Zmex = Min(n.z,na.).

An estimate of the standard error fs obtained from the posterior variance given by

se2(Z) = E[(Z — 2)%|data] = /Zm(z — £)2g(2)dz

Zmin

which is computed using the same approach as that for compiiting
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3 Computational Aspects

For the general case, Monte Carlo (MC) methods are proposed for estimation of proportions
Diyis..., SUCh as Importance Sampling and Gibbs Sampling. It is clear that MC methods are
very computationally intensive in this context and therefore, we investigate the possibility of
direct computation as suggested in the previous section. In practice, though the computation
of gamma functions arising in Eq. (1.1) presents problems. In most of the situations, we
may alleviate this problem by using the following technique. Let us deagthe approxi-

mate value ot whereg(z) takes its maxima (it is shown in Putlet al. (1996) thaty(z) is
unimodal). We can thus write

f;;::z zexp(h(z) — h(zg))dz
S exp(h(z) — h(z0))dz G4

Zmin

E(Z|data) =

where,h(z) is defined, so that
9(2) = kexp(h(z)).

The value ofz, can be found by plotting(z) againstz, which may be computable, where as
exp(h(z)) may not be. We first demonstrate this on the data used in Ruitédr (1996), and

then we use it on a survey data conducted by a market research firm. For the computation of
the integral, we use the following-codes for area function.

area<-function(f,a,b,...,fa=f(a,...),fb=f(b,...),limit=50,eps=1.0e-06)
{
#Program to integrate a function f using recursive Simpson’s rule
#eps is the absolute target error #limit is max number of iterations
h<- b-a
d<- (b+a)/2
fd<- f(d,...)
al<-((fat+fb) *h)/2
az2<-((fat4 «fd+fb) +h)/6
if ( abs(al-a2) < eps )
return(a2)
if (limit ==0){
warning(paste("recursion limit reached near x= ",d))
return(a2)
}
Recall(f,a,d,...,fa=fa,fb=fd,limit=limit-1,eps=eps)+
Recall(f,d,b,...,fa=fd,fb=fb,limit=limit-1,eps=eps)
}

This function works pretty well, except for the cases where the fungtioray take extremely
small values for a wide range of arguments. For examplg < eps for = in an interval

(¢,b), ¢ < (a+b)/2,and f(a) = f(b) = 0, the algorithm will produce a small but wrong
value of the integral. To avoid such situations, we evaluate the integral over two intervals,
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(a,zp) and (zg,b), wherez, is the approximate value of the argument where the function
peaks. The approximate peak is obtained by taking the maximumiz9fevaluated over a
grid of z—values.

Example: Consider the data of Putlet al. (1996) on Stain-Resistent Carpeting Direct Mail
Campaign (see their Table 5). We consider a collapsed form of the contingency table into two
factors, Type of Housing and Marital Status of the Household Head. The actual proportions
are given in the following table (Note that the actual proportions in Table 5 of Reitlal:

(loc. cit) do not add to 1 so we have arbitrarily chosen to adjust the last proportion from
.2520 t0 .2519).

Table 3: Proportions in & x 2 Contingency Table

Household Status
Not Married Married Total
Type | Rental 2670 .0874 .3544(4552)
of
Housing | Owned .1661 4795 .6456(8291)
Total  .4331(5562) .5669(7281) | n = 12843

The numbers in the parentheses are counts. The prior-probabilities are given in the following
table and the value of the weight is given bym = 12843 :

Table 4: Prior Proportions for Contingency Table 3

Household Status
Not Married Married| Total

Type Rental .3072 .0955 | .3544

of

Housing | Owned 1793 4180 | .6456
Total 4331 .5669

The followingR-Codes are used to compute the functibrand approximatey.
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h.prior<-function(x, rowt, colt, pprob, pcount)

{

#log Density-kernel for Estimating Unknown Proportions

#this finds the prior for a cell count,
see Eq (6) Putler et al.
# lam is the variable in the (2,2) cell
# pprob is the matrix of prior probabilities
# pcount is the weight in the Dirichlet prior,
see Eq (2) of Putler et al.
# rowt is a vector of row totals
# colt is a vector of column totals
# definition of the probability kernel
x1. <- rowt[1]
X2. <- rowt[2]
x.1 <- colt[1]
X.2 <- colt[2]
n <- x1. + x2.
all <- x1. - x.2 + x + pcount * pprob[1,1]
al2 <- x.2 - x + pcount * pprob[l, 2]
bll <- x2. - x + pcount * pprob[2, 1]
bl2 <- x + pcount = pprob[2, 2]
cll <- x1. - x.2 + x + 1.
cl2 <- x2 -x +1
dill <- x2. - x + 1.
di2 <- x + 1.
tnum <- c(all, al2, bll, b1l2)
tden <- c(cll, c12, d11, d12)
sum(lgamma(tnum))-sum(lgammag(tden)) }

The value ofz,,;, and z,ee Ar€2min = 7281 — 4552 = 2729, 2,4 = 7281 and the values
of the variablesowt, colt, pprob, pcount are set as follows:

rowt<-c(4552, 8291)

colt<-c(5562, 7281)

pprob<-matrix(c(0.2670, 0.0874, 0.1661, 0.4795),nr=2,byrow=T)

pcount<- 12843

The graph of the functioh(z) is then obtained as follows and appears in Figure 1.
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zse(q<-seq(2729,7281,length=20) hzseg<-sapply(zseq,h.prior,
rowt=rowt, colt=colt, pprob=pprob, pcount=pcount)
plot(zseq,hzseq)

hzseq
109000 110000 111000
! !
o

108000

107000
|

106000
|

T T T T T
3000 4000 5000 6000 7000

zseq

Figure 1: Plot of the Functioh(z)

This gives the value ofy approximately 6000. So we computéz,) as

>h.prior(6000,rowt,colt,pprob,pcount)
[1] 110799.4

S0,h(z9) = 110799.4 and hence the functio(z) can be defined as

g.prior<-function(x, rowt, colt, pprob, pcount) {
exp(h.prior(x, rowt, colt, pprob, pcount)-110799) }

and the denominator of Eq. (3.1) is obtained using the area over subint&vads 6000)
and (6000, 7281) as follows:

> area(g.prior,2729,6000,rowt, colt, pprob, pcount)
[1] 10.02941
> area(g.prior,6000,7281,rowt, colt, pprob, pcount)
[1] 7382576
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This comes out to be 7382586.02941. Hence the expression for the posterior mean can be
obtained through the following codes:

> kernel.mean<-function(x, rowt, colt, pprob, pcount)x *
+ g.prior(x, rowt, colt, pprob, pcount)/7382586.03

> area(kernel.mean,2729,6000,rowt, colt, pprob, pcount)

[1] 0.008141925

> area(kernel.mean,6000,7281,rowt, colt, pprob, pcount)

[1] 6158.561

This gives the Bayes estimate ©f; = 6158.5691/12843 = .4795, which turns out to be
the same as the actual proportion. We also computed the posterior meagr-fé2843 and
m = 15023, and results were almost the same.

4 Summary of Numerical lllustrations for Higher Order Tables

4.1 Data from Putler et al. (1996)

Here we present the computations for the three examples considered in Tables 5-7 from Putler
et al. (1996). The subscripts j, k refer to various demographic characteristics as follows:

e Stain-Resistant Carpeting Direct Mail Campaign (Table 5)
0. Housing: Rent; = 1.
Oown,: = 2.

0. Marital Status of Household Head: Married+= 1.
Not Married,j = 2.

0. Household Member Agex 18, k = 1.
> 18,k =2.
e Discount Home-Improvement Retail Site Location (Table 6)

0. Housing: Rent; = 1.
Oown,: = 2.

0. Household Income> 40,000, j = 1.
< 40,000, j = 2.

0. Household Member Age> 45, k = 1.
< 45,k = 2.

e Custom-made Golf Clubs Direct Mail Campaign Data (Table 7)

0. Annual Household Incomex 50, 0000, ¢ = 1.
> 50,000, 7 = 2.
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0. Sex: Male,j = 1.
Female;j = 2.

0. Years of Formal College Educatior: 4, k = 1.
>4, k=2

The following tables (Tables 5-7) give the values of the estimates of the cell proportions
along with their standard errors following the method outlined above, contrasting the values
obtained by Putleet al. (1996) using the Monte Carlo method. It is striking that our method
gives almost the same estimate as obtained by the Monte Carlo Method. The estimates of the
standard errors seem a bit inflated in some cases. At this point, we like to note that since,
there is only one degree of freedom i2 & 2 x 2 table, all the standard errors should be the
same. In such cases, we can average out the standard errors in an appropriate way (such as
waiting by the total sample size in each partition of sub-tables). In the above examples, we
can combine the posterior variances obtained from the two sub-tables and then average them.
However, in more complicated set up this type of combination may not be possible. We also
investigated using the estimates under independence as priors. The resulting estimates are not
far from the original prior, which seem to be much closer to the actual proportions. We like
to think the independence estimates as non-informative prior which get adjusted by the data
through the posterior mean.

Table 5: Summary for the Results for Table 5

CellID 111 112 121 122 211 212 221 222
Actual 2252 0418 0413 0461  .1378 0283  .2276  .2520
Putler 2219 0366  .0333  .0622  .1453  .0292  .2315  .2400
etal. (.0053) (.0037) (.0037) (.0044) (.0052) (.0035) (.0054) (.0058)
our 2293 0368  .0342  .0546  .1357  .0308  .2324  .2465

Proposal | (.0064) (.0070) (.0060) (.0065) (.0057) (.0061) (.0054) (.0058)
Independent| .1955  .0315  .0691  .0544  .1476 0541  .2179  .2292
Prior (.0070) (.0066) (.0066) (.0063) (.0066) (.0063) (.0064) (.0060)

Table 6: Summary for the Results for Table 6

Cell ID 111 112 121 122 211 212 221 222

Actual 0400 0471 1055  .1243  .0862  .1015  .2274  .2680
Putler 0109 0240 0870  .1951  .1116  .1285  .2495  .1934
etal. (.0024) (.0033) (.0052) (.0056) (.0058) (.0060) (.0060) (.0061)
our 0106 0151  .0919  .1912  .1096  .1372 2471  .1911

Proposal | (.0058) (.0062) (.0060) (.0063) (.0064) (.0067) (.0064) (.0067)
Independent .0180  .0328  .1089  .1575  .1167  .1163  .2275  .2242
Prior (.0063) (.0068) (.0065) (.0069) (.0068) (.0072) (.0069) (.0071)
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Table 7: Summary for the Results for Table 7

283

CellID 111 112 121 122 211 212 221 222
Actual 3379 3742 0464 0513 0793 0879  .0109 0121
Putler 3426 3921 0356  .0397 .0709 0734  .0259  .0198
etal. (.0034) (.0036) (.0025) (.0024) (.0030) (.0030) (.0021) (.0018)
our 3418 3919 0367  .0393  .0703 0751  .0257  .0195
Proposal | (.0033) (.0032) (.0039) (.0038) (.0043) (.0041) (.0064) (.0059)
Independent| .3401  .3885  .0411  .0427  .0733 0794  .0167  .0145
Prior (.0030) (.0029) (.0037) (.0035) (.0040) (.0038) (.0062) (.0057)

4.2 Survey Data

Here we present the computations for survey data. The subsctrjptsrefer to various de-
mographic characteristics as follows:

e Gender: Male; = 1.
Female; = 2.

e Age betweeri to44: j = 1.
betweent5 and above j = 2.

e Education: less than Graduate= 1.
Graduate and abové,= 2.

We investigated using the estimates under independence as priors. The resulting estimates
are not far from the actual proportions. We like to think the independence estimates as non-
informative prior which get adjusted by the data through the posterior mean.

Table 8: Summary for the Results for Survey Data

Cell ID 111 112 121 122 211 212 221 222
Actual 1188 1749 0924 1287 1155  .1882  .0957  .0858
Independent| .1205  .1732  .0907  .1304  .1322  .1714  .0790  .1025
our 1119 1219 1856  .1778  .0904  .0896  .1178  .0963
Proposal | (0277) (.0270) (.0275) (.0269) (.0292) (.0285) (.0288) (.0295)

5 Summary

This paper has put forward a technique for simplifying Bayesian calculations for multiway
contingency tables for estimating the unknown cell proportions for given marginals. Knowl-
edge of prior cell-proportions in the form of a Dirichlet distribution is assumed. However,

in the absence of such prior, it is illustrated that the probabilities obtained using the indepen-
dence assumption of the factors may be used as non-informative prior. The resulting estimates
are often quite close to the actual observed cell proportions. The technique is illustrated using
some real data.
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