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Abstract

In many consumer surveys, demographic and other data are used as covariates for predictions of

consumer preferences and other decision variables. However, to protect the confidentiality of the

consumers, the data are only available in marginal frequency distribution format. This creates a

problem in predicting joint frequencies required for further decision-making. In this paper we con-

sider the dependence structure in formulating the joint distribution given in the form of a Dirichlet

prior. The computations in the case of2× 2 table are extended to multiway contingency tables and

shown to provide similar results as obtained using the Monte Carlo methods.
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1 Introduction

In this paper we consider estimating the joint distribution of several demographic variable
when only information about their marginal distributions is available. Putleret al. (1996)
considered a Bayesian approach using Dirichlet prior for the cell proportions. They also com-
pared iterative proportional fitting (IPF) method (see Bishop, Feinberg, and Holland 1975).
They presented the case of2× 2 table in detail. However, the higher contingency tables have
to be analyzed using Monte Carlo methods, because they require multidimensional numerical
integration. However, the Bayesian method is preferred as it readily presents an estimate of
the standard error derived from the posterior variance.

The proposal in this paper is to reduce the contingency table into several2×2 contingency
tables, estimate the target cell frequency along with its standard error and combine the results
obtained from various tables in an appropriate manner. We highlight here that computations
in the case of2× 2 table can be easily performed. For example, suppose, we have a2× 2× 2
contingency table, with unknown cell proportions written asxijk; i = 1, 2, j = 1, 2, k = 1, 2.
For estimatingx111, we can consider the following3, 2× 2 contingency tables:

Table 1: Three2× 2 Contingency Tables for Estimatingx111 from a2× 2× 2 Table

k = 1

j = 1 j = 2

i = 1 1 x111 x121

i = 2 2 x211 x221

i = 1

k = 1 k = 2

j = 1 1 x111 x112

j = 2 2 x121 x122
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j = 1

k = 1 k = 2

i = 1 1 x111 x112

i = 2 2 x211 x212

Let, x̂(l)
111 andse2(l)(x̂111) denote the posterior mean and posterior variance based on the

lth table comprising ofrl observation, the final estimates ofx111 and its proposed estimator
of error is given by;

x̂111 =
∑3

l=1 rlx̂
(l)
111∑3

l=1 rl

(1.1)

se2(x111) =
∑3

l=1 rlse
2(l)(x̂111)∑3

l=1 rl

(1.2)

In section 2, we present the Bayesian analysis of a2 × 2 contingency table as given in
Putler et al. (1996). Section 3 outlines the computational details along with an example.
Section 4 presents computational summary of the examples considered in Putleret al. (1996)
and some additional examples from a marketing consumer survey data in Montréal.

2 The Bayesian Approach in2× 2 Case

Consider as if we have the observed data in the form of a2× 2 contingency table:

Table 2: A Typical2× 2 Contingency Table

Column Factor Levels

1 2 Marginal

Row 1 nx11 nx12 nx1.

Factor

Levels 2 nx21 nx22 nx2.

Marginal nx.1 nx.2 nx.. = n

where
xij ∈ [0, 1],

∑

ij

xij = 1,
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andn is the sample size. The set-up we are concerned with is thatxij are unknown, however
the row-totals and column-totals are known. Of course, under some given assumptions such as
independence, the known marginal probabilities can be used to estimate the joint probabilities

pij = Pr[X1 = i,X2 = j],

whereX1 refers to the row attribute andX2 refers to the column attribute. Putleret al. (1996)
consider a joint Dirichlet prior onp = (p11, p12, p21, p22) given by

π(p) ∝
∏

ij

p
mαij−1
ij ,

whereαij refer to the prior information aboutpij , often available from some bench-mark data
or a larger survey, so that

αij ∈ [0, 1],
∑

ij

αij = 1,

andm refers to the weight assigned to the prior information. The prior implicitly assumes that
in m observations of prior data, the total in the(i, j)−cell ismαij .

With this set-up, because of the constraints on the cell-proportions, only one of the cell-
totals is independent. We choose arbitrarily the(2, 2) − cell, and define the random variable
z = nx22. The posterior inference aboutz may be based on the densityg(z|data), given by

g(z) = k {Γ(n1. − n.2 + z + mα11)Γ(n.2 − z + mα12) (2.1)

Γ(n2. − z + mα21)Γ(z + mα22)/
Γ(n1. − n.2 + z + 1)Γ(n.2 − z + 1) Γ(n2. − z + 1)Γ(z + 1)} ,

whereni. = nxi., n.j = nx.j ; i, j = 1, 2. Putleret al. (1996) suggest that the posterior mean
can be computed in a two step procedure. The first step consists of computing the constant
k of proportionality, through a trapezoidal rule over a large number of intervals. The second
step consists of evaluating the integral

ẑ = E(Z|data) =
∫ zmax

zmin

zg(z)dz,

again using the trapezoidal rule, where

zmin = max(0, n.2 − n1.), zmax = min(n.2, n2.).

An estimate of the standard error ofẑ is obtained from the posterior variance given by

se2(Z) = E[(Z − ẑ)2|data] =
∫ zmax

zmin

(z − ẑ)2g(z)dz

which is computed using the same approach as that for computingẑ.
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3 Computational Aspects

For the general case, Monte Carlo (MC) methods are proposed for estimation of proportions
pi1i2..., such as Importance Sampling and Gibbs Sampling. It is clear that MC methods are
very computationally intensive in this context and therefore, we investigate the possibility of
direct computation as suggested in the previous section. In practice, though the computation
of gamma functions arising in Eq. (1.1) presents problems. In most of the situations, we
may alleviate this problem by using the following technique. Let us denotez0, the approxi-
mate value ofz whereg(z) takes its maxima (it is shown in Putleret al. (1996) thatg(z) is
unimodal). We can thus write

E(Z|data) =

∫ zmax

zmin
z exp(h(z)− h(z0))dz∫ zmax

zmin
exp(h(z)− h(z0))dz

, (3.1)

where,h(z) is defined, so that
g(z) = k exp(h(z)).

The value ofz0 can be found by plottingh(z) againstz, which may be computable, where as
exp(h(z)) may not be. We first demonstrate this on the data used in Putleret al. (1996), and
then we use it on a survey data conducted by a market research firm. For the computation of
the integral, we use the followingR-codes for area function.

area<-function(f,a,b,...,fa=f(a,...),fb=f(b,...),limit=50,eps=1.0e-06)

{

#Program to integrate a function f using recursive Simpson’s rule

#eps is the absolute target error #limit is max number of iterations

h<- b-a

d<- (b+a)/2

fd<- f(d,...)

a1<-((fa+fb) * h)/2

a2<-((fa+4 * fd+fb) * h)/6

if ( abs(a1-a2) < eps )

return(a2)

if (limit ==0){

warning(paste("recursion limit reached near x= ",d))

return(a2)

}

Recall(f,a,d,...,fa=fa,fb=fd,limit=limit-1,eps=eps)+

Recall(f,d,b,...,fa=fd,fb=fb,limit=limit-1,eps=eps)

}

This function works pretty well, except for the cases where the functionf may take extremely
small values for a wide range of arguments. For example, iff(x) < eps for x in an interval
(c, b), c < (a + b)/2, andf(a) = f(b) = 0, the algorithm will produce a small but wrong
value of the integral. To avoid such situations, we evaluate the integral over two intervals,
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(a, z0) and (z0, b), wherez0 is the approximate value of the argument where the function
peaks. The approximate peak is obtained by taking the maximum ofh(z) evaluated over a
grid of z−values.

Example: Consider the data of Putleret al. (1996) on Stain-Resistent Carpeting Direct Mail
Campaign (see their Table 5). We consider a collapsed form of the contingency table into two
factors, Type of Housing and Marital Status of the Household Head. The actual proportions
are given in the following table (Note that the actual proportions in Table 5 of Putleret al.
(loc. cit.) do not add to 1 so we have arbitrarily chosen to adjust the last proportion from
.2520 to .2519).

Table 3: Proportions in a2× 2 Contingency Table

Household Status

Not Married Married Total

Type Rental .2670 .0874 .3544(4552)

of

Housing Owned .1661 .4795 .6456(8291)

Total .4331(5562) .5669(7281) n = 12843

The numbers in the parentheses are counts. The prior-probabilities are given in the following
table and the value of the weightm is given bym = 12843 :

Table 4: Prior Proportions for Contingency Table 3

Household Status

Not Married Married Total

Type Rental .3072 .0955 .3544

of

Housing Owned .1793 .4180 .6456

Total .4331 .5669

The followingR-Codes are used to compute the functionh and approximatez0.
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h.prior<-function(x, rowt, colt, pprob, pcount)
{
#log Density-kernel for Estimating Unknown Proportions

#this finds the prior for a cell count,
see Eq (6) Putler et al.

# lam is the variable in the (2,2) cell
# pprob is the matrix of prior probabilities
# pcount is the weight in the Dirichlet prior,

see Eq (2) of Putler et al.
# rowt is a vector of row totals
# colt is a vector of column totals
# definition of the probability kernel
x1. <- rowt[1]
x2. <- rowt[2]
x.1 <- colt[1]
x.2 <- colt[2]
n <- x1. + x2.
a11 <- x1. - x.2 + x + pcount * pprob[1,1]
a12 <- x.2 - x + pcount * pprob[1, 2]
b11 <- x2. - x + pcount * pprob[2, 1]
b12 <- x + pcount * pprob[2, 2]
c11 <- x1. - x.2 + x + 1.
c12 <- x.2 - x + 1
d11 <- x2. - x + 1.
d12 <- x + 1.
tnum <- c(a11, a12, b11, b12)
tden <- c(c11, c12, d11, d12)
sum(lgamma(tnum))-sum(lgamma(tden)) }

The value ofzmin andzmax arezmin = 7281 − 4552 = 2729, zmax = 7281 and the values
of the variablesrowt, colt, pprob, pcount are set as follows:

rowt<-c(4552, 8291)

colt<-c(5562, 7281)

pprob<-matrix(c(0.2670, 0.0874, 0.1661, 0.4795),nr=2,byrow=T)

pcount<- 12843

The graph of the functionh(z) is then obtained as follows and appears in Figure 1.
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zseq<-seq(2729,7281,length=20) hzseq<-sapply(zseq,h.prior,
rowt=rowt, colt=colt, pprob=pprob, pcount=pcount)
plot(zseq,hzseq)
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Figure 1: Plot of the Functionh(z)

This gives the value ofz0 approximately 6000. So we computeh(z0) as

>h.prior(6000,rowt,colt,pprob,pcount)
[1] 110799.4

so,h(z0) = 110799.4 and hence the functiong(z) can be defined as

g.prior<-function(x, rowt, colt, pprob, pcount) {
exp(h.prior(x, rowt, colt, pprob, pcount)-110799) }

and the denominator of Eq. (3.1) is obtained using the area over subintervals(2729, 6000)
and(6000, 7281) as follows:

> area(g.prior,2729,6000,rowt, colt, pprob, pcount)
[1] 10.02941
> area(g.prior,6000,7281,rowt, colt, pprob, pcount)
[1] 7382576
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This comes out to be 7382586.02941. Hence the expression for the posterior mean can be
obtained through the following codes:

> kernel.mean<-function(x, rowt, colt, pprob, pcount)x *
+ g.prior(x, rowt, colt, pprob, pcount)/7382586.03

> area(kernel.mean,2729,6000,rowt, colt, pprob, pcount)
[1] 0.008141925
> area(kernel.mean,6000,7281,rowt, colt, pprob, pcount)
[1] 6158.561

This gives the Bayes estimate ofx22 = 6158.5691/12843 = .4795, which turns out to be
the same as the actual proportion. We also computed the posterior mean forn = 12843 and
m = 15023, and results were almost the same.

4 Summary of Numerical Illustrations for Higher Order Tables

4.1 Data from Putler et al. (1996)

Here we present the computations for the three examples considered in Tables 5-7 from Putler
et al. (1996). The subscriptsi, j, k refer to various demographic characteristics as follows:

• Stain-Resistant Carpeting Direct Mail Campaign (Table 5)

0. Housing: Rent,i = 1.
Own, i = 2.

0. Marital Status of Household Head: Married,j = 1.
Not Married,j = 2.

0. Household Member Age:< 18, k = 1.
≥ 18, k = 2.

• Discount Home-Improvement Retail Site Location (Table 6)

0. Housing: Rent,i = 1.
Own, i = 2.

0. Household Income:≥ 40, 000, j = 1.
< 40, 000, j = 2.

0. Household Member Age:≥ 45, k = 1.
< 45, k = 2.

• Custom-made Golf Clubs Direct Mail Campaign Data (Table 7)

0. Annual Household Income:< 50, 0000, i = 1.
≥ 50, 000, i = 2.
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0. Sex: Male,j = 1.
Female,j = 2.

0. Years of Formal College Education:< 4, k = 1.
≥ 4, k = 2.

The following tables (Tables 5-7) give the values of the estimates of the cell proportions
along with their standard errors following the method outlined above, contrasting the values
obtained by Putleret al. (1996) using the Monte Carlo method. It is striking that our method
gives almost the same estimate as obtained by the Monte Carlo Method. The estimates of the
standard errors seem a bit inflated in some cases. At this point, we like to note that since,
there is only one degree of freedom in a2× 2× 2 table, all the standard errors should be the
same. In such cases, we can average out the standard errors in an appropriate way (such as
waiting by the total sample size in each partition of sub-tables). In the above examples, we
can combine the posterior variances obtained from the two sub-tables and then average them.
However, in more complicated set up this type of combination may not be possible. We also
investigated using the estimates under independence as priors. The resulting estimates are not
far from the original prior, which seem to be much closer to the actual proportions. We like
to think the independence estimates as non-informative prior which get adjusted by the data
through the posterior mean.

Table 5: Summary for the Results for Table 5

Cell ID 111 112 121 122 211 212 221 222

Actual .2252 .0418 .0413 .0461 .1378 .0283 .2276 .2520

Putler .2219 .0366 .0333 .0622 .1453 .0292 .2315 .2400

et al. (.0053) (.0037) (.0037) (.0044) (.0052) (.0035) (.0054) (.0058)

Our .2293 .0368 .0342 .0546 .1357 .0308 .2324 .2465

Proposal (.0064) (.0070) (.0060) (.0065) (.0057) (.0061) (.0054) (.0058)

Independent .1955 .0315 .0691 .0544 .1476 .0541 .2179 .2292

Prior (.0070) (.0066) (.0066) (.0063) (.0066) (.0063) (.0064) (.0060)

Table 6: Summary for the Results for Table 6

Cell ID 111 112 121 122 211 212 221 222

Actual .0400 .0471 .1055 .1243 .0862 .1015 .2274 .2680

Putler .0109 .0240 .0870 .1951 .1116 .1285 .2495 .1934

et al. (.0024) (.0033) (.0052) (.0056) (.0058) (.0060) (.0060) (.0061)

Our .0106 .0151 .0919 .1912 .1096 .1372 .2471 .1911

Proposal (.0058) (.0062) (.0060) (.0063) (.0064) (.0067) (.0064) (.0067)

Independent .0180 .0328 .1089 .1575 .1167 .1163 .2275 .2242

Prior (.0063) (.0068) (.0065) (.0069) (.0068) (.0072) (.0069) (.0071)
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Table 7: Summary for the Results for Table 7

Cell ID 111 112 121 122 211 212 221 222

Actual .3379 .3742 .0464 .0513 .0793 .0879 .0109 .0121

Putler .3426 .3921 .0356 .0397 .0709 .0734 .0259 .0198

et al. (.0034) (.0036) (.0025) (.0024) (.0030) (.0030) (.0021) (.0018)

Our .3418 .3919 .0367 .0393 .0703 .0751 .0257 .0195

Proposal (.0033) (.0032) (.0039) (.0038) (.0043) (.0041) (.0064) (.0059)

Independent .3401 .3885 .0411 .0427 .0733 .0794 .0167 .0145

Prior (.0030) (.0029) (.0037) (.0035) (.0040) (.0038) (.0062) (.0057)

4.2 Survey Data

Here we present the computations for survey data. The subscriptsi, j, k refer to various de-
mographic characteristics as follows:

• Gender: Male,i = 1.
Female,i = 2.

• Age between1 to 44 : j = 1.
between45 and above ,j = 2.

• Education: less than Graduate,k = 1.
Graduate and above,k = 2.

We investigated using the estimates under independence as priors. The resulting estimates
are not far from the actual proportions. We like to think the independence estimates as non-
informative prior which get adjusted by the data through the posterior mean.

Table 8: Summary for the Results for Survey Data

Cell ID 111 112 121 122 211 212 221 222

Actual .1188 .1749 .0924 .1287 .1155 .1882 .0957 .0858

Independent .1205 .1732 .0907 .1304 .1322 .1714 .0790 .1025

Our .1119 .1219 .1856 .1778 .0904 .0896 .1178 .0963

Proposal (.0277) (.0270) (.0275) (.0269) (.0292) (.0285) (.0288) (.0295)

5 Summary

This paper has put forward a technique for simplifying Bayesian calculations for multiway
contingency tables for estimating the unknown cell proportions for given marginals. Knowl-
edge of prior cell-proportions in the form of a Dirichlet distribution is assumed. However,
in the absence of such prior, it is illustrated that the probabilities obtained using the indepen-
dence assumption of the factors may be used as non-informative prior. The resulting estimates
are often quite close to the actual observed cell proportions. The technique is illustrated using
some real data.
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