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Abstract

The paper derives a general class of priors for inference regarding the ratio of standard deviations

from a bivariate normal population with nonzero correlation. This class of priors satisfies a matching

property in the sense that the coverage probabilities of resultant credible intervals matches asymp-

totically the corresponding frequentist coverage probabilities up to a high order of approximation.

The propriety of resultant posteriors is proved under very mild conditions, and a simulation study

suggests that the approximation is valid even for moderate sample sizes.
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1 Introduction

There are many experimental situations in which an investigator wants to estimate the ratio of
variances of two independent normal populations. Study of the ratio of variances dates back
to 1920 when Fisher developed the F-statistic for testing the variance ratio. The most well-
used example involves testing of the hypothesis that the standard deviations of two normally
distributed populations are equal. Although ratio of variances has been vigorously studied
in the case of two independent normal samples both in the frequentist and in the Bayesian
literature, little study has been done for a possibly correlated bivariate normal population. For
testing the equality of variances in a bivariate normal population, Pitman (1939) and Morgan
(1939) introduced a variable transformation which reduces the problem to testing a bivariate
normal correlation coefficient equal to zero. This same idea can be extended easily to test the
null hypothesis whether a variance ratio equals a particular value. Inverting this test statistic,
Roy and Potthoff (1958) obtained confidence bounds on the ratio of variances in the correlated
bivariate normal distribution. Since the test statistic has a Students’s t-distribution under the
null hypothesis, the resulting confidence bounds involve percentiles of a Student t-distribution.

Probability matching criterion amounts to the requirement that the coverage probability
of a Bayesian credible region is asymptotically equivalent to the coverage probability of the
corresponding frequentist confidence region upto a certain order. This has found some appeal
to both frequentists and Bayesians. An excellent monograph on this topic is due to Datta
and Mukerjee (2004) which provides a thorough and comprehensive discussion of various
probability matching criteria. Other review papers are due to Kass and Wasserman (1996),
Ghosh and Mukerjee (1998) and Datta and Sweeting (2005).

Again, as one might expect, there are several probability matching criteria. The matching
is accomplished through either (a) posterior quantiles, (b) distribution functions, (c) highest
posterior density (HPD) regions, or (d) inversion of certain test statistics. However, priors
based on (a),(b),(c), or (d) need not always be identical. Specifically, it may so happen that
there does not exist any prior satisfying all the four criteria.

The objective of this article is to find a general class of priors which meet all four matching
criteria when the ratio of variances in the bivariate normal distribution is the parameter of
interest and compare the performance of several competing priors for moderate sample sizes.

The outline of the remaining sections is as follows. In Section 2 of this paper, we have
introduced an orthogonal reparameterization of the bivariate normal parameters. Section 3
develops a class of quantile matching priors, whereas Section 4 develops a general class of
distribution function matching priors. Matching priors based on HPD regions are given in
Section 5 while those based on the inversion of likelihood-ratio test statistics are developed in
Section 6. The propriety of the posteriors is established in Section 7. Section 8 undertakes a
simulation study. Some final remarks are made in Section 9.

One may wonder about the need for probability matching priors. It is generally agreed
upon that with adequate historical data, one should elicit a suitable subjective prior for a given
problem. But even in the absence of such information, Bayesian methods can be used very ef-
fectively with some objective prior. One criterion of objectivity is to achieve Bayes-frequentist
synthesis through the asymptotic equivalence of the coverage probabilities of credible and
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confidence intervals.

2 The Orthogonal Parameterization

Let (X1i, X2i), (i = 1, . . . , n) be independent and identically distributed random variables
having a bivariate normal distribution with meansµ1 andµ2, variancesσ1

2(> 0) andσ2
2(>

0), and correlation coefficientρ (|ρ| < 1). Using the transformation

θ1 = σ1/σ2, θ2 = σ1σ2(1− ρ2)1/2
andθ3 = ρ, (2.1)

the bivariate normal pdf can be rewritten as

f(X1, X2 | µ1, µ2, θ1, θ2, θ3) ∝
1
θ2

exp

[
− 1

2(1− θ2
3)1/2θ2

{
(X1 − µ1)2

θ1
+ θ1(X2 − µ2)

2 − 2θ3(X1 − µ1)(X2 − µ2)
}]

.

(2.2)

Since we are interested only in the ratio of variances, essentially without loss of generality,
we can assume thatµ1 = µ2 = 0. This involves in practice loss of one degree of freedom
which does not affect the asymptotic methodology that we are going to discuss.

With this simplification, the Fisher Information matrix based on (2.2) reduces to

I(θ1, θ2, θ3) = Diag(θ−2
1 (1− θ2

3)
−1, θ−2

2 , (1− θ2
3)
−2). (2.3)

This establishes immediately the mutual orthogonality ofθ1,θ2 and θ3 in the sense of
Huzurbazar (1950) and Cox and Reid (1987). Such orthogonality is often referred to as “Fisher
Orthogonality”.

The inverse of the information matrix is simply then

I−1(θ1, θ2, θ3) = Diag(θ2
1(1− θ2

3), θ
2
2, (1− θ2

3)
2). (2.4)

For subsequent sections, we need also a few other results which are collected in the fol-
lowing lemma.

Lemma 2.1For the bivariate normal density given in (2.2),

E
( ∂3logf

∂θ2
1∂θ3

)
= − θ3

θ2
1(1− θ2

3)2
, E

( ∂3logf

∂θ2
1∂θ2

)
=

1
θ2
1θ2(1− θ2

3)
; (2.5)

E
(∂3logf

∂θ3
1

)
=

3
θ3
1(1− θ2

3)
, E

(∂logf

∂θ1

)3 = 0; (2.6)

E
((∂logf

∂θ1

) (∂2logf

∂θ2
1

))
= − 1

θ3
1(1− θ2

3)
; (2.7)
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E
( ∂3logf

∂θ1∂θ2
3

)
= 0, E

( ∂3logf

∂θ1∂θ2
2

)
= 0; (2.8)

We derive the matching priors in the next few sections.

3 Quantile Matching Priors

Here one is interested in the approximate frequentist validity of the posterior quantiles of a
one-dimensional interest parameter. The pioneering research in this area was due to Welch
and Peers (1963) and Peers (1965), while the recent stimulus came from Stein (1985) and
Tibshirani (1989). Specifically, one considers here priorsπ(.) for which the relation

P{θ1 ≤ θ1
1−α(π, X)|θ} = 1− α + o(n−

r
2 ), (3.1)

holds for r = 1 or 2 and for eachα (0 < α < 1). In the above,θ = (θ1, . . . , θp)
T is

the unknown parameter,θ1 is the one-dimensional parameter of interest,θ1
1−α(X) is the

asymptotic first order bias-corrected(1 − α)th posterior quantile ofθ1 based on the priorπ
and dataX = (X1, . . . , Xn)T , while P (.|θ) denotes the conditional probability givenθ, the
usual frequentist probability. A prior satisfying (3.1) with r=1 is called afirst order proba-
bility matching prior, while one with r=2 is called asecond orderprobability matching prior.
Clearly, second order probability matching priors constitute a subclass of first order probabil-
ity matching priors.

Due to orthogonality ofθ1 with (θ2, θ3), from Tibshirani(1989), the class of first order
matching priors is characterized by

π(θ1, θ2, θ3) ∝ θ−1
1 (1− θ2

3)
−1/2g(θ2, θ3). (3.2)

A prior of the above form satisfies the second-order quantile matching property if and only
if (see (2.5.26) of Datta and Mukerjee (2004, p27))g satisfies the relation

∂

∂θ2

{
θ−1
1 (1− θ2

3)
1/2g θ2

1θ
2
2E

( ∂3logf

∂θ2
1∂θ2

)}
+

∂

∂θ3

{
θ−1
1 (1− θ2

3)
1/2g θ2

1(1− θ2
3)

2E
( ∂3logf

∂θ2
1∂θ3

)}

+
1
6
(1− θ2

3)
−1/2g

∂

∂θ1

{
θ3
1(1− θ2

3)
3/2E

(∂logf

∂θ1

)3} = 0.

(3.3)

¿From (2.5)-(2.8), (3.3) simplifies to

θ−1
1 (1− θ2

3)
−1/2 ∂

∂θ2

{
g θ2

}− θ−1
1

∂

∂θ3

{
g θ3(1− θ2

3)
1/2

}
= 0. (3.4)

Now let g be the class of functions given byg(θ2, θ3) = θa
2(θ

2
3)

b(1 − θ2
3)

c. With this
choice ofg the left hand side of the above equation reduces after some simplification to

θ−1
1 θa

2(θ
2
3)

b(1− θ2
3)

c− 1
2 [a− 2b + 2(b + c + 1)θ2

3] = 0, (3.5)
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which leads to the solutionb = a/2 andc = −(a + 2)/2. Thus every priorπ(θ1, θ2, θ3) ∝
θ−1
1 θa

2|θ3|a(1 − θ2
3)
−a+3

2 is a second order probability matching prior forθ1. Due to the in-
variance property of such a prior (Mukerjee and Ghosh, 1997), back to the original parameter-
ization, a second order matching prior forσ1

σ2
is given byπ(σ1, σ2, ρ) ∝ σa

1σ
a
2|ρ|a(1− ρ2)−1.

4 Matching Via Distribution Functions

In this section, we target priorsπ which achieve matching via distribution functions of some
standardized variables. More specifically, whenθ1 is the parameter of interest, while(θ2, . . . , θp)

T

is the vector of nuisance parameters, writingθ̂1 as the MLE ofθ1 with n−
1
2 I11 as its asymp-

totic variance,
(
I = ((Ijj′)), I−1 = ((Ijj′))

)
, we consider the random variabley =

√
n(θ1−

θ̂1)/(I11)1/2. Specifically, ifP π denotes the posterior ofy given the data X, what we want to
achieve is the asymptotic matching

E[P π(y ≤ w|X)|θ] = P (y ≤ w|θ) + o(n−1). (4.1)

Under orthogonality ofθ1 with (θ2, . . . , θp), it follows from (3.2.5) to (3.2.7) of Datta and
Mukerjee (2004) that such a priorπ is of the formI11

1/2g(θ2, . . . , θp), where in addition one
needs to satisfy the two differential equations

A1 =
∂2

∂θ1
2

(
I11π(θ))− 2

∂

∂θ1
(I11 ∂

∂θ1
π)−

p∑

s=2

p∑

v=2

∂

∂θs

{
E

( ∂3logf

∂θ1
2∂θs

)
I11Isvπ(θ)

}

−
p∑

s=2

p∑

v=2

∂

∂θ1

{
E

( ∂3logf

∂θ1∂θs∂θv

)
I11Isvπ(θ)

}
= 0.

(4.2)

and

A2 =
p∑

s=2

p∑

v=2

∂

∂θs

{
E

( ∂3logf

∂θ1
2∂θs

)
I11Isvπ(θ)

}
= 0. (4.3)

In our context, whenθ1 = σ1
σ2

is the parameter of interest, any prior of the formπ ∝ θ−1
1 (1−

θ2
3)
−1/2g(θ2, θ3) ensures matching of the posterior and frequentist cumulative distribution

functions at the second order if from (4.2) and (4.3)
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g
∂2

∂θ2
1

{
θ−1
1 θ2

1(1− θ2
3)

1/2
}− 2g

∂

∂θ1

{
θ2
1(1− θ2

3)
1/2 ∂

∂θ1
θ−1
1

}

− ∂

∂θ2

{
θ−1
1 g θ2

1(1− θ2
3)

1/2θ2
2E

( ∂3logf

∂θ2
1∂θ2

)}

− ∂

∂θ3

{
θ−1
1 g θ2

1(1− θ2
3)

1/2(1− θ2
3)

2E
( ∂3logf

∂θ2
1∂θ3

)}

− g
∂

∂θ1

{
E

( ∂3logf

∂θ1∂θ2
2

)
θ2
1(1− θ2

3)
1/2θ2

2θ
−1
1

}

− g
∂

∂θ1

{
E

( ∂3logf

∂θ1∂θ3
2

)
θ1

2(1− θ2
3)

1/2(1− θ2
3)

2θ−1
1

}
= 0,

(4.4)

and

g(1− θ2
3)
−1/2 ∂

∂θ1

{
E

(∂3logf

∂θ3
1

)
θ−1
1 θ4

1(1− θ2
3)

2
}

= 0. (4.5)

From (2.5) and (2.8) of Lemma 2.1, (4.4) reduces to

−θ−1
1 (1− θ2

3)
−1/2 ∂

∂θ2

{
g θ2

}− θ−1
1

∂

∂θ3

{
g θ3(1− θ2

3)
1/2

}
= 0 (4.6)

while the left hand side of (4.5) reduces to3g(1 − θ2
3)
−1/2 ∂

∂θ1

{
(1 − θ2

3)
}

which is clearly
0 for anyg. So, we need to findg such that (4.6) is satisfied. In particular, (4.6) is satisfied
if we let g once again to be the class of functionsg(θ2, θ3) = θa

2|θ3|a(1 − θ2
3)
−a+2

2 . In other
words, the same class of priors enjoys second order matching for both quantiles as well as
distribution functions.

5 Highest Posterior Density Matching Priors

We now turn our attention to HPD matching priors forθ1. In general, ifθ̃ is the parameter
(real or vector-valued) of interest, then a HPD region is of the form{θ̃ : π(θ̃|X) ≥ k}, where
π(θ̃|X) is the posterior of̃θ under the priorπ and data X. We will consider priors which ensure
that HPD regions with credibility level1 − α also have asymptotically the same frequentist
coverage probability, the error of approximation beingo(n−1). From (4.4.3) of Datta and
Mukerjee (2004, p76) any second order matching prior for posterior quantiles ofθ1 is also
HPD matching forθ1 in the special case of models satisfying

∂

∂θ1

(
I
−3/2
11 E

(∂3logf

∂θ3
1

))
= 0. (5.1)

It is easy to check that whenθ1 = σ1
σ2

is the parameter of interest from (2.5) and (2.6),

(5.1) holds and hence the second order quantile matching priorπ(θ1, θ2, θ3) ∝ θ−1
1 θa

2|θ3|a(1−
θ2
3)
−a+3

2 is also HPD matching.
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6 Matching Priors Via Inversion of Test Statistics

One traditional way to derive frequentist confidence intervals is inversion of certain test statis-
tics. The most popular such test is the likelihood ratio test. But tests based on Rao’s score
statistic or the Wald statistic are also of importance, and are first order equivalent (i.e. upto
o(n−1/2)) to the likelihood ratio tests.

We begin with the general case whenθ1 is the parameter of interest, whileθ2, . . . , θp are
the nuisance parameters. Letθ = (θ1, . . . , θp), and letl(θ) denote the usual log-likelihood.
The corresponding profile log-likelihood forθ1 is given byl∗(θ1) = l(θ1, θ̂2(θ1), . . . , θ̂p(θ1)),
whereθ̂j(θ1) is the MLE ofθj givenθ1(j = 2, . . . , p). Then the likelihood ratio statistic for
θ1 is given by

MLR
∗(θ1, X) = 2[l(θ̂)− l∗(θ1)]. (6.1)

Then from Yin and Ghosh (1997) (also from (5.2.18) of Datta and Mukerjee), a likelihood
ratio matching priorπ is obtained by solving

∂

∂θ2

{
π θ2

1(1− θ2
3)θ

2
2E

( ∂3logf

∂θ2
1∂θ2

)}
+

∂

∂θ3

{
π θ2

1(1− θ2
3)

3E
( ∂3logf

∂θ2
1∂θ3

)}

+
∂

∂θ1

{
θ2
1(1− ψ2)

{
∂

∂θ1
π − π

(
θ2
1(1− ψ2)E

((∂logf

∂θ1

)(∂2logf

∂θ2
1

))

− θ2
2E

( ∂3logf

∂θ1∂θ2
2

)− (1− θ2
3)

2E
( ∂3logf

∂θ1∂θ2
3

))}}
= 0

(6.2)

Then from (2.5),(2.7) and (2.8) of Lemma 2.1, (6.2) reduces to

∂

∂θ2

{
π θ2

}
+

∂

∂θ3

{
π θ3(1− θ2

3)
}

+
∂

∂θ1

{
θ2
1(1− θ2

3)
{ ∂

∂θ1
π + πθ−1

1

}}
= 0 (6.3)

Consider once againπ(θ1, θ2, θ3) ∝ θ−1
1 θa

2|θ3|a(1 − θ2
3)
−a+3

2 . Then ∂
∂θ1

π + πθ−1
1 = 0, and

the left hand side of (6.3) simplifies to

θ−1
1 |θ3|a(1− θ2

3)
−a+3

2
∂

∂θ2
θa+1
2 − θ−1

1 θa
2

∂

∂θ3

{|θ3|a+1(1− θ2
3)
−a+3

2
+1

}

which when simplified is exactly the same as the left hand side of (3.5), and leads to the same
class of matching priors as before. With this we conclude that we have been able to find a
class of priorsπ(σ1, σ2, ρ) ∝ σa

1σ
a
2|ρ|a(1 − ρ2)−1 which satisfies all the different matching

criteria.

7 Propriety of Posteriors

We now find conditions ona which ensure propriety of posteriors for the general class of priors
of the formπ(σ1, σ2, ρ) ∝ (σ1σ2)a|ρ|a(1− ρ2)−(a+3)/2. Without essential loss of generality,
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we continue assumingµ1 = µ2 = 0. Then writingS =
( ∑n

i=1 X2
1i

∑n
i=1 X1iX2i∑n

i=1 X1iX2i
∑n

i=1 X2
2i

)

andΣ =
( σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, the joint posterior is given by

π(σ1, σ2, ρ|X) ∝ |Σ|−n/2|ρ|a(1− ρ2)−(a+3)/2exp[−(1/2)tr(Σ−1S)]. (7.1)

Denoting by0 < λ1 < λ2 the eigenvalues ofS, one gets the inequality

exp[−(1/2λ2)tr(Σ−10] ≤ exp[−(1/2)tr(Σ−1S)] ≤ exp[−(1/2λ1)tr(Σ−1)]. (7.2)

In view of (7.1) and (7.2), noting that tr(Σ−1) = (1− ρ2)−1(σ−2
1 +σ−2

2 ), the propriety of the
posterior follows by showing integrability of[σ1σ2(1−ρ2)]−n|ρ|a(1−ρ2)−(a+3)/2exp[−(1/2λ1)
(1 − ρ2)−1(σ−2

1 + σ−2
2 )] with respect toσ1(> 0), σ2(> 0) andρ ∈ (−1, 1). With the trans-

formationη1 = σ−2
1 (1 − ρ2)−1 andη2 = σ−2

2 (1 − ρ2)−1 andτ = −ρ, the Jacobian of this

transformation is given by(1/4)η−3/2
1 η

−3/2
2 (1− τ2)−1. Hence, the propriety of the posterior

will follow from the integrability of

η
(n−a−3)/2
1 η

(n−a−3)/2
2 |τ |a(1− τ2)(n−3a−5)/2exp[−(1/2λ1)(η1 + η2)]

with respect toη1(> 0), η2(> 0) andτ ∈ (−1, 1). Now assumingn ≥ 4, from the needed
conditions for finiteness of beta and gamma integrals, the integrability follows when−1 <
a < (n − 3)/3. This is the needed condition ona for the propriety of posteriors under the
given class of priors.

8 Simulation Study

Using the parameterizationθ1 = σ1/σ2, θ2 = σ1σ2(1− ρ2)1/2 and θ3 = ρ, as before, our
parameter of interest isθ1. A general class of priors was obtained asπ ∝ θ−1

1 θa
2|θ3|a(1 −

θ2
3)

(−a+3
2

). This prior satisfies quantile matching, matching via distribution functions, HPD
matching as well as likelihood ratio matching property.

There are three priors that we wish to compare. The first one (Prior 1) isπ ∝ θ−1
1 . This

was recommended by Staicu (2007) in her PhD dissertation showing that this prior achieves
matching up toO(n−3/2).

The second one (Prior 2) isπ ∝ θ−1
1 (1 − θ2

3)
−3/2. This was suggested by Mukerjee and

Reid (2001). This is a special case (a=0) of the class of priors that we obtained satisfying all
the matching criteria.

Finally, the third prior (Prior 3)π ∝ θ−1
1 θ−1

2 (1− θ2
3)
−1 was recommended by Berger and

Sun (2007). This is also one-at-a-time reference prior for each one of the parametersθ1, θ2

andθ3 satisfying the first order matching property.
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In order to evaluate the three different priors, we undertook a simulation study where data
was generated from a bivariate normal distribution with(µ1, µ2, σ2, ρ) = (0, 0, 1, 0.5) and
varying values ofσ1 and varying sample sizesn. The values ofθ1 varied from 0.5 to 2.0.

Since the full conditional distribution of the parameters under any of the three priors
do not follow a standard distributional form, we used Gibbs sampling with componentwise
Metropolis-Hastings updates at each iteration to generate random numbers from the condi-
tional posterior distributions of each parameter (Robert and Casella, 2001). We ran two chains
with different initial values and allowed a burn-in of 10000 each. A random-walk jumping
density with normal noise added to the existing value in the chain for the means and log stan-
dard deviations was used. The correlation also had a random walk prior by adding a small
normal noise to the old values. Each chain was run 40,000 times and convergence was judged
by a Gelman-Rubin (Gelman and Rubin, 1992) diagnostic. The trace plot presenting the time
history of the last 8000 iterations for all five parameters is presented for a sample simulated
dataset withθ1 = 0.7, under Prior 3 and sample size 20, in Figure 1. Figure 2 presents the
plot of Gelman-Rubin diagnostic for theθ1 chain under the same setting with diagnostic val-
ues close to 1 suggesting convergence. Figures 3, 4 and 5 are posterior distributions forθ1

under three different priors for four different sample sizesn = 10, 20, 30, 40. One can im-
mediately make the following observations. Though there are certain numerical differences,
the posterior distribution ofθ1 does not seem to vary widely between Priors 1,2 and 3, even
for smaller sample sizes, though Prior 2 typically gave smaller posterior standard deviations.
As data information increases with sample size, the posterior distributions become very sim-
ilar under the three priors. Some skewness can be observed in the posterior distributions for
smaller sample sizes, which was often noted during our simulation, but the distribution be-
comes fairly symmetric asn becomes large. The posterior distribution also becomes more
concentrated around the true value ofθ1 with increasingn, as expected.

We repeated our Gibbs sampling estimation technique for 500 datasets under each config-
uration ofθ1 andn. Each time, we computed the posterior mean, the 95% quantile interval (as
given by the 2.5th and 97.5th sample percentile of the randomly generated parameter values
after the burn-in period) and the 95% HPD interval. Table 1 presents the average of posterior
means, the mean squared error, the frequentist coverage of the Bayesian credible intervals
(as estimated by the proportion of times the true parameter value falls in the corresponding
credible intervals) across the 500 datasets and under three different priors. Some interesting
differences can be noted in the behavior for smaller sample sizes. Prior 2 appears to be per-
forming best in terms of both coverage of quantile and HPD intervals and also has excellent
point estimation properties in terms of average posterior mean and MSE for smaller sample
sizes. For larger sample sizes all three priors become almost indistinguishable in terms of their
performances.

9 Discussion

The paper develops a general class of priors for the ratio of variances in a bivariate normal
population which matches asymptotically the coverage probabilities of Bayesian credible in-



264 International Journal of Statistical Sciences, Vol. 9s, 2009

tervals with the corresponding frequentist confidence intervals. Several matching criteria are
used, and a class of priors meeting all these criteria is found. A simulation study shows that
these priors perform quite well even for small and moderate samples. It is true that in the era
of Markov chain Monte Carlo based numerical estimation one could essentially use any prior
which reflects the investigator’s a’priori belief regarding the parameters. However, matching
priors not only provide insight into the connection of Bayes-frequentist inference, but may be
useful in complex frequentist settings, when Bayesian computation techniques could be seen
as a way to generate frquentist confidence intervals. The Bayesian procedure with a suitable
matching prior could be thought of as an alternative algorithm to yield correct frequentist con-
fidence intervals, when one wants to avoid bootstrap or rely on asymptotic expansions even
with a small sample size.
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Figure 1: Sample trace plot for all the parameters under Prior 3 forn = 20 under the simula-

tion setting of Section 4. True value ofθ1 = 0.7.
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Figure 2: Plot of Gelman-Rubin diagnostic statistics forθ1 under Prior 3 forn = 20 under the

simulation seeting of Section 4. True value ofθ1 = 0.7.
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Figure 3: Posterior distribution forθ1 under Prior 1 for different sample sizes, under the

simulation setting of Section 4. True value ofθ1 = 0.7.
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Figure 4: Posterior distribution forθ1 under Prior 2 for different sample sizes, under the

simulation setting of Section 4. True value ofθ1 = 0.7.



Ghosh, Mukherjee and Santra: Probability Matching Priors for Ratio 271

P
r
io

r
 3

 :
 N

=
1
0

ϑ
=
0
.7

Density

0
.0

0
.5

1
.0

1
.5

0.00.51.01.52.0

P
r
io

r
 3

 :
 N

=
2
0

ϑ
=
0
.7

Density

0
.0

0
.5

1
.0

1
.5

0.00.51.01.52.02.5

P
r
io

r
 3

 :
 N

=
3
0

ϑ
=
0
.7

Density

0
.0

0
.5

1
.0

1
.5

01234

P
r
io

r
 3

 :
 N

=
4
0

ϑ
=
0
.7

Density
0
.0

0
.5

1
.0

1
.5

01234

Figure 5: Sample posterior distribution forθ1 under Prior 3 for different sample sizes, under

the simulation setting of Section 4. True value ofθ1 = 0.7.


