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Abstract

As statistical estimation procedures for location, least squares estimators, R-

estimators, and M-estimators are introduced in a one-way analysis of variance

model. The asymptotic distributional theory for the three estimators and simu-

lated mean squared errors give the features of the respective estimators depending

on the underlying distribution. Based on the features, we propose an estimation

procedure selecting one of the three estimators after searching a distribution near

to the underlying distribution. It is shown that the mean squared error of the new

estimator is more stable than the three estimators. Next, as distribution-free test

procedures, the permutation F-test, Kruskal-Wallis rank test, and the M-test are

introduced. Asymptotic relative efficiency and simulated power of the respective

tests are investigated. Based on their features, we propose a stable test procedure

selecting one of the three tests after searching a distribution near to the underlying

distribution. Surprisingly the new test is a little better than the permutation F-test

when the underlying distribution is normal.
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1 Introduction

In the present paper, we consider univariatek samples withni observations in thei-th popu-

lation for i = 1, . . . , k. Thej-th observationXij in thei-th level is expressed as

Xij = µi + eij (j = 1, . . . , ni, i = 1, . . . , k) (1.1)

whereeij is a random variable withE(eij) = 0 for all i, j’s. It is further assumed that

eij ’s are independent and identically distributed with continuous distribution function (d.f.)

F (x/σ) andV ar(eij) < ∞. We denote the density ofF (x) by f(x). For convenience, we

assume ∫ ∞

−∞
x2f(x)dx = 1, that is,V ar(eij) = σ2 > 0.

(1.1) is rewritten as usual by

Xij = ν + τ i + eij ,

where
∑k

i=1 niτ i = 0. Thenν andτ i’s are referred to as the grand mean and additive treat-

ment constants, respectively. We putn =
∑k

i=1 ni. The least squares estimator ofτ i is given

by τ̃ i = X̄i· − X̄··, whereX̄i· =
∑ni

j=1 Xij/ni andX̄·· =
∑k

i=1

∑ni
j=1 Xij/n. When the

underlying distribution is normal, that is,F (x) = Φ(x), τ̃ i’s are the uniformly minimum

variance unbiased estimator forτ i’s, whereΦ(x) denotes the standard normal distribution

function. Using a method similar to Hodges and Lehmann (1963), we propose as an estimator

of ηii′ = τ i − τ i′

η̂ii′ = the sample median of{Xij −Xi′j′ : 1 ≤ j ≤ ni, 1 ≤ j′ ≤ ni′}.

Since the relation

τ i = (1/n)
k∑

i′=1

ni′ηii′ , (1.2)

holds, we may propose as an R-estimator ofτ i

τ̂ i = (1/n)
k∑

i′=1

ni′ η̂ii′ ,

where we set̂ηii = 0 for convenience. Shiraishi (1990) proposed R-estimators which are

asymptotically equivalent tôτ i’s. Settingτ̂n = (τ̂1, · · · , τ̂k)′ andτ = (τ1, · · · , τk)′, from

Shiraishi (1990), it follows

√
n(τ̂n − τ ) L−→ Nk(0, γ2Λ) (1.3)
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where
L−→ denotes convergence in law,Nk(θ, Σ) stands for thek-dimensional normal vari-

able with meanθ and variance-covariance matrixΣ, γ2 = 12σ2{∫∞−∞ f2(x)dx}2, andΛ =

(δii′/λi − 1)ii′=1,...,k with δii′ denoting Kronecker’s delta.

For one-sample location model ofk = 1, Huber (1964) proposed solutioňθ = θ of the

equation:
n∑

j=1

ψ(X1j − θ) = 0 (1.4)

as an estimator ofE(X11) and called it M-estimator, whereψ(x) is increasing and strictly

negative (positive) for large negative (positive) values ofx. For fixedε such that0 < ε < 1,

choose positive constantc satisfying the equation:

2ϕ(c)
c

− 2Φ(−c) =
ε

− ε
, (1.5)

whereϕ(x) denotes the standard normal density function. Then Huber (1964) showed that

the M-estimator given by taking

ψ(x) = max{min{x, c},−c} (1.6)

has the minimax asymptotic variance among a class of estimators defined by the solution of

(1.4) through the functionψ(·) over the class of distributions that the underlying distribution is

in ε-contamination neighborhood of a normal distribution:Uε = {F (x/σ) = (1− ε)Φ(x) +

εH(x) : H(−x) =  − H(x) for anyx}. Whenε = 0.05, 0.03 are given, the values ofc

satisfying (1.5) are respectively 1.398 and 1.579. Many values of(ε, c) were appeared in Table

1 of Shiraishi (2005). Furthermore Huber (1981) proposed a scale-invariant M-estimator.

In order to introduce robust estimators forτ i’s, we put, for i 6= i′, ν̃ii′ = (niX̄i· +

ni′X̄i′·)/Nii′ , Nii′ = ni+ni′ andσ̆n =
√

π
∑k

i=1

∑ni
j=1 |Xij−X̄i·|/(

√
2n). σ̆n is a consistent

estimator ofρ = (
√

πσ/
√

2)
∫∞
−∞ |x|dF (x). Moreover, we put

Tii′(θ) =
1
ni

ni∑

j=1

ψ

(
Xij − ν̃ii′ − (ni′/Nii′) · θ

σ̆n

)
− 1

ni′

ni′∑

j=1

ψ

(
Xi′j − ν̃ii′ + (ni/Nii′) · θ

σ̆n

)
.

Then Shiraishi (2007) denoted solution of the equation:Tii′(θ) = 0 by η̆ii′ . He proposed̆ηii′

as a robust estimator forτ i − τ i′ . Hence, from (1.2), as a robust estimator forτ i, he might

propose

τ̆ i =
1
n

k∑

i′=1

ni′ η̆ii′ , (i = 1, · · · , k)
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whereη̆ii = 0. Settingτ̆n = (τ̆1, · · · , τ̆k)′, Shiraishi (2007) showed

√
n(τ̆n − τ ) L−→ Nk(0, σ2(ψ)Λ) (1.7)

whereσ2(ψ) = σ2{∫∞−∞ ψ(σx/ρ)f ′(x)dx}2/
∫∞
−∞{ψ(σx/ρ)− ψ̄}2f(x)dx and

ψ̄ =
∫∞
−∞ ψ(σx/ρ)f(x)dx.

We give the values of the asymptotic relative efficiency among the three estimatorsτ̃n =

(τ̃1, · · · , τ̃k)′, τ̂n and τ̆n for many underlying distributions. Furthermore, we give values

of simulated mean squared errors by using a Monte Carlo simulation. Then we may get the

features of the three type estimators on the underlying distributions. Based on the features, we

propose the estimation procedure selecting one of the three type estimators after searching a

distribution near to the underlying distribution. It is shown that the mean squared error of the

new estimator is more stable than the estimatorsτ̃n, τ̂n andτ̆n.

Next, we consider distribution-free test procedures for the null hypothesis of homogenuity

H0; τ1 = . . . = τk = 0.

The multi-sample F-test is the optimum when the underlying distribution is normal. The per-

mutation F-test statistic is distribution-free underH0. When the underlying distribution is

logistic, H́ajek et al. (1999) reviewed that Kruskal-Wallis rank test is the asymptotically opti-

mum test. Shiraishi (1996) proposed an M-test based on the statistic similar to M-estimator. It

is shown that the asymptotic relative efficiency (ARE) among the three tests of the F-test, the

Kruskal-Wallis test and the M-test agrees with the ARE among the three estimatorsτ̃n, τ̂n

andτ̆n. The simulated power of the respective tests is investigated. Based on their features,

we propose the test procedure selecting one of the three tests after searching a distribution

near to the underlying distribution. It is shown that the power of the proposed test is more

stable than the three tests of the permutation F-test, the Kruskal-Wallis test and the permuta-

tion M-test. Surprisingly the new test is a little better than the permutation F-test when the

underlying distribution is normal.

2 Searching the underlying distribution

Since the power of goodness of fit tests is low, we consider to search a distribution near to

the underlying distribution by using an empirical distribution function. For integersm and
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j = m−∑i−1
i′=0 ni′ such that

∑i−1
i′=0 ni′ + 1 ≤ m ≤ ∑i

i′=0 ni′ , we defineZ1, · · · , Zn by

Zm = (Xij − X̄i·)/
√

1− 1/ni,

wheren0 = 0. ThenE(Zi) = 0 andV ar(Zi) = σ2 hold. Let us defineĜn(x) by the

empirical distribution function of{Z1, · · · , Zn}. That is,n · Ĝn(x) equals the number of

observationsZ1, · · · , Zn that are less than or equal tox. Ĝn(x) is an unbiased and consistent

estimator ofF ((x− τ )/σ). Hence for specified distribution functionF0, we put

DF0 = sup
−∞<x<∞

∣∣∣∣Ĝn(x)− F0

(
x

σ̆n

)∣∣∣∣ (2.1)

where

σ̆n =
n∑

i=1

|Zi|/
(

n

∫ ∞

−∞
|x|f0(x)dx

)
.

We may rewrite

DF0 = max
1≤i≤n

[
max

{∣∣∣∣
i

n
− F0

(
Z(i)

σ̆n

)∣∣∣∣ ,

∣∣∣∣F0

(
Z(i)

σ̆n

)
− i− 1

n

∣∣∣∣
}]

.

DF0 is a distance between the underlying distributionF and specifiedF0. Symmetric dis-

tributions chosen here asF0 are normalN(0, 1), contaminated normalCN(ε) = (1 −
ε)N(0, 1/(1 + 8ε)) + εN(0, 9/(1 + 8ε)), logisticLG(0,

√
3/π) with density function

exp(−πx/
√

3)/{1 + exp(−πx/
√

3)}2, and double exponentialDE(0, 1/
√

2) with density

function(1/
√

2) exp(−√2|x|). As asymmetric distributions, we provide exponential, Weible,

lognormal and asymmetric contaminated normal distributions. The normalized exponential

EX density function with mean0 and variance1 is given byfe(x) = e−(x+1)I[−1,∞)(x).

The Weible density function is expressed asgw(x|a, b) = (a/b)(x/b)a−1 exp{−(x/b)a}
(0 < x < ∞) with meanτ = bΓ ( 

a + ) and varianceσ2 = b2{Γ ( 
a + ) − Γ ( 

a + )}.
The normalized WeibleW (a) density function is given byfw(x|a) = σgw(σx + τ |a, b),

which does not depend on parameterb. The lognormal density function is expressed as

g`(x|a, b) = 1√
2πbx

exp{− (log x−a)2

2b2
} (0 < x < ∞) with meanτ = exp(a+ b2

2 ) and variance

σ2 = exp(2a + 2b2) − exp(2a + b2). The normalized lognormalLN(b) density function is

given byf`(x|b) = σg`(σx + τ |a, b) which does not depend on parametera. The asymmet-

ric contaminated normalACN = 0.98N(−0.1, 1/1.47) + 0.02N(4.9, 0.01/1.47) has outlier

with probability0.02. The mean and variance ofACN are respectively0 and1. We may seek

F0 minimizing DF0 in the distributions. To computĕσn, the values of
∫∞
−∞ |x|f0(x)dx are

appeared in Table 1.
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Table 1: The values of
∫∞
−∞ |x|f0(x)dx, whereµ0 = exp( b2

2 ).

f0(x) N(0, 1) CN(ε) LG(0,
√

3/π) DE(0, 1/
√

2)
∫∞
−∞ |x|f0(x)dx

√
2
π

{
(1+2ε)√
(1+8ε)

} √
2
π 2 log 2×

√
3

π
1√
2

f0(x) EX W (a) LN(b) ACN
∫∞
−∞ |x|f0(x)dx 2

e
2µ
σ − 2

σ

∫ µ

0
exp{−(x/b)a}dx 2

σ

∫ µ0
0

Φ
(

log x
b

)
dx 0.72118

Moreover, as a characterization of the distribution, we may use the skewness:`1 =∫∞
−∞ x3dF (x) and the kurtosis:̀ 2 =

∫∞
−∞ x4dF (x) − 3. The values for the skewness and

kurtosis of the respective distributions:N(0, 1), CN(0.05), LG(0,
√

3/π), DE(0, 1/
√

2),

EX, andACN are appeared in Table 2.

Table 2: The values for the skewness and kurtosis ofN(0, 1), CN(0.05), LG(0,
√

3/π),

DE(0, 1/
√

2), EX, andACN .

F (x) skewness kurtosis F (x) skewness kurtosis

N(0, 1) 0 0 DE(0, 1/
√

2) 0 3

CN(0.05) 0 4.65 EX 2 6

LG(0,
√

3/π) 0 1.2 ACN -0.16 -1.61

The skewness and kurtosis ofW (a) become

`1 =
Γ ( 

a + )− Γ ( 
a + )Γ ( 

a + ) + Γ ( 
a + )

{Γ ( 
a + )− Γ ( 

a + )}/

and

`2 =
Γ ( 

a + )− Γ ( 
a + )Γ ( 

a + ) + Γ ( 
a + )Γ ( 

a + )− Γ ( 
a + )

{Γ ( 
a + )− Γ ( 

a + )}
− 3.

The values for somea’s are appeared in Table 3.
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Table 3: The values for the skewness and kurtosis ofW (a) for a = 1(1)6

a skewness kurtosis a skewness kurtosis

1 2 6 4 -0.09 -0.25

2 0.63 0.25 5 -0.25 -0.12

3 0.17 -0.27 6 -0.37 -0.36

Le us puta0 = exp(b2). Then the skewness and kurtosis ofLN(b) becomè 1 = (a0 −
1)1/2(a0 + 2) and`2 = (a0− 1)(a3

0 + 3a2
0 + 6a0 + 6). The values for someb2’s are appeared

in Table 4.

Table 4: The values for the skewness and kurtosis ofLN(b) for b2 = 0.1(0.1)1.0

b2 skewness kurtosis b2 skewness kurtosis

0.1 1.00 1.86 0.6 3.47 27.08

0.2 1.52 4.35 0.7 4.04 38.94

0.3 1.98 7.71 0.8 4.68 55.44

0.4 2.45 12.27 0.9 5.39 78.51

0.5 2.94 18.51 1.0 6.18 110.94

The estimators for̀1 and`2 are respectively given by

ˆ̀
1 =

n
√

n− 1
n− 2

·
∑n

i=1(Zi − Z̄)3

{∑n
i=1(Zi − Z̄)2}3/2

(2.2)

and
ˆ̀
2 =

n(n + 1)(n− 1)
(n− 2)(n− 3)

·
∑n

i=1(Zi − Z̄)4

{∑n
i=1(Zi − Z̄)2}2

− 3(n− 1)2

(n− 2)(n− 3)
. (2.3)

ˆ̀
1 and ˆ̀

2 are used in the SAS system and Microsoft Excel.

3 Asymptotic efficiency for estimators

We investigate the asymptotic relative efficiency (ARE) of R-estimatorτ̂n and M-estimator

τ̆n with respect to least squares estimatorτ̃n. For two sequences of estimators{T 1n} and

{T 2n} such that

√
n(T 1n − τ ) L−→ Nk(0, σ2

1Λ) and
√

n(T 2n − τ ) L−→ Nk(0, σ2
2Λ),
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where
L−→ denotes convergence in law, we define the ARE ofT 1n with respect toT 2n by

ARE(T 1n, T 2n) = σ2
2/σ2

1. Saleh and Shiraishi (1993) defined the asymptotic distributional

quadratic risk (ADQR) ofT in by

AR(Tin) = lim
b→∞

lim
n→∞E[min{n(T in − τ )′(T in − τ ), b}].

ARE(T 1n, T 2n) is given by the ratio ofAR(T 2n) to AR(T 1n), that is,ARE(T 1n, T 2n) =

AR(T 2n)/AR(T 1n). Hence ifARE(T 1n,T 2n) > (<)1 holds,T 1n is better (worse) than

T 2n. From the direct application of central limit theorem, we get

√
n(τ̃n − τ ) L−→ N(0, σ2Λ). (3.1)

Hence, from (1.3), (1.7) and (3.1), the asymptotic relative efficiency (ARE) ofτ̂n andτ̆n with

respect tõτn yield

ARE(τ̂n, τ̃n) = 12
{∫ ∞

−∞
f2(x)dx

}2

,

and

ARE(τ̆n, τ̃n) =
[∫ ∞

−∞
{ψ(σx/ρ)− ψ̄}f ′(x)dx

]2

/

∫ ∞

−∞
{ψ(σx/ρ)− ψ̄}2f(x)dx. (3.2)

Let us putξ = (
√

π/
√

2)
∫∞
−∞ |x|dF (x). Then (3.2) becomes

ARE(τ̆n, τ̃n) =

{∫ cξ
−cξ(x/ξ − ψ̄)f ′(x)dx +

∫∞
cξ (c− ψ̄)f ′(x)dx− ∫ −cξ

−∞ (c + ψ̄)f ′(x)dx
}2

∫ cξ
−cξ(x/ξ − ψ̄)2f(x)dx +

∫∞
cξ (c− ψ̄)2f(x)dx +

∫ −cξ
−∞ (c + ψ̄)2f(x)dx

,

whereψ̄ =
∫ cξ
−cξ(x/ξ)f(x)dx +

∫∞
cξ cf(x)dx − ∫ −cξ

−∞ cf(x)dx. Since the M-functionψ of

(1.6) depends on constantc, ARE(τ̆n, τ̃n) is a function ofc. From Table 1, we choose

the value of1.579 asc. We denote the M-estimator by̆τn. The values ofARE(τ̂n, τ̃n),

ARE(τ̆n, τ̃n) are appeared in Table 5. The underlying distributions chosen here are normal;

N(0, 1), logistic distribution, contaminated normal;0.95N(0, 5/7)+0.05N(0, 45/7), double

exponential, and exponential. The values ofARE(τ̂n, τ̃n) in Table 5 are stated in Lehmann

(1975) and others.
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Table 5: The ARE of the R-estimator and two M-estimators relative to the least squares estimators.

F (x) ARE(τ̂n, τ̃n) ARE(τ̆n, τ̃n)

normal 0.955 0.970

contaminated normal 1.196 1.212

logistic 1.097 1.081

double exponential 1.5 1.262

exponential 3 1.288

When the underlying distribution isε-contaminated normalCN(ε) distribution , the val-

ues ofARE(τ̂n, τ̃n) andARE(τ̆n, τ̃n) are appeared in Table 6. When the underlying dis-

tribution is t distribution withk degrees of freedom, the values ofARE’s are respectively

appeared in Table 7. Then the density of the normalizedt distribution is given by

f(x) =
Γ (k+

 )√
π(k − 2)Γ (k

 )

(
1 +

x2

k − 2

)− k+1
2

.

Table 6: The ARE of the R-estimator and two M-estimators relative to the LSE when the underlying

distribution isε-contaminated normalCN(ε) distribution.

ε 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10

ARE(τ̂n, τ̃n) 1.009 1.060 1.108 1.153 1.196 1.236 1.309 1.373

ARE(τ̆n, τ̃n) 1.025 1.077 1.125 1.170 1.212 1.250 1.316 1.370

ε 0.12 0.14 0.16 0.18 0.20 0.22 0.25 0.30

ARE(τ̂n, τ̃n) 1.429 1.476 1.516 1.548 1.575 1.595 1.616 1.627

ARE(τ̆n, τ̃n) 1.412 1.443 1.465 1.478 1.484 1.484 1.473 1.437
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Table 7: The ARE of the R-estimator and two M-estimators relative to the least squares estimators

when the underlying distribution is t-distribution withk degrees of freedom.

k 3 4 5 6 7 8 9 10 11

ARE(τ̂n, τ̃n) 1.900 1.401 1.241 1.164 1.119 1.089 1.069 1.054 1.042

ARE(τ̆n, τ̃n) 1.737 1.336 1.207 1.144 1.107 1.083 1.066 1.053 1.043

k 12 13 14 15 16 17 18 19 20

ARE(τ̂n, τ̃n) 1.033 1.025 1.019 1.014 1.009 1.006 1.002 0.999 0.997

ARE(τ̆n, τ̃n) 1.036 1.030 1.024 1.020 1.016 1.013 1.010 1.008 1.006

Since

ARE(τ̆n, τ̂n) = ARE(τ̆n, τ̃n)/ARE(τ̂n, τ̃n)

holds, we may get the values of the ARE of the M-estimator relative to the R-estimator from

Tables 5-7.

The following features 1-3 are drawn from Table 5.

1. When the underlying distribution is normal, the least squares estimator is a little better

than the other estimators. The relation of ADQR’s is given by

AR(τ̃n) < AR(τ̆n) < AR(τ̂n).

2. When the underlying distribution is0.05-contaminated normal, the M-estimatorτ̆n is

better than the other estimators. The least squares estimator is extremely bad. The relation of

ADQR’s is given by

AR(τ̆n) < AR(τ̂n) < AR(τ̃n).

3. When the underlying distribution is logistic, double exponential or exponential, the

R-estimator̂τn is better than the other estimators and the least squares estimator is the worst.

The relation of ADQR’s is given by

AR(τ̂n) < AR(τ̆n) < AR(τ̃n).

From Table 6, when the underlying distribution isε-contaminated normal, we conclude

that (i) ARE(τ̂n, τ̃n) andARE(τ̆n, τ̃n) increase inε, (ii) all the ARE’s are larger than1,

and (iii) the relation of ADQR’s is given by

AR(τ̆n) < AR(τ̂n) < AR(τ̃n).
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From Table 7, when the underlying distribution is t-distribution withk degrees of freedom,

we conclude (i)ARE(τ̂n, τ̃n) andARE(τ̆n, τ̃n) decrease ink,

(ii) AR(τ̂n) > or < AR(τ̃n) according as k > or ≤ 18,

(iii) AR(τ̆n) < AR(τ̃n), (iv) AR(τ̂n) < AR(τ̆n) < AR(τ̃n) for k ≤ 10, and (iv)

AR(τ̆n) < AR(τ̂n) < AR(τ̃n) for 11 ≤ k ≤ 18.

4 New estimator

Using the distanceDF0 , the sample skewnesŝ`1 and the sample kurtosis̀̂2 given by (2.1)-

(2.3) respectively, we may propose a new estimator selecting one of the three estimators;τ̃n,

τ̂n, τ̆n after searching a distribution near to the underlying distribution. First, we compute

DF0 for F0 = N(0, 1), CN(0.05), LG(0,
√

3/π), DE(0, 1/
√

2) and the respective values

are denoted bydNM , dCN , dLG, anddDE . Next we put

d0 = the minimum of{dNM , dCN , dLG, dDE}.

Furthermore we computè̂1 for the sake of detecting the underlying asymmetric distribution.

Lastly we computề 2. From the features of Section 3, we recommend usingτ̃n when the

underlying distribution is close to the normal distribution. We recommend usingτ̂n when the

underlying distribution is remote from the normal distribution. Otherwise we may useτ̆n.

Hence as a new estimator, we propose

τ̂ ∗n =





τ̃n if d0 = dNM ,

τ̂n if d0 = dDE , or ˆ̀
1 ≥ 1.0, or ˆ̀

2 ≥ 0.5,

τ̆n otherwise.

(4.1)

LetMS(T n) be the mean squared error of the estimatorT n, that is,MS(T n) = E{(T n−
τ )′(T n−τ )}. Then for two sequences of estimators{T 1n} and{T 2n}, we define the relative

risk efficiency (RRE) ofT 1n with respect toT 2n byRRE(T 1n, T 2n) = MS(T 2n)/MS(T 1n).

Under certain regularity conditions,

lim
n→∞RRE(T 1n,T 2n) = ARE(T 1n, T 2n)
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holds. We simulate the RRE’s among the least squares estimator, the R-estimator, the M-

estimator and the new estimator. We limited attention tok = 3, 5, n1 = · · · = nk = 10, 20, 30

andF (x) = N(0, 1), CN(0.05), LG(0,
√

3/π), DE(0, 1/
√

2), LN(1), W (2), EX. We

denote M-estimator satisfying the equation (1.5) withc = 1.579 by τ̆n. The RRE’s among

the estimators̃τn, τ̂n, τ̆n, andτ̂ ∗n are appeared in Tables 8 and 9 fork = 3, 5, respectively.

The values of the RRE are estimated by Monte-Carlo simulation of5, 000 samples.

The following features I-V are drawn from Tables 8 and 9.

I. When the underlying distribution is normal, althoughτ̃n is the best estimator,̂τ ∗n is

quite a little worse thañτn. τ̂n is the worst. The relation of MSE’s is given by

MS(τ̃n) < MS(τ̂ ∗n) < MS(τ̆n) < MS(τ̂n). (4.2)

II. When the underlying distribution is0.05-contaminated normal, the M-estimatorsτ̆n

are better than the other estimators. The new estimatorτ̂ ∗n is quite a little worse than the

M-estimators and̃τn is the worst. The relation of MSE’s is given by

MS(τ̆n) < MS(τ̂ ∗n) ≈ MS(τ̂n) < MS(τ̃n).

III. When the underlying distribution is logistic, thêτn is better than the other estimators.

The new estimator̂τ ∗n is quite a little worse than̂τn. τ̃n is the worst. The relation of MSE’s

is given by

MS(τ̂n) < MS(τ̆n) < MS(τ̂ ∗n) < MS(τ̃n).

IV. When the underlying distribution is double exponential, theτ̂n is better than the other

estimators. Thêτ ∗n has maxmum5 percent loss in comparison witĥτn. τ̃n is extremely bad.

The relation of MSE’s is given by (4.2).

V. When the underlying distribution is asymmetric, thêτ ∗n is as good aŝτn. τ̃n andτ̆n

are extremely worse than the former two estimators.

The double exponential distribution and asymmetric distributionsLN(1), W (2), EX are

very far from the normal distribution. From the above I-V, we conclude that the MSE’s of the

new estimators are stable in comparison with the other estimators.
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Table 8: The relative risk efficiency (RRE) among the estimatorsτ̃n, τ̂n, τ̆n, andτ̂ ∗n for k = 3.

(i) F (x) is normal

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 0.970 1.035 0.991 0.938 0.979

20 0.980 1.033 1.004 0.949 0.976

30 0.980 1.043 1.014 0.939 0.967

(ii) F (x) is contaminated normal

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 1.163 1.009 0.990 1.152 1.175

20 1.213 1.002 0.993 1.210 1.221

30 1.178 0.997 0.983 1.181 1.199

(iii) F (x) is logistic

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 1.047 0.997 0.992 1.050 1.056

20 1.065 0.980 0.986 1.087 1.080

30 1.069 0.978 0.982 1.093 1.088

(iv) F (x) is double exponential

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 1.269 0.955 1.053 1.328 1.205

20 1.394 0.963 1.112 1.448 1.253

30 1.385 0.972 1.114 1.425 1.243

(v) F (x) is lognormal

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 4.529 0.993 1.879 4.559 2.411

20 5.772 0.999 2.179 5.775 2.648

30 5.899 1.000 2.291 5.899 2.575
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(vi) F (x) is Weible

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 15.345 0.997 4.501 15.393 3.409

20 28.584 1.000 7.453 28.584 3.835

30 41.529 1.000 10.769 41.529 3.856

(vii) F (x) is exponential

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 1.767 0.998 1.305 1.770 1.354

20 2.114 0.999 1.490 2.116 1.419

30 2.306 0.998 1.626 2.311 1.418

Table 9: The relative risk efficiency (RRE) among the estimatorsτ̃n, τ̂n, τ̆n, andτ̂ ∗n for k = 5.

(i) F (x) is normal

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 0.979 1.039 1.006 0.943 0.973

20 0.989 1.041 1.016 0.950 0.974

30 0.990 1.046 1.023 0.947 0.968

(ii) F (x) is contaminated normal

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 1.170 1.002 0.992 1.168 1.179

20 1.190 1.000 0.989 1.190 1.204

30 1.179 0.992 0.981 1.188 1.202

(iii) F (x) is logistic

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 1.049 0.984 0.986 1.066 1.063

20 1.055 0.980 0.993 1.077 1.063

30 1.059 0.974 0.984 1.086 1.076
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(iv) F (x) is double exponential

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 1.283 0.947 1.059 1.354 1.211

20 1.355 0.972 1.106 1.394 1.225

30 1.402 0.980 1.140 1.430 1.230

(v) F (x) is lognormal

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 5.017 0.999 1.962 5.020 2.558

20 5.589 1.000 2.173 5.589 2.573

30 5.952 1.000 2.278 5.952 2.613

(vi) F (x) is Weible

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 14.421 1.000 4.305 14.421 3.350

20 30.262 1.000 8.085 30.262 3.743

30 41.788 1.000 10.530 41.788 3.969

(vii) F (x) is exponential

n1 RRE(̂τ ∗n, τ̃n) RRE(̂τ ∗n, τ̂n) RRE(̂τ ∗n, τ̆n) RRE(̂τn, τ̃n) RRE(̆τn, τ̃n)

10 1.834 0.999 1.335 1.836 1.375

20 2.132 1.000 1.515 2.132 1.407

30 2.281 1.000 1.598 2.281 1.427

5 Test procedures

We shall introduce distribution-free tests for the null hypothesisH0. Let X(1), · · · , X(N) be

the order statistics of the independent observationsX11, · · · , Xknk
. Then we setX(·) =

(X(1), · · · , X(N)). The permutation test statistic is given by

T (X) =
k∑

i=1

ni(X̄i· − X̄··)2,



248 International Journal of Statistical Sciences, Vol. 9s, 2009

whereX̄·· stands for the overall sample mean. Let us put

Vn ≡ {v : v is a permutation ofx(·) = (x(1), · · · , x(n))} (5.1)

Then the conditional distribution ofT (X) givenX(·) = x(·) underH0 is expressed as

P0(T (X) ≤ t| X(·) = x(·)) =
1
n!

#{v :
k∑

i=1

ni(v̄i· − v̄··)2 ≤ t, v ∈ Vn}, (5.2)

where#A stands for the number of elements of the setA. The test procedure based onT (X)

under the conditional probability measureP0(·| X(·) = x(·)) is distribution-free. The test

based onT (X) is equivalent to the conditional F-test.

Next letRij be the rank ofXij among{Xij : j = 1, . . . , ni, i = 1, . . . , k}. The Kruskal-

Wallis rank test statistic is given by

T (R) =
k∑

i=1

ni

(
R̄i· − n + 1

2

)2

,

whereR̄i· = 1
ni

∑ni
j=1 Rij . The rank test based onT (R) is distribution-free.

The M-test statistic stated in Shiraishi (1996) is given by

T (ψ) =
k∑

i=1

ni{ψ̄i·(X)− ψ̄··(X)}2,

where

ψ̄i·(X) =
1
ni

ni∑

j=1

ψ

(
Xij − ν̃

σ̆n

)
, andψ̄··(X) =

1
n

k∑

i=1

ni∑

j=1

ψ

(
Xij − ν̃

σ̆n

)
.

The conditional distribution ofT (ψ) givenX(·) = x(·) underH0 is expressed on a parallel to

the equation (5.2) as

P0(T (ψ) ≤ t| X(·) = x(·)) =
1
n!

#{v :
k∑

i=1

ni{ψ̄i·(v)− ψ̄··(v)}2 ≤ t,v ∈ Vn}.

Hence the M-test based onT (ψ) is also distribution-free.

The asymptotic relative efficiency (ARE) among the F-test, the Kruskal-Wallis rank test

and the M-test agrees with the ARE among the least squares estimators, the R-estimators and
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the M-estimators appeared in Tables 5-7. Therefor we propose the exploratory test procedure

based on 



T (X) if d0 = dNM ,

T (R) if d0 = dDE , or ˆ̀
1 ≥ 1.0, or ˆ̀

2 ≥ 0.5,

T (ψ) otherwise,

(5.3)

and we refer to this test asT ∗-test. We simulate the power for the tests based onT (X), T (R),

T (ψ), andT ∗-test under the alternativeAn : τ i = 5i/
√

kn (i = 1, . . . , k). Fork, ni’s and

F (x), we limited the same attention as in Section 4. We setc = 1.579 in T (ψ). The values

of the power for the tests based onT (X), T (R), T (ψ), andT ∗-test are appeared in Tables

10 and 11 fork = 3, 5, respectively. The values of the power are estimated by Monte-Carlo

simulation of5, 000 samples.

From Tables 10 and 11, we get the following conclusion (1) similar to the conclusions of

the estimators stated in Section 4. (1) The power of the new test is stable in comparison with

the other tests. Furthermore we get the following conclusion (2). (2) Surprisingly the new test

is a little better than the permutation F-test when the underlying distribution is normal.

Table 10: The power of the permutation F test, the Kruskal-Wallis test, the permutation M test and the

new test fork = 3.

(i) F (x) is normal

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.505 0.502 0.475 0.494

20 0.526 0.520 0.497 0.510

30 0.534 0.531 0.514 0.524

(ii) F (x) is contaminated normal

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.601 0.568 0.582 0.590

20 0.614 0.562 0.600 0.609

30 0.628 0.570 0.619 0.630

(iii) F (x) is logistic
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n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.544 0.516 0.525 0.531

20 0.565 0.528 0.557 0.556

30 0.581 0.544 0.576 0.570

(iv) F (x) is double exponential

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.608 0.537 0.604 0.580

20 0.642 0.542 0.647 0.597

30 0.693 0.549 0.696 0.638

(v) F (x) is lognormal

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.934 0.719 0.934 0.851

20 0.981 0.682 0.981 0.902

30 0.994 0.668 0.994 0.923

(vi) F (x) is Weible

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.237 0.074 0.237 0.087

20 0.307 0.059 0.307 0.073

30 0.351 0.057 0.351 0.077

(vii) F (x) is exponential

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.726 0.565 0.726 0.638

20 0.814 0.564 0.814 0.685

30 0.845 0.569 0.845 0.701
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Table 11: The power of the permutation F test, the Kruskal-Wallis test, the permutation M test and the

new test fork = 5.

(i) F (x) is normal

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.674 0.670 0.645 0.659

20 0.696 0.694 0.671 0.681

30 0.706 0.705 0.683 0.693

(ii) F (x) is contaminated normal

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.754 0.693 0.738 0.751

20 0.774 0.701 0.770 0.775

30 0.783 0.715 0.780 0.790

(iii) F (x) is logistic

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.716 0.685 0.705 0.705

20 0.729 0.692 0.729 0.724

30 0.739 0.703 0.741 0.734

(iv) F (x) is double exponential

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.783 0.689 0.787 0.755

20 0.818 0.705 0.821 0.783

30 0.842 0.698 0.846 0.794

(v) F (x) is lognormal

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.990 0.790 0.990 0.948

20 0.999 0.787 0.999 0.977

30 1.000 0.780 1.000 0.983
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(vi) F (x) is Weible

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.292 0.059 0.292 0.079

20 0.396 0.066 0.396 0.082

30 0.466 0.064 0.466 0.077

(vii) F (x) is exponential

n1 New test (T ∗) F-test (T (X)) Rank test(T (R)) M-test (T (ψ))

10 0.884 0.706 0.883 0.811

20 0.948 0.713 0.948 0.853

30 0.961 0.714 0.961 0.864
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