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Abstract

As statistical estimation procedures for location, least squares estimators, R-
estimators, and M-estimators are introduced in a one-way analysis of variance
model. The asymptotic distributional theory for the three estimators and simu-
lated mean squared errors give the features of the respective estimators depending
on the underlying distribution. Based on the features, we propose an estimation
procedure selecting one of the three estimators after searching a distribution near
to the underlying distribution. It is shown that the mean squared error of the new
estimator is more stable than the three estimators. Next, as distribution-free test
procedures, the permutation F-test, Kruskal-Wallis rank test, and the M-test are
introduced. Asymptotic relative efficiency and simulated power of the respective
tests are investigated. Based on their features, we propose a stable test procedure
selecting one of the three tests after searching a distribution near to the underlying
distribution. Surprisingly the new test is a little better than the permutation F-test
when the underlying distribution is normal.
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1 Introduction

In the present paper, we consider univariateamples withn; observations in théth popu-
lation fori = 1,..., k. Thej-th observationX;; in thei-th level is expressed as

Xij=w+ej (G=1...,n,i=1...k) (1.1)

wheree;; is a random variable wittE(e;;) = 0 for all 4, j's. It is further assumed that
ei;'s are independent and identically distributed with continuous distribution function (d.f.)
F(z/o) andVar(e;;) < co. We denote the density df(z) by f(z). For convenience, we
assume -

/ 2% f(x)dr = 1, thatis,Var(e;;) = o > 0.

—o0

(1.1) is rewritten as usual by
Xij :V—i-n—i—eij,

wherer:1 n;7; = 0. Thenv andr;’s are referred to as the grand mean and additive treat-
ment constants, respectively. We put= Zle n;. The least squares estimatorrgfis given
by T, = Xz — X.., Where)_(i. = Z?’Zl ij/n, and X.. = Zf:l Z;Lél X”/n When the
underlying distribution is normal, that ig'(z) = ®(z), 7;’s are the uniformly minimum
variance unbiased estimator foy's, where®(x) denotes the standard normal distribution
function. Using a method similar to Hodges and Lehmann (1963), we propose as an estimator

Of 7’]“'/ =T; — T4
fl;» = the sample median dfX;; — X,/ : 1 <j <mn;, 1 <j' <ny}.
Since the relation

k
i = (1/n) Z T My (1.2)

i’'=1

holds, we may propose as an R-estimator,of

k
Ti=(1/n) Z Nt Mgt
i'=1

where we set);, = 0 for convenience. Shiraishi (1990) proposed R-estimators which are
asymptotically equivalent t¢;'s. Setting7,, = (71,--- ,7%) andt = (7r1,--- ,7%)’, from
Shiraishi (1990), it follows

Vi(F, — ) =5 Ny(0,4%4) (1.3)
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where—% denotes convergence in lawg (8, X) stands for the-dimensional normal vari-
able with mear® and variance-covariance mattl, 7> = 120%{ [~ f?(x)dxz}?, andA =
(047 /Ni — 1)ir=1,... 1 With 6, denoting Kronecker's delta.
For one-sample location model bf= 1, Huber (1964) proposed solutiéh= ¢ of the
equation:
D (X1 —6)=0 (1.4)
j=1
as an estimator of/(X;;) and called it M-estimator, where(x) is increasing and strictly
negative (positive) for large negative (positive) values ofor fixede such thad < ¢ < 1,
choose positive constaasatisfying the equation:
200 op(mey = 5 (1.5)
C 1—¢£
wherep(z) denotes the standard normal density function. Then Huber (1964) showed that
the M-estimator given by taking

Y(x) = max{min{z, c}, —c} (1.6)

has the minimax asymptotic variance among a class of estimators defined by the solution of
(1.4) through the functiogi(-) over the class of distributions that the underlying distribution is
in e-contamination neighborhood of a normal distributiéh: = {F(z/0) = (1 — &)®(x) +
eH(z) : H(—z) = 1 — H(z) foranyz}. Whene = 0.05,0.03 are given, the values af
satisfying (1.5) are respectively 1.398 and 1.579. Many valués of were appeared in Table
1 of Shiraishi (2005). Furthermore Huber (1981) proposed a scale-invariant M-estimator.

In order to introduce robust estimators foy's, we put, fori # i, v;;y = (ni)_(i. +
ny Xir.)/Nizt, Nigw = ni+ny andg,, = /7 S5, S0 1Xij—Xi|/(V2n). &, is aconsistent
estimator ofp = (\/7o/v2) [*_ |z|dF(x). Moreover, we put

1 Xij — Ui — (i /Nig) -0\ 1 Xirj — Uiy + (ni/Nyyv) - 0
(2 jzl

n n On

Then Shiraishi (2007) denoted solution of the equatifp(#) = 0 by 7,,,. He proposed,;
as a robust estimator far; — 7;;. Hence, from (1.2), as a robust estimator fgr he might
propose

k

.1 y .

Ti = ﬁz/ :1ni/77ii’a (i=1,---,k)
b
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wherep,; = 0. Setting+,, = (71, - -, 7¢)’, Shiraishi (2007) showed
Vii(#n — T) = Ni(0,0%()A) (1.7)

whereo? () = o*{ [ (0w /p) f'(x)dx}?/ [ {w(ow/p) — $}2f(x)dx and
)= [% w0z /p) f(x)da.

We give the values of the asymptotic relative efficiency among the three estinfaters
(71, -+ ,7¢), 7o and ¥, for many underlying distributions. Furthermore, we give values
of simulated mean squared errors by using a Monte Carlo simulation. Then we may get the
features of the three type estimators on the underlying distributions. Based on the features, we
propose the estimation procedure selecting one of the three type estimators after searching a
distribution near to the underlying distribution. It is shown that the mean squared error of the
new estimator is more stable than the estimatoysr,, and,,.

Next, we consider distribution-free test procedures for the null hypothesis of homogenuity

Hy;, mi=...=71,=0.

The multi-sample F-test is the optimum when the underlying distribution is normal. The per-
mutation F-test statistic is distribution-free undég. When the underlying distribution is
logistic, Hijek et al. (1999) reviewed that Kruskal-Wallis rank test is the asymptotically opti-
mum test. Shiraishi (1996) proposed an M-test based on the statistic similar to M-estimator. It
is shown that the asymptotic relative efficiency (ARE) among the three tests of the F-test, the
Kruskal-Wallis test and the M-test agrees with the ARE among the three estintatofs,

andT,. The simulated power of the respective tests is investigated. Based on their features,
we propose the test procedure selecting one of the three tests after searching a distribution
near to the underlying distribution. It is shown that the power of the proposed test is more
stable than the three tests of the permutation F-test, the Kruskal-Wallis test and the permuta-
tion M-test. Surprisingly the new test is a little better than the permutation F-test when the
underlying distribution is normal.

2 Searching the underlying distribution

Since the power of goodness of fit tests is low, we consider to search a distribution near to
the underlying distribution by using an empirical distribution function. For integend
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j=m— Y ngsuchthal it ny +1 <m < 3%_ ny, we defineZy, - - - , Z, by

Zm = (Xi5 — Xi)//1—1/n,
whereng = 0. ThenE(Z;) = 0 andVar(Z;) = o2 hold. Let us defines,(z) by the
empirical distribution function of Zy,--- , Z,}. Thatis,n - G,,(z) equals the number of
observation&i, - - - , Z, that are less than or equalio G, () is an unbiased and consistent
estimator ofF'((x — 1) /o). Hence for specified distribution functidry, we put

Con() — Fo (”“’) ' 2.1)

Dp, = sup
On

—oo<r<o0

where

™ bltes).

. 7 7. -
el e (G-l
n On On n

Dy, is a distance between the underlying distributidrand specifiedy. Symmetric dis-
tributions chosen here ag, are normalN (0, 1), contaminated normal’N(¢) = (1 —
e)N(0,1/(1 + 8¢)) +eN(0,9/(1 + 8¢)), logistic LG(0, /3 /) with density function
exp(—mz/v/3) /{1 + exp(—mx/+/3)}?, and double exponentid) £(0, 1/+/2) with density
function(1/v/2) exp(—+/2|z|). As asymmetric distributions, we provide exponential, Weible,
lognormal and asymmetric contaminated normal distributions. The normalized exponential
EX density function with mea and variancel is given by f.(z) = e~ V1 ().
The Weible density function is expressed @gz|a,b) = (a/b)(x/b)* ! exp{—(x/b)*}

(0 < z < oo) with meanr = bI'(: + 1) and variancer? = b*{I'(2 + 1) — I'*(* + 1)}.
The normalized Weiblé? (a) density function is given by, (z|a) = ogw(ox + Tla,b),
which does not depend on parameter The lognormal density function is expressed as

=3Vl s

We may rewrite

Dp, = max |max
1<i<n

ge(z]a,b) = \/%bm exp{— M} (0 < & < o0) with meanr = exp(a+ & °) and variance
0?2 = exp(2a + 2b%) — exp(2a + b?). The normalized lognormdl N (b) density function is
given by f,(x|b) = oge(cx + T|a,b) which does not depend on parameteiThe asymmet-
ric contaminated normadlC N = 0.98 N (—0.1,1/1.47) + 0.02N (4.9,0.01/1.47) has outlier
with probability0.02. The mean and variance diC' N are respectively and1. We may seek
Fy minimizing Dy, in the distributions. To compute,, the values of(~_|z|fo(x)dx are

appeared in Table 1.
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Table 1: The values of ™ _
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|| fo(z)dx, wherep, = exp(

2

7).

Jo(z) N(0,1) CON(e) LG(0,v/3/7) | DE(0,1/v/2)
ffooo || fo(z)dz % {\(/af%} \/g 2log 2 x § %
fo(z ) EX W (a) LN(b) ACN
I% lzl fo(x)da| 2 | 22— 2 [Fexp{—(a/b)*}dz | 2 [I" @ (1 e ) 0.72118

Moreover, as a characterization of the distribution, we may use the skewfgss:
[ x3dF () and the kurtosis?, = [*_z*dF(z) — 3. The values for the skewness and
kurtosis of the respective distributionsV (0, 1), CN(0.05), LG(0,v/3/7), DE(0,1//2),
EX,andACN are appeared in Table 2.

Table 2: The values for the skewness and kurtosi®¥ (f, 1), CN (0.05), LG(0,/3/7),

DE(0,1/v/2), EX,andACN.

F(z) skewness kurtosis F(z) skewness kurtosis
N(0,1) 0 0 | DE(0,1/V/2) 0 3
CN(0.05) 0 4.65 EX 2 6
LG(0,4/3/7) 0 1.2 ACN -0.16 -1.61

The skewness and kurtosis¥df(a) become

o F(B+1)—3lE+10)I(2+1)+23(2 +1)
L LG+ -1+
and
o PEH)—alGHOLE+ 1) +607G+ )M+ 1) -3l +1)
2T (T +1)—T2(2 + 1)) '

The values for some’s are appeared in Table 3.
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Table 3: The values for the skewness and kurtosig’¢f) for a = 1(1)6

a skewness kurtosis a skewness kurtosis
1 2 6 4 -0.09 -0.25
2 0.63 0.25 5 -0.25 -0.12
3 0.17 -0.27 6 -0.37 -0.36

239

Le us putag = exp(b?). Then the skewness and kurtosislo¥ (b) become/; = (ag —
1)Y2(ag 4 2) andly = (ag — 1)(ag + 3a3 + 6ag + 6). The values for some’s are appeared

in Table 4.

Table 4: The values for the skewness and kurtosis&{b) for b = 0.1(0.1)1.0

b2 skewness kurtosis b2 skewness kurtosis
0.1 1.00 1.86 0.6 3.47 27.08
0.2 1.52 4.35 0.7 4.04 38.94
0.3 1.98 7.71 0.8 4.68 55.44
0.4 2.45 12.27 0.9 5.39 78.51
0.5 2.94 18.51 1.0 6.18 110.94
The estimators fof; and/s are respectively given by
. nvn — 1 Z?zl(Z,-—Z)?’
T on—2 {2 - 2)nn
and _
g~ n+mn-1) i (Zi - 2)" 3(n —1)?
2 = : = — .
(n—=2)(n=3) {XL(Zi—-2)?*? (-2)(n-3)

/1 and/, are used in the SAS system and Microsoft Excel.

3 Asymptotic efficiency for estimators

(2.2)

(2.3)

We investigate the asymptotic relative efficiency (ARE) of R-estimatpand M-estimator
7, With respect to least squares estimakgr For two sequences of estimatdr¥;,,} and

{T3,} sucht

hat

Vi(Thn — T) — Nu(0,024) andy/n(Tap — T) —= Ni(0, 024),
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where = denotes convergence in law, we define the AREgf with respect tdl's,, by
ARE(T1,,,T2,) = 02/0%. Saleh and Shiraishi (1993) defined the asymptotic distributional
quadratic risk (ADQR) off";,, by

AR(Tyy) = hm lim E[min{n(T; — 1) (Tin — 7),b}].

b— 00 N—00

ARE(T1,,T2,) is given by the ratio oAR(T'2,) to AR(T1,,), thatis, ARE(T'1,,, T'ay,) =
AR(T9,)/AR(T1,,). Hence ifARE(T1,,T2,) > (<)1 holds, T, is better (worse) than
Ts,. From the direct application of central limit theorem, we get

V(T — T) =5 N(0,0%A). (3.1)

Hence, from (1.3), (1.7) and (3.1), the asymptotic relative efficiency (ARE),atnhd+,, with

respect tor,, yield
00 2
ARE (%, 7n) = 12 {/ f2(x)dm} ,

and
00 2 109
ARE(#0,72) — [ / {wm/m—&}f'(a:)dx} /[ wlort) - 0@, @2)
Letus put§ = (v/7/v2) [ |z|dF(z). Then (3.2) becomes

c _ Y &S AW 2
{f (@/§ =) f'(@)de + [T (c— ) [ (x)dx ffoo(c—%w)f(x)daz}

ARE(Typ,Tyn) = 3
(T ) [ (/e — 02 f(@)da + [Z(c— O >f<x>dm+f:§§<c+w>2f<x>dx

wherey = f (/&) f(x)dx + [ cf (x)dz — f:(ff cf(xz)dz. Since the M-function) of

(1.6) depends on constaat ARE(7,,7T,) is a function ofc. From Table 1, we choose

the value of1.579 asc. We denote the M-estimator by,. The values ofARE(7,,, 75),
ARE(+,,T,) are appeared in Table 5. The underlying distributions chosen here are normal;
N(0, 1), logistic distribution, contaminated normal95N (0,5/7)+0.05N (0,45/7), double
exponential, and exponential. The valuesAd®E(+,,, 7,,) in Table 5 are stated in Lehmann
(1975) and others.
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Table 5: The ARE of the R-estimator and two M-estimators relative to the least squares estimators.

F(x) ARE(Tp,Tn) | ARE(Thn,Th)
normal 0.955 0.970
contaminated normal  1.196 1.212
logistic 1.097 1.081
double exponentigl 15 1.262
exponential 3 1.288

When the underlying distribution iscontaminated normal’ N (¢) distribution , the val-
ues of ARE(7,T,) andARE(+,, T,) are appeared in Table 6. When the underlying dis-
tribution is ¢ distribution with & degrees of freedom, the values 4RE’s are respectively
appeared in Table 7. Then the density of the normaliadidtribution is given by

k+1

G 2\
o= w(k—2>r<’;><l+k—2> |

Table 6: The ARE of the R-estimator and two M-estimators relative to the LSE when the underlying
distribution ise-contaminated normal' N (¢) distribution.

€ 001 002 003 004 005 006 0.08 0.0
ARE(¥,,7,)[1.009 1.060 1.108 1.153 1.196 1.236 1.309 1/373
ARE(¥,,7,)[|1.025 1.077 1.125 1.170 1.212 1.250 1.316 1J370

€ 012 014 016 018 020 0.22 025 0.50
ARE(%,,7,)1.429 1476 1516 1.548 1575 1595 1616 1627
ARE(¥,,7Tn)|1.412 1443 1.465 1478 1.484 1.484 1473 1437
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Table 7: The ARE of the R-estimator and two M-estimators relative to the least squares estimators
when the underlying distribution is t-distribution withdegrees of freedom.

k 3 4 5 6 7 8 9 10 11
ARE(T,,7,)1.900 1.401 1.241 1.164 1.119 1.089 1.069 1.054 1042
ARE(¥,,7,)1.737 1336 1.207 1.144 1.107 1.083 1.066 1.053 1.043

k 12 13 14 15 16 17 18 19 20
ARE(%,,7,)/1.033 1.025 1.019 1.014 1.009 1.006 1.002 0.999 (Q.997
ARE(¥,,7,)1.036 1.030 1.024 1.020 1.016 1.013 1.010 1.008 1.006

Since
ARE(¥y,Tn) = ARE(Ty, Tn)/ARE (T, Tn)
holds, we may get the values of the ARE of the M-estimator relative to the R-estimator from
Tables 5-7.
The following features 1-3 are drawn from Table 5.

1. When the underlying distribution is normal, the least squares estimator is a little better
than the other estimators. The relation of ADQR’s is given by

AR(#,) < AR(#n) < AR(#).

2. When the underlying distribution i505-contaminated normal, the M-estimatoy, is
better than the other estimators. The least squares estimator is extremely bad. The relation of
ADQR'’s is given by
AR(7y,) < AR(Ty) < AR(T,).

3. When the underlying distribution is logistic, double exponential or exponential, the
R-estimatorr,, is better than the other estimators and the least squares estimator is the worst.
The relation of ADQR'’s is given by

AR(#,) < AR(#n) < AR(%).

From Table 6, when the underlying distributionei€ontaminated normal, we conclude
that (i) ARE (7, Tn) and ARE(T,,T,) increase irg, (ii) all the ARE’s are larger that,
and (iii) the relation of ADQR’s is given by

AR(#,) < AR(#n) < AR(%).



Shiraishi: Exploratory Procedures after Searching the Underlying 243

From Table 7, when the underlying distribution is t-distribution witthegrees of freedom,
we conclude (VARE (7, 7,) andARE (T, T,) decrease ift,

(i)  AR(7,) > or < AR(7,) accordingas k > or < 18,

(i) AR(7,) < AR(T,), (v) AR(7,) < AR(¥n) < AR(7,) for £ < 10, and (iv)
AR(7y) < AR(Ty) < AR(7,) for 11 < k < 18.

4 New estimator

Using the distancéy,, the sample skewnegs and the sample kurtosis given by (2.1)-
(2.3) respectively, we may propose a new estimator selecting one of the three estimators;
Tn, Trn after searching a distribution near to the underlying distribution. First, we compute
Dp, for Fy = N(0,1), CN(0.05), LG(0,+/3/7), DE(0,1/+/2) and the respective values
are denoted by s, don, drg, anddpg. Next we put

dop = the minimum Of{dNM, den, dia, dDE}-

Furthermore we computg for the sake of detecting the underlying asymmetric distribution.
Lastly we compute%. From the features of Section 3, we recommend usipgvhen the
underlying distribution is close to the normal distribution. We recommend dsjnghen the
underlying distribution is remote from the normal distribution. Otherwise we mayryse
Hence as a new estimator, we propose

Tn if do=dnnm,
7/'% = Tn if do= dpg, oOfr él > 1.0, or EQ > 0.5, (4-1)
Tn otherwise

Let M S(T,,) be the mean squared error of the estimdtpythatis,M S(T),) = E{(T,,—
7) (T, —7)}. Then for two sequences of estimat$®,,, } and{T',,}, we define the relative
risk efficiency (RRE) off"y,, with respect td’s,, by RRE(T1,,, T2,) = MS(T2,)/MS(T'11,).
Under certain regularity conditions,

lim RRE(Tln, Tgn) = ARE(Tln, Tgn)

n—oo
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holds. We simulate the RRE’s among the least squares estimator, the R-estimator, the M-
estimator and the new estimator. We limited attentioh t6 3,5, n; = --- = ng = 10, 20, 30
and F(x) = N(0,1), CN(0.05), LG(0,+/3/x), DE(0,1/v/2), LN(1), W(2), EX. We
denote M-estimator satisfying the equation (1.5) with- 1.579 by ¥,,. The RRE’s among
the estimators,,, 7., Tn, andq/-i are appeared in Tables 8 and 9 fo& 3,5, respectively.
The values of the RRE are estimated by Monte-Carlo simulatién@f0 samples.
The following features I-V are drawn from Tables 8 and 9.
I. When the underlying distribution is normal, although is the best estimaton?i is
quite a little worse thafr,,. 7, is the worst. The relation of MSE’s is given by

MS(7,) < MS(T%) < MS(%,) < MS(#,). (4.2)
II. When the underlying distribution i8.05-contaminated normal, the M-estimatats
are better than the other estimators. The new estimagfois quite a little worse than the
M-estimators and-,, is the worst. The relation of MSE’s is given by

MS(#,) < MS(T%) = MS(#,) < MS(7y,).

[ll. When the underlying distribution is logistic, the, is better than the other estimators.
The new estimato?fl is quite a little worse thatr,,. 7, is the worst. The relation of MSE'’s
is given by

—

MS(#,) < MS(#,) < MS(T%) < MS(n).

IV. When the underlying distribution is double exponential, theis better than the other
estimators. Thé—i has maxmun’ percent loss in comparison with,. 7, is extremely bad.
The relation of MSE's is given by (4.2).

V. When the underlying distribution is asymmetric, tﬁ?e is as good as-,. 7, and7,
are extremely worse than the former two estimators.

The double exponential distribution and asymmetric distributioNg1), W (2), EX are
very far from the normal distribution. From the above I-V, we conclude that the MSE’s of the
new estimators are stable in comparison with the other estimators.
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Table 8: The relative risk efficiency (RRE) among the estimators+,,, 7, and?\; for k = 3.

(i) F(x) is normal

ni |RRE@:, 7,) | RREG:, 7,) | RREG, #,) | RREG,, 7n) | RREG,, 71n)
10 0.970 1.035 0.991 0.938 0.979
20 0.980 1.033 1.004 0.949 0.976
30 0.980 1.043 1.014 0.939 0.967
(i) F(x)is contaminated normal
ni |RRE@,7,) | RRE@E, #,) | RREG:, ) | RREG,, 7n) | RRE@,, 7)
10 1.163 1.009 0.990 1.152 1.175
20 1.213 1.002 0.993 1.210 1.221
30 1.178 0.997 0.983 1.181 1.199
(ii) F(x) is logistic
ni |RRE@:, 7,) | RREG:, #,) | RREG, %,) | RREG,, 7n) | RREGF,, 71n)
10 1.047 0.997 0.992 1.050 1.056
20 1.065 0.980 0.986 1.087 1.080
30 1.069 0.978 0.982 1.093 1.088
(iv) F(z) is double exponential
ny |RRE@Z,7,) | RRE@:,#,) | RREG:, ) | RREG,, 7) | RRE@F,, 71)
10 1.269 0.955 1.053 1.328 1.205
20 1.394 0.963 1.112 1.448 1.253
30 1.385 0.972 1.114 1.425 1.243
(v) F(x) is lognormal
ni |RRE@:, 7,) | RREG:, #,) | RREG?, %,) | RREG,, 7n) | RREGF,, 71)
10 4.529 0.993 1.879 4.559 2.411
20 5.772 0.999 2.179 5.775 2.648
30 5.899 1.000 2.291 5.899 2.575
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(vi) F(z) is Weible

ni |RRE@Z,7,) | RRE@E, 7,) | RREGE, ¥,) | RREG,, 7n) | RRE@,, 7n)
10 15.345 0.997 4.501 15.393 3.409
20 28.584 1.000 7.453 28.584 3.835
30 41.529 1.000 10.769 41.529 3.856
(vii) F(x) is exponential
ny |RRE@Z,7,) | RRE@,#,) | RREG:, #,) | RREG,, 7) | RREF,, 7)
10 1.767 0.998 1.305 1.770 1.354
20 2.114 0.999 1.490 2.116 1.419
30 2.306 0.998 1.626 2.311 1.418

Table 9: The relative risk efficiency (RRE) among the estimafors+,, 7, andﬁ for k = 5.

(i) F(x) is normal

ni |RRE@:, 7,) | RREG:, #,) | RREG, %,) | RREG,, 7n) | RREGF,, 71n)
10 0.979 1.039 1.006 0.943 0.973
20 0.989 1.041 1.016 0.950 0.974
30 0.990 1.046 1.023 0.947 0.968
(i) F(x)is contaminated normal
ny |RRE@Z,7,) | RRE@:,#,) | RREG:, %) | RREG,, 7) | RRE@F,, 71)
10 1.170 1.002 0.992 1.168 1.179
20 1.190 1.000 0.989 1.190 1.204
30 1.179 0.992 0.981 1.188 1.202
(i) F(x) is logistic
ni |RRE@:, 7,) | RREG:, #,) | RREG?, %,) | RREG,, 7n) | RREGF,, 71)
10 1.049 0.984 0.986 1.066 1.063
20 1.055 0.980 0.993 1.077 1.063
30 1.059 0.974 0.984 1.086 1.076
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(iv) F(x) is double exponential

ni |RRE@:, 7,) | RREG:, #,) | RREG?, %,) | RREG,, 7n) | RREGF,, 71)
10 1.283 0.947 1.059 1.354 1.211
20 1.355 0.972 1.106 1.394 1.225
30 1.402 0.980 1.140 1.430 1.230
(v) F(x) is lognormal
ny |RRE@,7,) | RRE@:, #,) | RREG:, %) | RREG,, 7n) | RRE@F,, 7)
10 5.017 0.999 1.962 5.020 2.558
20 5.589 1.000 2.173 5.589 2.573
30 5.952 1.000 2.278 5.952 2.613
(vi) F(z) is Weible
ni |RRE@:, 7,) | RREG:, #,) | RREG?, %,) | RREG,, 7n) | RREGF,, 71n)
10 14.421 1.000 4.305 14.421 3.350
20 30.262 1.000 8.085 30.262 3.743
30 41.788 1.000 10.530 41.788 3.969
(vii) F(x) is exponential
ny |RRE@,7,) | RRE@:, #,) | RREG:, ) | RREG,, 7n) | RRE@F,, 7)
10 1.834 0.999 1.335 1.836 1.375
20 2.132 1.000 1.515 2.132 1.407
30 2.281 1.000 1.598 2.281 1.427
5 Test procedures
We shall introduce distribution-free tests for the null hypothégjs Let Xy, - -+, Xy be

the order statistics of the independent observati®s, - - - , Xy, . Then we setX ) =

(X@1), -+ » X(w)). The permutation test statistic is given by

T(X) =) ni(Xi — X.)%
=1
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whereX.. stands for the overall sample mean. Let us put

Vo = {v :visapermutation ok = (v(1), - ,2y))} (5.1)
Then the conditional distribution af( X') given X () = () underH is expressed as
R(T(X) < t| X, —#{'U an o 2<tveV,), (5.2)

where# A stands for the number of elements of the 4efhe test procedure based B0X)
under the conditional probability measufg(-| X .y = =x(,) is distribution-free. The test
based orff’ (X)) is equivalent to the conditional F-test.

Next letR;; be the rank ofX;; among{ X;; : j=1,...,n;,4=1,...,k}. The Kruskal-
Wallis rank test statistic is given by

R =Y (Ri.—";lf,

i=1

whereR;. = ni >_jL1 Rij. The rank test based di( R) is distribution-free.
The M-test statistic stated in Shiraishi (1996) is given by

k
= Zm{{bZ(X) - @(X)}{
=1
where

1
N

(%5

The conditional distribution df'(+)) given X .y = x ., underH, is expressed on a parallel to

) L5 (7).

Jj= i=1 j=1

the equation (5.2) as

k
RAT() < 1 Xy = 7)) = {0 D mifd (o) — (@)} < v € Vi),
=1

Hence the M-test based @) is also distribution-free.
The asymptotic relative efficiency (ARE) among the F-test, the Kruskal-Wallis rank test
and the M-test agrees with the ARE among the least squares estimators, the R-estimators and
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the M-estimators appeared in Tables 5-7. Therefor we propose the exploratory test procedure
based on

T(X) if do=dnn,
T(R) if dy=dpg, or ¢;1>1.0, or ¢y >0.5, (5.3)
T(v) otherwise

and we refer to this test §5'-test. We simulate the power for the tests base@ QX ), T'(R),

T (%), andT*-test under the alternativé,, : =; = 5i/vkn (i = 1,...,k). Fork, n;'s and
F(z), we limited the same attention as in Section 4. Werset1.579 in T'(¢). The values

of the power for the tests based #%X), T'(R), T'(v), andT*-test are appeared in Tables
10 and 11 fork = 3,5, respectively. The values of the power are estimated by Monte-Carlo
simulation of5, 000 samples.

From Tables 10 and 11, we get the following conclusion (1) similar to the conclusions of
the estimators stated in Section 4. (1) The power of the new test is stable in comparison with
the other tests. Furthermore we get the following conclusion (2). (2) Surprisingly the new test
is a little better than the permutation F-test when the underlying distribution is normal.

Table 10: The power of the permutation F test, the Kruskal-Wallis test, the permutation M test and the
new test fork = 3.

(i) F(x) is normal

n1 |Newtest ™) | F-test ("(X)) | Rank test('(R)) | M-test (I'(v))
10 0.505 0.502 0.475 0.494
20 0.526 0.520 0.497 0.510
30 0.534 0.531 0.514 0.524

(i) F(x) is contaminated normal

ny |Newtest ™) | F-test ('(X)) | Rank test{'(R)) | M-test (I'(v)))
10 0.601 0.568 0.582 0.590
20 0.614 0.562 0.600 0.609
30 0.628 0.570 0.619 0.630

(i) F(x) is logistic
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ny |Newtest (™) | F-test ('(X)) | Ranktest{(R)) | M-test (I'(¢))
10 0.544 0.516 0.525 0.531
20 0.565 0.528 0.557 0.556
30 0.581 0.544 0.576 0.570
(iv) F(x) is double exponential
ny |Newtest ™) | F-test (X)) | Rank test{'(R)) | M-test (I'(v)))
10 0.608 0.537 0.604 0.580
20 0.642 0.542 0.647 0.597
30 0.693 0.549 0.696 0.638
(v) F(x) is lognormal
ny |Newtest ™) | F-test ('(X)) | Rank test{'(R)) | M-test (I'(v)))
10 0.934 0.719 0.934 0.851
20 0.981 0.682 0.981 0.902
30 0.994 0.668 0.994 0.923
(vi) F(z) is Weible
ny |Newtest ™) | F-test ('(X)) | Rank test('(R)) | M-test (I'(v)))
10 0.237 0.074 0.237 0.087
20 0.307 0.059 0.307 0.073
30 0.351 0.057 0.351 0.077
(vii) F(x) is exponential
ny |Newtest ™) | F-test (X)) | Rank test{'(R)) | M-test (I'(v)))
10 0.726 0.565 0.726 0.638
20 0.814 0.564 0.814 0.685
30 0.845 0.569 0.845 0.701
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Table 11: The power of the permutation F test, the Kruskal-Wallis test, the permutation M test and the
new test fork = 5.

(i) F(x) is normal

ny |Newtest ™) | F-test ("(X)) | Rank test('(R)) | M-test (I'(v)))

10 0.674 0.670 0.645 0.659
20 0.696 0.694 0.671 0.681
30 0.706 0.705 0.683 0.693

(i) F(x)is contaminated normal

ny |Newtest ™) | F-test ('(X)) | Rank test'(R)) | M-test (I'(v)))

10 0.754 0.693 0.738 0.751
20 0.774 0.701 0.770 0.775
30 0.783 0.715 0.780 0.790

(i) F(z) is logistic

n1 |Newtest ™) | F-test ('(X)) | Rank test('(R)) | M-test (I'(v)))

10 0.716 0.685 0.705 0.705
20 0.729 0.692 0.729 0.724
30 0.739 0.703 0.741 0.734

(iv) F(x) is double exponential

ny |Newtest ™) | F-test ('(X)) | Rank test{'(R)) | M-test (I'(v)))

10 0.783 0.689 0.787 0.755
20 0.818 0.705 0.821 0.783
30 0.842 0.698 0.846 0.794

(v) F(x) is lognormal

n1 |Newtest ™) | F-test ("(X)) | Rank test('(R)) | M-test (I'(v)))
10 0.990 0.790 0.990 0.948
20 0.999 0.787 0.999 0.977
30 1.000 0.780 1.000 0.983
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(vi) F(z) is Weible

n1 |Newtest ™) | F-test ('(X)) | Rank test'(R)) | M-test (I'(v))
10 0.292 0.059 0.292 0.079
20 0.396 0.066 0.396 0.082
30 0.466 0.064 0.466 0.077

(vii) F(x) is exponential

n1 |Newtest (™) | F-test ("(X)) | Rank test('(R)) | M-test (I'(v))

10 0.884 0.706 0.883 0.811

20 0.948 0.713 0.948 0.853

30 0.961 0.714 0.961 0.864
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