
International Journal of Statistical Sciences ISSN 1683–5603

Vol. 9(Special Issue), 2009, pp 209-215

c© 2009 Dept. of Statistics, Univ. of Rajshahi, Bangladesh

Comparing Locations Using Medians: Exact and Asymptotics

Mezbahur Rahman and Larry M. Pearson
Minnesota State University
Mankato, MN 56001, USA

E-mail: mezbahur.rahman@mnsu.edu & larry.pearson@mnsu.edu

[Received June 9, 2008; Accepted May 30, 2009]

Abstract

Two medians are used in comparing location parameters in two independent pop-

ulations in nonparametric testing. Three different exact procedures and two dif-

ferent approximation procedures are discussed. Performances are shown using

simulation.
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1 Introduction

Let us considerX1, X2, . . . , Xn1 andY1, Y2, . . . , Yn2 be two independent random ramples
from two independent populations with equal shape parameters. We are interested in compar-
ing their locations. One of the simplest and most widely used nonparametric procedures for
testing the null hypothesis that two independent samples have been drawn from populations
with equal medians is themedian testattributed to Mood (1950) and Westenberg (1948). The
first sample is from a population with unknown medianM1 and the second sample is from a
population with unknown medianM2. The variables of interest are continuous and the mea-
surement scales employed are at least ordinal. The null hypothesis isH0 : M1 = M2 and the
possible alternative hypotheses areH1 : M1 6= M2, H1 : M1 < M2, andH1 : M1 > M2.
If the two populations have the same median, then for each population the probability that
an observed value will exceed the combined population median are the same. The hypoth-
esis tests combine the observations from the two samples and compute the median. Then,
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the observations are classified depending on whether they are above or equal to the combined
median or below the combined median. The outcomes are displayed in the following table:

Table 1: Data Summary

Sample 1 Sample 2 Total

Above A B A + B

Equal or below C D C + D

Total A + C = n1 B + D = n2 N = n1 + n2

If H0 is true, we expect about one-half of the observations in each sample to fall above the
combined sample median and one-half to fall below. Mood (1950) has shown that under the
null hypothesis, the sampling distribution ofA andB can be expressed as thehypergeometric
distribution:
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For the two sided alternative hypothesis, theP -value can be computed using equation (1.1)
as:

PHY P = 2
M∑

x=0

P (x,A + B − x) (1.2)

whereM is the minimum ofA andB relative ton1 andn2. In cases of one sided tests, (1.2)
can be computed for the respective critical regions and without multiplying by 2.

Since the samples are independent, it can also be argued that the sampling distribution
is binomial, that is, for anyp1, probability of the observation being in the ‘Above’ group in
Sample 1, andp2 is the corresponding probability for Sample 2,
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For a two sided hypothesis, a higher absolute difference betweenA andB will indicate the
rejection of the null hypothesis. The sampling distribution ofD = A − B under the null
hypothesis is as follows: ForD = 0 or A = B,

P (A = B) =
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p2A(1− p)n1+n2−2A (1.4)
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wherep = 2A/N . ForA 6= B, and without loss of generality, we can considern1 > n2 to
obtain

P (D = d) =
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pd(1− p)n1+n2−d

n1−d∑
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n2

y

)
(1.5)

for d = 1, 2, . . . , n1, wherep is the probability of the obsevation being ‘Above’ in either
group. Then, theP -values can be computed for a two sided hypothesis as

PBNA = 2P (D ≥ R) (1.6)

whereR = |A − B| as in Table 1 and the probabilities are computed using (1.4) and (1.5).
BNA stands for binomial andp = 2A/N . Since the test is for the equality of two medians,
under the null hypothesis1/2 can be substituted forp. Equations (1.4) and (1.5) can be written
as
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ForA 6= B, and without loss of generality, we can considern1 > n2 which yields
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(
n1

d

)(
1
2

)N n1−d∑

y=0

(
n2

y

)
(1.8)

for d = 1, 2, . . . , n1. Here we can computeP -values as in (1.6) using (1.7) and (1.8) and refer
to them asPBNE . One sidedP -values can also be computed by adjusting (1.6) accordingly.

P -values also can be approximated using

ZBNA =
p1 − p2√

p(1− p)
(

1
n1

+ 1
n2

) (1.9)

wherep1 = A/n1, p2 = B/n2, andp = (A+B)/(n1 +n2) and denoted asPZNA. P -values
also can be approximated using

ZBNE =
p1 − p2√
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) (
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) (1.10)

and denoted asPZNE . In the following section we compare the five different tests mentioned
above using simulation.

2 Simulation

Independent random samples are generated from binomial variates. We considerp = 0.5
as the value ofp whenH0 is true and(p1 = 0.45, p2 = 0.55), (p1 = 0.3, p2 = 0.7), and
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(p1 = 0.1, p2 = 0.9) are considered for power computations. For each case we take samples
of sizes 5, 10, 20, 30, and 40. Ten thousand samples are selected for each case and each
sample size and number of rejections are recorded using the 5% level of significance. In the
table below (Table 2), we present the proportions of rejections along with mean and standard
deviations of theP -values.

Table 2: Simulation Results

N PHY P PBNE PBNA PZNE PZNA

p1 = 0.5, p2 = 0.5

Rejection Rate 5 0.0225 0.0225 0.0225 0.0225 0.0606

MeanP -value 0.9131 0.6441 0.6266 0.5146 0.4966

St. Dev.P -value 0.4346 0.3023 0.3104 0.3238 0.3318

Rejection Rate 10 0.0129 0.0423 0.0428 0.0423 0.0428

MeanP -value 0.7815 0.6090 0.6015 0.5079 0.4995

St. Dev.P -value 0.3944 0.3085 0.3119 0.3084 0.3112

Rejection Rate 20 0.0226 0.0423 0.0424 0.0423 0.0467

MeanP -value 0.6939 0.5812 0.5775 0.5044 0.5003

St. Dev.P -value 0.3619 0.3069 0.3085 0.2983 0.2995

Rejection Rate 30 0.0299 0.0299 0.0403 0.0543 0.0543

MeanP -value 0.6584 0.5695 0.5671 0.5050 0.5023

St. Dev.P -value 0.3494 0.3070 0.3080 0.2966 0.2974

Rejection Rate 40 0.0308 0.0308 0.0316 0.0549 0.0549

MeanP -value 0.6409 0.5651 0.5633 0.5081 0.5061

St. Dev.P -value 0.3394 0.3041 0.3049 0.2940 0.2945

p1 = 0.45, p2 = 0.55

Rejection Rate 5 0.0280 0.0280 0.0280 0.0280 0.0767

MeanP -value 0.8879 0.6263 0.6084 0.4968 0.4786

St. Dev.P -value 0.4410 0.3079 0.3155 0.3240 0.3314

Rejection Rate 10 0.0225 0.0629 0.0639 0.0629 0.0639

MeanP -value 0.7387 0.5751 0.5675 0.4762 0.4680

St. Dev.P -value 0.4041 0.3172 0.3202 0.3113 0.3136

Rejection Rate 20 0.0485 0.0803 0.0805 0.0803 0.0855

MeanP -value 0.6121 0.5114 0.5077 0.4401 0.4362

St. Dev.P -value 0.3792 0.3229 0.3240 0.3067 0.3075

Rejection Rate 30 0.0688 0.0686 0.0872 0.1164 0.1164

MeanP -value 0.5480 0.4722 0.4697 0.4149 0.4122

St. Dev.P -value 0.3669 0.3227 0.3234 0.3054 0.3058

Rejection Rate 40 0.1125 0.1125 0.1137 0.1592 0.1592

MeanP -value 0.4945 0.4340 0.4321 0.3861 0.3841

St. Dev.P -value 0.3588 0.3213 0.3217 0.3033 0.3035
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Table 2: Simulation Results Continued

N PHY P PBNE PBNA PZNE PZNA

p1 = 0.3, p2 = 0.7

Rejection Rate 5 0.1578 0.1578 0.1578 0.1578 0.2619

MeanP -value 0.5773 0.4011 0.3845 0.2973 0.2822

St. Dev.P -value 0.4594 0.3315 0.3322 0.3032 0.3034

Rejection Rate 10 0.2381 0.4098 0.4117 0.4098 0.4117

MeanP -value 0.3057 0.2316 0.2251 0.1772 0.1714

St. Dev.P -value 0.3492 0.2766 0.2756 0.2396 0.2380

Rejection Rate 20 0.6047 0.7078 0.7081 0.7078 0.7198

MeanP -value 0.0999 0.0794 0.0775 0.0626 0.0610

St. Dev.P -value 0.1909 0.1597 0.1586 0.1373 0.1362

Rejection Rate 30 0.8403 0.8401 0.8655 0.8965 0.8966

MeanP -value 0.0362 0.0292 0.0286 0.0233 0.0227

St. Dev.P -value 0.0993 0.0846 0.0839 0.0720 0.0714

Rejection Rate 40 0.9382 0.9382 0.9388 0.9632 0.9632

MeanP -value 0.0144 0.0117 0.0114 0.0095 0.0092

St. Dev.P -value 0.0551 0.0471 0.0467 0.0409 0.0405

p1 = 0.1, p2 = 0.9

Rejection Rate 5 0.7351 0.7351 0.7351 0.7351 0.8205

MeanP -value 0.1022 0.0611 0.0554 0.0362 0.0323

St. Dev.P -value 0.1682 0.1183 0.1128 0.0828 0.0788

Rejection Rate 10 0.9577 0.9879 0.9880 0.9879 0.9880

MeanP -value 0.0081 0.0051 0.0047 0.0033 0.0030

St. Dev.P -value 0.0334 0.0245 0.0236 0.0173 0.0166

Rejection Rate 20 0.9999 0.9999 0.9999 0.9999 0.9999

MeanP -value 0.0001 0.0000 0.0000 0.0000 0.0000

St. Dev.P -value 0.0014 0.0010 0.0009 0.0007 0.0007

Rejection Rate 30 1.0000 1.0000 1.0000 1.0000 1.0000

MeanP -value 0.0000 0.0000 0.0000 0.0000 0.0000

St. Dev.P -value 0.0000 0.0000 0.0000 0.0000 0.0000

Rejection Rate 40 1.0000 1.0000 1.0000 1.0000 1.0000

MeanP -value 0.0000 0.0000 0.0000 0.0000 0.0000

St. Dev.P -value 0.0000 0.0000 0.0000 0.0000 0.0000

In Table 2 we notice that assumingH0 is true, that is, forp1 = p2 = 0.5, rejection rates
are closer to 0.05 in normal approximations irrespective of sample sizes. WhenH0 is not true,
the rejection rates are similar for all tests except they are higher forZBNA at n = 5. It is to
be noted that in all cases, the rejection rates are smaller forPHY P atn = 10 andn = 20.
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3 Conclusion

Most nonparametric texts introducePHY P as the test statistic and then mention approximation
methods for larger sample sizes. But here we have seen thatPBNE andPBNA perform better
thanPHY P . After analyzing overall performances, theZBNA test is preferred. That is, even
for smaller sample sizesZBNA is preferred instead of exact procedures and the more tempting
procedureZBNE .

4 Application

Newmark et al. (1973) have reprted the results of an attempt to assess the predictive validity
of Klopfer’s Prognostic Rating Scale (PRS) with subjects who received behavior modifica-
tion psychotherapy. Following psychotherapy, the subjects were separated into two groups:
improved and unimproved. Table 3 shows the PRS score for each subject before therapy.
We wish to see whether we can conclude on the basis of this data that the two represented
populations are different with respect to their medians.

Table 3: PRS scores for improved and unimproved subjects

Improved subjects Improved subjects Unimproved subjects

1 11.9 11 6.9 1 6.6

2 11.7 12 6.8 2 5.8

3 9.5 13 6.3 3 5.4

4 9.4 14 5.0 4 5.1

5 8.7 15 4.2 5 5.0

6 8.2 16 4.1 6 4.3

7 7.7 17 2.2 7 3.9

8 7.4 8 3.3

9 7.4 9 2.4

10 7.1 10 1.7

Table 4: Data Summary

Improved Unimproved

subjects subjects Total

Above 12 1 13

Equal or below 5 9 14

Total 17 10 27
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The P -values are computed forH0 : M1 = M2 versusH1 : M1 6= M2, whereM1 and
M2 are corresponding medians for the scores for improved subjects and unimproved subjects.
The results arePZNE = 0.0024, PZNA = 0.0023, PBNE = 0.0059, PBNA = 0.0068, and
PHY P = 0.0118, using the procedures mentioned in Section 1.
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