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Abstract

A new nonparametric classification method based on the ranks of the observations

is proposed. The probabilities of error are computed through various simulation

studies. The method is shown to have some good properties.
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1 Introduction

In the two sample classification problem, it is desired to classify a new object into one of two
classes, labelledπ1, π2. The objects are classified on the basis of measurements onp random
variablesX ′ = (X1, ..., Xp) . We shall assume that the population ofX values differs from
one class to another and that the populations can be described by probability density functions
f1 (x) , f2 (x) and corresponding cumulative distribution functionsF1 (x) , F2 (x)respectively.
Let Ai be the set ofx values for which an object is classified as belonging toπi, i = 1, 2. The
conditional probabilityP (2|1) , defined to be the probability of classifying an object intoπ2

given it belongs toπ1, is

P (2|1) =
∫

A2

f1 (x) dx (1.1)

Similarly, the conditional probabilityP (1|2) , defined as the probability of classifying an
object intoπ1 given it belongs toπ2, is given by
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P (1|2) =
∫

A1

f2 (x) dx (1.2)

Let c (2|1) , c (1|2) be the corresponding costs of misclassification and letp1, p2 be the
prior probabilities ofπ1, π2 respectively. It follows that the expected cost of misclassification

c (2|1)P (2|1) p1 + c (1|2)P (1|2) p2 (1.3)

is minimized by choosing regionsA1, A2 defined as

A1 =
{

x| f1 (x)
f2 (x)

≥ k

}
(1.4)

A2 =
{

x| f1 (x)
f2 (x)

< k

}
(1.5)

wherek = c(1|2)p2

c(2|1)p1
. When the misclassification costs are equal and the prior probabilities

are equal,k = 1. Alternative criteria described in Johnson and Wichern (2002, p.503) may
be used to arrive at a classification rule but these generally lead to variants of(1.4) . As an
example, suppose we are provided with training samples from each of two normal populations
of dimensionp, having common but unknown variance-covariance function. Letx̄1, x̄2 be the
respective sample means and letS be the pooled estimate of the variance covariance matrix.
Then, the classification rule which minimizes the expected cost of misclassification allocates
a new observationx0 to π1 if and only if

(x̄1 − x̄2)
′ S−1x0 − 1

2
(x̄1 − x̄2)

′ S−1 (x̄1 + x̄2) ≥ ln k (1.6)

Let y = l̂′x = (x̄1 − x̄2)
′ S−1x, ȳi = l̂′x̄i , i = 1, 2 and define

m̂ =
1
2

(x̄1 − x̄2)
′ S−1 (x̄1 + x̄2) (1.7)

=
1
2

(ȳ1 + ȳ2) (1.8)

Suppose thatk = 1. We may then view the classification rule in(1.6) as classifying a new
observationx0 to π1 if and only if y0 ≥ 1

2 (ȳ1 + ȳ2) .
Fisher arrived at the classification rule above by showing that the linear combinationy

maximizes the ratio(ȳ1−ȳ2)2

s2
y

, wheres2
y = l̂Sl̂, is the pooled sample variance of they′s.

Fisher’s idea was to consider linear combinations of thex′s since they are simpler functions
of the data. He did not assume any distributional form for the data.
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The classification rule in(1.4) requires knowledge of the underlying densities which char-
acterize the populations. On the other hand, Fisher’s rule, even though it is derived in a non-
parametric manner, is a function of the means which may be unduly influenced by outliers.
In section 3 , we propose a new nonparametric classification procedure based on the ranks
of the observations and hence is less influenced by outliers. In section 4 we extend those
results to the multivariate case. In section 5, we report on the results of a simulation study.
It is shown that the error probabilities are small even under heavy tailed distribution such as
Cauchy distribution.

2 Classification for two univariate populations

We begin by considering the univariate case,p = 1 and assume that the populations are con-
tinuous. Further assume that these populations differ in location so that the observations from
one population tend to be larger than those of the other population. LetX ′

1 = (X11, ..., X1n1)
andX ′

2 = (X21, ..., X2n2) be independent random samples fromπ1, π2 respectively. LetX0

be a new random variable independent ofX1, X2. Let (X11, ..., X1n1 |X0|X21, ..., X2n2) rep-
resent the pooled sample. Setn = n1 + n2 + 1. We shall assume thatπ1 lies to the left of
π2.

Motivated by Alvo (2008), we consider the following general approach for classification
based on the ranks of the observations. It consists of defining a set of permutations induced by
the observations and two sets of permutations ”most in agreement” with the new observation
belonging toπ1 or to π2 respectively. The test statistic is then based on a measure of the
distance between these two sets. Specifically, we propose the following steps.

Let P = {µ : [µ (1) , ..., µ (n)]} be the set of all permutations of the integers1, 2, ..., n,
and letd (µ, ν) be a distance function between permutationsµ andν.

Step 1: Rank all the observations together so that the smallest gets rank 1, the next smallest
rank 2 etc.. Let then−dimensional vector

π = (π1 (1) , ..., π1 (n1) |π0|π2 (1) , ..., π2 (n2)) (2.1)

represent the ranks ofX0 and of{Xil} , l = 1, ..., ni, i = 1, 2, grouped by population.
In view of the continuity assumption on the distributions, ties among the observations occur
with probability zero.

Step 2: Define{π} to be the subclass of permutations “equivalent” to the observable
permutationπ in the sense that ranks occupied by identically distributed random variables are
exchangeable. This subclass having cardinality given by the product(n1!n2!) , consists of all
the permutations where the rankings within each population are permuted among themselves
only. The set{π} accounts for sampling variation within each population.

Step 3: DefineE1, E2 to be subclasses ofP consisting of all permutations which are “most
in agreement” with the new observation belonging toπ1, π2 respectively. The extremal sets
E1, E2 do not necessarily correspond to the entire critical region but rather consist of those
permutations which provide the strongest evidence in favour of the classification in eitherπ1
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or π2 respectively. In the present context, we shall assume that permutations inE1 are such
that ranks occupied by observations fromπ1 are always less than those fromπ2. In practice,
the direction can be determined from a histogram of values for the training samples. The
cardinality ofE1 is equal to(n1 + 1)!n2! whereas that ofE2 is n1! (n2 + 1)!

Step 4: For a given distance functiond (µ, ν) , between two permutationsµ, ν, define
the distance between the two sets{π} andE by computing the sum of all pairwise distances
between them:

d ({π} , E) =
∑

µε{π}

∑

νεE

d (µ, ν) (2.2)

Step 5: The classification rule then classifiesX0 into π1 if and only if

d ({π} , E1) ≤ d ({π} , E2) (2.3)

In what follows, we shall consider the Spearman distance between permutations defined
by

d (µ, ν) =
1
2

n∑

i=1

[µ (i)− ν (i)]2

= c−
n∑

i=1

[
µ (i)− n + 1

2

] [
ν (i)− n + 1

2

]
(2.4)

wherec =
∑n

i=1

(
i− n+1

2

)2 =
n(n2−1)

12 .
Since the observations fromπ1 are assumed to be smaller than those fromπ2, the setE1

consists of permutations of the type

(1, 2, ..., n1 + 1|n1 + 2, ..., n + 1)

where the firstn1 + 1 integers are permuted among themselves and the nextn2 integers are
permuted among themselves. Hence,

d ({π} , E1) =
∑

µε{π}

∑

νεE1

d (µ, ν)

=
∑

µε{π}

∑

νεE

c−
n∑

i=1

∑

µε{π}

∑

νεE

[
µ (i)− n + 1

2

] [
ν (i)− n + 1

2

]

= (n1!n2!)
2 (n1 + 1) c

−
n∑

i=1


 ∑

µε{π}

[
µ (i)− n + 1

2

]


(∑

νεE

[
ν (i)− n + 1

2

])
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Settingπ̄i =
∑ni

j=1 πi(j)

ni
, i = 1, 2, it follows that

1
n1!n2!

∑
µε{π}

[
µ (i)− n+1

2

]
=





[
π̄1 − n+1

2

]
[
π0 − n+1

2

]
[
π̄2 − n+1

2

]

if i ≤ n1

if i = n1 + 1

if i > n1 + 1

(2.5)

and

1
n1!n2!

∑
νεE1

[
ν (i)− n+1

2

]
=





(n1 + 1)
(−n2

2

)

(n1 + 1)
(

n1+1
2

)

if i ≤ n1 + 1

if i > n1 + 1

(2.6)

Similarly

1
n1!n2!

∑
νεE2

[
ν (i)− n+1

2

]
=





(n2 + 1)
(−n2+1

2

)

(n2 + 1)
(

n1
2

)

if i ≤ n1 + 1

if i > n1 + 1

(2.7)

Using the fact that

n1π̄1 + π0 + n2π̄2 =
(n) (n + 1)

2
(2.8)

the classification rule(2.3) becomes: ClassifyX0 into π1 if and only if

(n1 − n2)

((
n2 − 1

)

6
+ n1

[
π̄1 − n + 1

2

])
+ (n1 + 1)

(
π0 − n + 1

2

)
≤ 0 (2.9)

Whenn1 = n2, the new observation is classified intoπ1 if its rank in the combined samples
is less than the average

(
n+1

2

)
. We note that in developing the classification rule in(2.9) we

assumed thatπ1 was located to the left ofπ2. In practice such information can be obtained
from knowledge of the histogram of values for the training data.
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3 Classification for two multivariate populations

With a few simple modifications, the univariate case can be extended to the situation involving
two multivariate populations. Thep x n data matrix can now be expressed as

D =




X
(1)
11 · · · X

(1)
1n1

X
(1)
0 X

(1)
21 · · · X

(1)
2n2

...
...

...
...

...
...

...

X
(p)
11 · · · X

(p)
1n1

X
(p)
0 X

(p)
21 · · · X

(p)
2n2


 (3.1)

Define the univariate ranking vector

π(l)′ =
(
π

(l)
1 (1) , ..., π

(l)
1 (n1) |π(l)

0 |π(l)
2 (1) , ..., π

(l)
2 (n2)

)
, l = 1, ..., p (3.2)

and let
{
π(l)

}
be the corresponding permutation set generated fromπ(l). Let d

({
πl

}
, E

(l)
j

)

be the univariate distance between the data vector and corresponding extremal set for thelth

variable whenX(i)
0 is classified inπj . The vector of distances when the vectorX0 is classified

in πj can now be defined as

d ({Π} , Ej) =
(
d

({
π(1)

}
, E

(1)
j

)
, ..., d

({
π(p)

}
, E

(p)
j

))′
(3.3)

where

Π =




π(1)′

...

π(p)′


 (3.4)

and forj = 1, 2,

Ej =




E
(1)
j
...

E
(p)
j


 (3.5)

A simple measure of the distance between the two sets may be given by the sum

d1 ({Π} , Ej) =
p∑

l=1

d
({

π(l)
}

, E
(l)
j

)
(3.6)

The classification rule then consists of classifyingX0 in π1 if and only if

d1 ({Π} , E1) ≤ d1 ({Π} , E2) . (3.7)

The classification rule can be computed by using the univariate procedures for each of the
p variables separately and then summing. We note that this rule does not take into direct
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account correlations which may exist among the variables. This will be done rather through
the resulting distribution. Alternatively, we may define the following measure of distance

Sj = d ({Π} , Ej)
′Σ−1

j d ({Π} , Ej) , j = 1, 2 (3.8)

where the matrixΣj represents the variance-covariance matrix ofd ({Π} , Ej) . In that case,
the classification rule consists of classifyingX0 in π1 if and only if

S1 ≤ S2 (3.9)

The extension to more than two populations is straightforward. The distances from the
data vector to the extremal set is computed for each population. The new observation is then
classified into the population which is closest. We shall use this approach when dealing with
Fisher’s iris data in the next section.

4 Monte Carlo Simulation Study

Monte Carlo simulation has been conducted to determine the probability of correct classi-
fication for the proposed procedure. First, large sample simulations were performed using
both univariate and multivariate data. For the univariate case, samples of observations for two
populations were obtained for the Normal, Log-Normal, Logistic, Cauchy and Exponential
distributions. Simulations were then done under four different conditions:

1.f1, f2 come from the same family of distributions and have equal scale parameters but
unequal location parameters;

2. f1, f2 come from the same family of distributions and have unequal location and scale
parameters;

3.f1, f2 come from different families of distributions and have equal scale parameters but
unequal location parameters;

4.f1, f2 come from different families of distributions and have unequal location and scale
parameters.

In the case of multivariate data, the classification rule in(3.7) was used whereπi, i = 1, 2
are assumed to be multivariate normal. Simulations were done under two different scenarios:

5.f1, f2 have unequal means but equal covariance matrices;
6.f1, f2 have unequal means and unequal covariance matrices.
Finally, the well-known iris data set, available in the statistical software program R, was

used to test the rank classification procedure’s capability when used with more than two mul-
tivariate populations.

For each simulation, the rank classification procedure was compared with the Bayes
rule, the optimal parametric classification method. The performance of both classification
procedures was measured using a leave-one-out cross-validation technique, which provides
an estimate of the true error rate.



206 International Journal of Statistical Sciences, Vol. 9s, 2009

π1 π2 Bayes Ranking
N (0, 1) N (2, 1) 15.7 6.38
N (0, 1) N (5, 1) 0.59 0.00
LN (0, 1) LN (2, 1) 16.13 6.61
LN (0, 1) LN (5, 1) 0.58 0.005
C (0, 1) C (2, 1) 25.3 13.74
C (0, 1) C (5, 1) 12.2 6.89
C (0, 1) C (10, 1) 6.51 3.54
EXP (0, 1) EXP (2, 1) 7.05 4.83
LOG (0, 1) LOG (2, 1) 26.51 11.93
LOG (0, 1) LOG (5, 1) 7.13 2.28
C (0, 1) LOG (2, 1) 24.18 12.83
LOG (0, 1) N (2, 1) 21.27 9.97
C (0, 1) N (1, 1) 28.42 15.05

Table 1: Error rate for univariate densities: unequal location , equal scale parameters

Simulations were conducted using10, 000 observations from each population. The
simulations indicate that the new rank classification procedure performed better than the Bayes
rule most of the time. Some selected results are displayed in Tables 1-3.

The tables indicate that the ranking procedure has a lower cross validation error rate than
the Bayes rule. In part, this may be the result of using the additional information on the
location of the populations relative to each other.

The Fisher iris data contains 150 4-dimensional observations, 50 for each of three different
populations: iris setosa, versicolor and virginica. Assuming a multivariate normal distribution,
we obtained results summarized in Table 4.

Notation. N
(
µ, σ2

)
: Normal density with meanµ and varianceσ2

LN
(
µ, σ2

)
: Log-Normal density with meanµ and varianceσ2

C (µ, σ) : Cauchy density with locationµ and scaleσ
EXP (µ, σ) : Exponential density with locationµ and scaleσ
LOG (µ, σ): Logistic density with locationµ and scaleσ
N (µ,Σ) :Multivariate normal with meanµ and covarianceΣ

5 Concluding Remarks

There exist many different classification procedures and each one has its own advantages and
limitations. The total probability of misclassification, calculated in the previous section for
various cases, along with the simulations presented in section 5, clearly indicate that the rank
classification procedure proposed in this article provides a competitive nonparametric alter-
native to the Bayes rule. The rank classification procedure performed better than the optimal
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π1 π2 Bayes Ranking
N (0, 1) N (2, 0.5) 8.3 2.67
N (0, 1) N (2, 2) 22.83 10.68
N (0, 1) N (5, 2) 4.12 0.92
C (0, 1) C (2, 0.5) 18.81 11.18
C (0, 1) C (5, 1) 28.65 15.91
C (0, 1) C (10, 1) 8.65 5.09
C (0, 1) C (5, 2) 15.96 9.77
C (0, 1) C (10, 0.5) 4.19 2.51
C (0, 1) C (10, 2) 8.62 5.33
EXP (0, 1) EXP (2, 0.5) 6.49 5.35
EXP (0, 1) EXP (2, 2) 6.72 3.48
LOG (0, 1) LOG (2, 0.5) 18.9 8.99
LOG (0, 1) LOG (2, 2) 28.99 14.17
LOG (0, 1) LOG (5, 0.5) 3.14 0.78
LOG (0, 1) LOG (5, 2) 14.49 6.6
C (0, 1) LOG (3, 2) 24.27 13.22
LOG (0, 1) N (3, 1) 15.28 12.64
C (0, 1) N (3, 2) 21.87 9.83

Table 2: Error rate for univariate densities: unequal location and scale parameters

N (µ1, Σ1) N (µ2, Σ2) Bayes Ranking(
0
0

)
,

(
1 0
0 1

) (
2
2

)
,

(
1 0
0 1

)
8.25 1.63

(
0
0

)
,

(
1 −1

2
−1

2 1

) (
1
−3

)
,

(
1 −1

2
−1

2 1

)
6.6283 4.5

(
0
0

)
,

(
4 3
3 4

) (
2
2

)
,

(
4 3
3 4

)
29.39 11.19

(
0
0

)
,

(
1 0
0 1

) (
2
2

)
,

(
2 0
0 3

)
11.63 2.73

(
0
0

)
,

(
4 2
2 3

) (
1
−3

)
,

(
5 −1
−1 5

)
17.57 3.18

Table 3: Error rate for multivariate normal density:

Bayes procedure Ranking procedure
2.67 0.67

Table 4: Iris data
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parametric method most of the time. In fact, in many of these cases, the rank classification
method had an estimated error rate that was nearly50% smaller. For the occurrences where
the rank procedure had a higher error percentage than the Bayes rule, the estimated error rates
of both methods were comparable, with only a minor increase in the error rate of the rank
procedure. Furthermore, unlike the Bayes rule, the rank classification procedure is entirely
nonparametric which is useful given that in most applications little is known about the un-
derlying distributions. The rank classification procedure also demonstrated that it has good
classification properties for various underlying densities.

Knowing in advance the probabilities of error in classification can be helpful if the re-
searcher wishes to set the cut-off points in order to achieve a specified probability of mis-
classification. Anderson (1973) addressed this issue in the parametric case involving normal
distributions. In a future paper, we shall consider other approaches to classification including
a method based on ranks and proposed by Mantel and Valand (1970).
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