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Abstract

In practice it often happens that some collected data are subject to measurement
error. Sometimes covariates (or risk factors) of interest may be difficult to ob-
serve precisely due to physical location or cost. Sometimes it is impossible to
measure covariates accurately due to their nature. In other situations, a covariate
may represent an average of a certain quantity over time, and any practical way of
measuring such a quantity necessarily features measurement error. When carrying
out statistical inference in such settings, it is important to account for the effects
of mismeasured covariates; otherwise, erroneous or even misleading results may
be produced. In this paper, | discuss measurement error models and review some
analysis methods handling covariate measurement error for life history data.
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1 Introduction

Measurement error has long been a concern in medical, health and epidemiological studies. It
arises commonly in a variety of settings including longitudinal studies, case-control studies,
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survival data analysis and survey sampling. In nutrition studies, for instance, food frequency
guestionnaires are commonly used to measure diet, and it is known that this instrument in-
volves a large degree of variation and measurement error (e.g., Rosner, Willett and Spiegel-
man 1989). Measurement error is often present with various reasons. Sometimes covariates
of interest may be difficult to observe precisely due to physical location or cost. For example,
the degree of narrowing of coronary arteries may reflect risk of heart failure, but physicians
may measure the degree of narrowing in carotid arteries instead due to the less invasive nature
of this method of assessment. Sometimes it is impossible to measure covariates accurately
due to the nature of the covariates. For example, the level of exposure to potential risk factors
for cancer such as radiation can not be measured accurately (Pierce et al. 1992). In other
situations, a covariate may represent an average of a certain quantity over time, and any prac-
tical way of measuring such a quantity necessarily features measurement error. It is known
that ignoring measurement error in variables often leads to biased results. For example, in
simple linear regression with an error-contaminated covariate that is characterized by a clas-
sical additive error model, the estimate of the slope can be attenuated if ignoring error in the
covariate. Measurement error effects could be complex, generally depending on the form of
the error model and the relationship between the response and covariates as well as distribu-
tions of covariates. There is an enormous literature on this subject. A textbook treatment of
measurement error problems is given by Fuller (1987) for linear regression and by Carroll et
al. (2006) for nonlinear models.

In this article | discuss certain analysis methods of measurement error problems concern-
ing life history data. The intention here is to give readers a flavor of research on measurement
error models. | do not attempt to give a complete list of research work in this area. Instead,
| focus the discussion on methods concerning survival data and longitudinal/clustered data as
well as binary data related to case-control studies. The discussion begins with a number of
measurement error models that are often used in the literature, followed by several inference
methods accounting for error effects. A brief survey of some recent advances is provided,
along with a short discussion on measurement error in survey sampling.

2 Measurement Error Models

2.1 An lllustration of Measurement Error Effects

Fori = 1,2,...,n, letY; be a response variabl&; be a covariate that is subject to mea-
surement error, and/; be its observed measurement. To quickly illustrate measurement error
effects, we consider a simple regression model with

Yi =By + 8,Xi+¢ (1)

wherej, andj3, are regression parameters, and independent ok; andW;. If we ignore
error in X;, i.e., useW; to replaceX; in (1) to fit the model, then the (naive) least squares
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estimator for the slope is given by
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where the bar on a variable represents the corresponding sample average.
Depending on the relationship betweléf and X , ,8:; may or may not be consistent for
the slopes,, . For example, ifi; and X; are linked by:

WZ' = Xi + €; (2)

wheree; has mean 0 and varianoé , and is independent af, then the naive estimatgziffC
can be written as
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By the independence betweBn ande; , the second term converges in probability to 0 as
n — oo. Itis easily seen that the first term converges in probability to

2
/Bx <W> , asn — oo (4)
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whereo .. is the covariance betweeyy ande;, ando? is the variance o;. Depending on the
strength of the correlation betweéfy ande;, limit (4) may attenuate or inflate the covariate
effect 5, . If X; ande; are independent, then (4) is an attenuatiorspfsince the factor
o2/(c2 + o2) is no more than 1; otherwise, (4) may inflate the slgpevhens,. < —o2.
Therefore, the naive estimat;éz is not a consistent estimator f8r, under model (2). In other
situations, for example, #; and X; is related byX; = W;+e; with ¢; having zero mean and
being independent diV;, then it is easily seen, by the expression of (3), that the Iimﬁ;of
is identical toj3,,. That is, the naive estimat@r:: is still a consistent estimator fgt, for this
scenatrio.

This example illustrates that attenuation is a typical phenomenon for simple linear regres-
sion when the error model is characterized by (2) with the true covakiateeing indepen-
dent ofe;. However, the impact of error iX; may be dramatically changed if the association
strength betweelX; ande; varies, or if the relationship betweet, andW; changes. In the
same spirit we can discuss the impact of covariate measurement error on estimation of the
variance of the estimators. There has been extensive research on investigating measurement
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error effects in various situations. For example, Kim and Saleh (2003a) provided a detailed
study of measurement error problems for both conditional and unconditional models. A short
review of error-in-variable can be found in Huffel et al. (2007).

In summary, measurement error may have varying effects in different situations. The
effects could be complex and they generally depend on the forms of the response model and
the error model and the extent of error as well. In principle, if covariate error is present, we
should not simply ignore that. Instead, a careful examination should be taken in order to carry
out valid inference.

2.2 Measurement Error Models

A number of measurement error models have been investigated in the literature. Many of
those are rooted in the following two basic models. The first one is the so-called classical
additive model which assumes the form

Wi =X, + e, %)

or more generally,
Wi=ap+ a1 X; +e;,

where error terme; has mean 0 and is independentXf, anday and oy are parameters.
Alternatively, a Berkson model assumes the form

Xi=W;+e, (6)

or more generally,
X =ag+ a1 W; + e,

where error terne; has mean 0 and is independeniBf, andag anda; are parameters.

These models, especially the first one, have been commonly adopted in the literature.
The use of different model forms is typically driven by the nature of individual data set. If
measurement’; is thought to fluctuate around the true covari&teusing a classical additive
model might be a reasonable assumption. In other situations, the actual measuigment
determines the true value &f;, using a Berkson type model may be preferable. For example,
in pesticide studies, the drug amount applied to a plant is measureable, but the actual amount
absorbed by a plant is not measurable, and it basically depends on how much pesticide is
applied. In this circumstance, a Berkson model is more feasible than a classical additive
model. As commented in Carroll et al. (2006), there are no universal guidelines to decide
which model is more reasonable for an individual problem. This could be a subjective matter,
although different specifications of error models may, in principal, lead to different inference
results. One mathematical judgment is based on the essential difference between (5) and (6).
Both (5) and (6) imply that’(X;) = E(W;). However, the variability is different. (5) gives
var(X;) < var(W;), while (6) leads tovar(X;) > var(W;). So knowing the variability of
data may help us choose a plausible model to feature measurement extor in
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Related to models (5) and (6), a number of different formats have been developed. For
example, for a survey data set Hwang (1986) employed a multiplicative form giveér by
Xe;. To preserve the identity of participants, when collecting the data, some prediGtors
that may be used to identify the subject’s information have been manipulated by multiplying a
random variable;, hence, the actual reported measuremeWt;idut notX;. It is easily seen
that this multiplicative form can be transformed to an additive form by applying the logarithm.
More generally, Eckert, Carroll and Wang (1997) proposed a transformed additive error model

h(W;) = h(X;) + €;

whereh(.) is a monotone transformation function. Takilag) = log(¢) gives a multiplicative
error model, while setting(¢) = ¢ recovers an additive error model. To accommodate com-
plex error structures(.) can assume a form from the Box-Cox transformations, or a form of
piecewise polynomial spline function.

Some other models have also been developed to feature complicated characteristics of
various error processes. For instance, Li, Shao and Palta (2005) considered a latent model to
analyze data arising from a Sleep Cohort Study. Specifically, they assumed

W, = max(O, L, + 61')

and
Xi = max(O, Lz‘);

whereL; is a continuous latent variable which link§; and1V;, ande; is the measurement
error on the latent scale having a certain distribution. Mallick, Hoffman and Carroll (2002)
analyzed the data from a study of thyroid disease in relation to fallout from the Nevada test site,
and they employed a mixture of the additive error model and the Berkson model to characterize
the measurement error process. Specifically, they specified

log(W;) = log(L;) + eje,

and
log(X;) = log(L;) + e,
whereL; is a latent variable, ang, is the Berkson error, independentef that is regarded
as a classical error. Other mixture models such as a Berkson type model written as a mixture
of additive and multiplicative errors were employed by Stram and Kopecky (2003).

More generally, to address the concern that the measurement error process is subject to
possible misspecification, Carroll and Wand (1990) considered a kernel density estimate of
the measurement error model. Carroll, Roeder and Wasserman (1999) proposed mixtures of
normal distributions to accommodate departures from standard parametric models.

3 Inference Methods

In principle, to analyze data with covariate measurement error we need to jointly model the re-
sponse variabl®; and the true covariate’; andZ; in combination with the observed version
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W;. HereZ; denotes precisely observed covariates, such as gender, age and treatment indica-
tor. We may base inference on different factorizations of the joint distributign z;, w;, z;)
in the light of inference objectives and the nature of measurement error processes. Often, the
central theme of the study is to understand the relationship between the response and the true
covariates, i.e., to stud§(y;|zi, z;). Distinct measurement error mechanisms can be classified
according to the connection betweBnand ;. Given the true covariate¥; and Z;, if Y;
andW; are independent, then the resulting error mechanism is called a nondifferential error
mechanism; otherwise, a differential error mechanism.

A nondifferential error mechanism givgRy;|x;, w;, z;)=f (yi|xi, z;). Intuitively, it im-
plies that the observed versidt; does not contribute additional information on inference as
long asX; and Z; are given. Therefore, it would be natural to conduct inference with the
factorization

i i, wi, zi) = fyilas, we, 2i) f (25, w3, 2;) (7)
= fyilwi, zi) f (x5, wi, 2;)

If further decomposing (x;, w;, 2;) in (7), we can write

[ wi, z) = fwilzi, z) f (@3] 2)
or f(@iswis 2i) = f(@ilwi, 2) f (wilz)
which facilitates different measurement error models that are discussed in Section 2.2. Some-
times, we base inference on conditioning En which in a sens&; is treated as fixed, and
thus the distribution oX; may be left unspecified. This strategy is called a functional method.
If X;isregarded as a random variable or vector whose distribution is specified, then this leads
to the so-called structural modeling strategy.

Under a differential error mechanism, the true covariates are not sufficient to explain re-

sponse variabld;. The information carried by the observed measurenmi&ntan not be
ignored. Instead of using factorization (7), we may proceed with

f i, i, wi, 2i) = fwilzs, yi, 20) f(yilvi, z0) f (@4, 2)

to spell out the response proce&y;|x;, z;) that is of prime interest. This strategy requires
modeling the distributiong (w;|y;, xi, i), f(yi|xi, zi), and f(z;, z;). The modelf (y;|zi, z;)

can be characterized by standard statistical modeling techni¢jugs z;) again can be treated

by either functional or structural modeling approach based on the inference objectives and the
features of data. The difficulty here is to describe the distribufion; |y;, x;, z;) which is

often impossible in practice unless there is a validation subsample consisting of measurements
for all the variablesxX;, Y;, W;, andZ;.

Nondifferential error is often the main theme in the subject of measurement error prob-
lems. Itis commonly adopted in observational studies or cohort studies where the response
variables are often measured after a time point that covariates are already collected. However,
in certain situations like retrospective case-control studies, differential error mechanisms of-
ten make more sense. For example, in food intake studies, women who have been diagnosed
with breast cancer may tend to exaggerate their fat intake, resulting a measuvgjriaat
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is different from the true fat intaké&’;, hence the distribution dfi’; depends on the disease
statusy;.

There is a large body of inference methods that are devoted to address measurement error
problems. These methods mainly differ in the modeling strategy and inference objectives.
They also depend on measurement error mechanisms and the availability of data sources that
may be used to determine the parameters associated with measurement error processes (e.g.,
Kim and Saleh 2003b; 2005). In the sequel, | outline several inference strategies that are
commonly employed in the literature. For general strategies see Carroll et al. (2006) for a
comprehensive discussion.

3.1 Likelihood-based Methods

A likelihood-based method may be viewed as a structural modeling strategy which requires the
specification of the distribution of the true covariafés For illustrations, here | discuss the
case with nondifferential error when the true covariatesot available. If a classical additive
error model (5) is assumed, then the likelihood of the observed data can be formulated as

F (i, 203 B) o / F il 223 B) F (wils, z) f (i) 1) s

if a Berkson error model is used, we may proceed with

fyilws, 2 B) O(/f(yi|xi,Zi;ﬁ)f($i|wiazi)d$ia

where denotes the parameter vector indexed the response process. Paramete? isector
of prime interest and is often assumed to be distinct from the parameters associated with the
measurement error or covariate process which are suppressed in the notation.

These methods are flexible and efficient in dealing with problems concerning covariate
measurement error (e.g., Stefanski and Carroll 1990; Schafer and Purdy 1996). However,
model robustness is a major concern in this context. Typically, the specification of the distri-
bution of X; is generally difficult sinceX; is often not observable. Furthermore, likelihood
methods are often computationally demanding because of the integrals involved.

3.2 Regression Calibration and Simulation-Extrapolation

Functional modeling is appealing in a sense that the distributiol;d6 not needed. Re-
gression calibration and simulation-extrapolation are two methods that are used widely in
practice. The idea of regression calibration is to replace the true but unavailable covariates
X, with their conditional expectation given the observed versignand error free covari-
atesz;. Itis expected that, for some models, this replacement resembles the initial model
structure. The algorithm is comprised of the following steps. First, regkess (W;, Z;)

with E(X;|W;, Z;)=m(W;, Z;; ), and obtain the estimate of the associated parameter

Then replaceX; with m(W;, Z;;%), and run a standard analysis to obtain the estimates for
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the response parametétshat are of primary interest. Finally, we need to adjust the resulting
standard errors to account for the variation induced by estimationwsing either the boot-
strap or a sandwich method. This algorithm is simple to implement and it turns out to work
well for linear and generalized linear models. But it could perform poorly for some nonlinear
models (e.g., Carroll and Stefanski 1990, Pierce and Kellerer 2004).

Another useful functional method is the simulation-extrapolation (SIMEX) approach pro-
posed by Cook and Stefanski (1994) for classical error models (Spwiitlowing a N (0, %)
distribution, for instant. The SIMEX method consists of two steps - a simulation step and a
subsequent extrapolation step. The simulation step establishes the naive estimates for the cases
when the variance of the error term for each measureméiig inflated by adding additional
noise termv/Ao.U, where) is a certain nonnegative number, afidis a standard normal
variable. The extrapolation step leads to the ideal situation of no measurement error by setting
A=-—1.

The asymptotic properties of the SIMEX estimators are established in Carroll et al. (1996)
under the assumption that the exact extrapolation function is known. The idea of the SIMEX
method may be illustrated with simple linear regression (1). If repla&gingith its observed
measuremenit’;, which is modeled by (2) with the independence assumed bet¥gande;,
then the resulting least squares estimatoconverges in probability to the limit, [02 /(0% +
o2)]. Intuitively, if replacing X; with W; + vAo.U, then the resultant estimatgr, (b, \)
converges in probability t@,[02 /(02 + (1 + A)o2)]. If A = 0, 3,(b,0) is just the naive
estimatorBZ. However, if setting\ = —1, then the correponding limit is identical to the true
parameteg,..

The SIMEX approach is attractive because it does not require modeling the covariate
process, and hence the resultant estimators are robust to a possible misspecification of the
distribution of covariates. Although computationally time consuming, implementation of the
SIMEX method can be readily realized by adapting existing statistical software. A major
disadvantage of this method is that in general this method can only yield approximately con-
sistent estimators, as in the actual implementation, only an approximate (rather than exact)
extrapolation function can be used in the extrapolation step.

3.3 Estimating Function Methods

Other functional methods include estimating functions approaches such as conditional score
functions methods, “corrected” score functions and moment construction methods. Stefanski
and Carroll (1987) discussed the conditional score method, where the estimating functions
are obtained by conditioning on sufficient statistics for some important models such as linear,
logistic, loglinear, and the inverse-gamma. The performance of various estimators, including
those obtained from the quasi-score and “corrected” score functions, is investigated by authors
such as Kukush, Schneeweiss and Wolf (2004), Kukush and Schneeweiss (2004), and Shklyar,
Schneeweiss, and Kukush (2007).

Nakamura (1990) proposed the use of “corrected” score functions, illustrating the method
with applications to several practical models (e.g., Gaussian and Poisson), when the measure
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ment error is additive with a distribution. A “corrected” score function is a func-
tion of the observed datéy;, W;, Z;) such that its expectation with respect to the condi-
tional distribution of W; given (X;, Z;) is equal to the score function based on the dis-
tribution of (Y;, X;, Z;). More specifically, ifS(5;Y;, X;, Z;) is the score function from
the true model ofY; and (X;, Z;), and 5 is the parameter of interest, then any function
S*(6;Y;, W;, Z;) of the observed data and parameteis called a “corrected” score func-
tion if Eyw|v,x,z) [S*(8; Yi, Wi, Z:)|=S(8; Yi, Xi, Z;). Estimation of may be conducted
by solving the equatiod |, S*(5; Yi, W, Z;) = 0.

Motivated by the EM algorithm for dealing with missing data problems, Wang and Pepe
(2000) proposed the expected estimating equation (EEE) and pseudo-EEE methods to handle
covariate measurement error when repeated measurements or surrogate variables are available.
A key step in the EM algorithm is to solve the equation

E{S(3; complete datgobserved dafa= 0

where S(3; complete datadenotes the likelihood score function for the entire data, i.e., it
is >, S(8;Y:, X, Z;) under the nondifferential error mechanism. Instead of requiring
S(B;Yi, X, Z;) be the score function from the true modebgfand(X;, Z;) , Wang and Pepe
(2000) worked on an unbiased estimating functiti; Y;, X;, Z;) constructed from the true
model. They defined the EEE estimator as the solution of

ST E(S(8;Yi, Xi, Z)|(Yi, Wi, Z2)] = 0.

This approach is different from that in Carroll and Stefanski (1990) where quasi-likelihood
methods are used in conjunction with the regression calibration algorithm.

3.4 Semiparametric and Nonparametric Methods

Sometimes, inference methods are termed semiparametric or nonparametric approaches be-
cause of their flavor of semiparametric or nonparametric modeling for a process of response,
covariate or measurement error. For instance, Pepe and Fleming (1991) used the empirical es-
timation of the likelihood to deal with the mismeasured covariate problem with validation data
where measurement error is described nonparametrically. Stefanski, Knickerbocker and Car-
roll (1994) proposed a semiparametric correction for bias caused by measurement error. For
recurrent event data with error-contaminated covariates Jiang, Turnbull and Clark (1999) pro-
posed bias correction methods under a semiparametric Poisson process. With validation data
Wang (1999) discussed a least squares estimation procedure for partial linear models where
the error model is not specified. Kulich and Lin (2000) developed a class of estimating func-
tions for the regression parameters for the additive hazards models with covariates subject to
measurement error. Schafer (2001) proposed a semiparametric likelihood analysis for a class
of regression models including linear, generalized linear and nonlinear regression models with
error-prone covariates. Structural modeling is invoked in which probability distributions are
assumed for the response and measurement error processes. The exact distribution form of
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the error-prone covariates is left unspecified, rather it is estimated by the nonparametric maxi-
mum likelihood. For nonparametric regression in the presence of covariate measurement error,
Studenmayer and Ruppert (2004) developed a local polynomial estimator with the SIMEX al-
gorithm. For nonlinear regression with predictors subject to Berkson type error Wang (2004)
proposed a minimum distance estimation method by using the first two conditional moments
of the response variable given the observed predictors. Carroll, Delaigle and Hall (2007) ex-
plored nonparametric estimation of regression functions with covariates subject to a mixture
of classical and Berkson errors. Other discussions can be found, for instance, in Liang and
Wang (2005) and Liang, Wang and Carroll (2007) among others.

4 A Brief Survey of Some Recent Work

4.1 Survival Data

Survival data analysis is often challenged by the presence of measurement error in covariates.
Biomarkers such as blood pressure, cholesterol level, and CD4 counts are subject to measure-
ment error. There has been a large nhumber of research papers devoted to handle covariate
measurement error for survival data since Prentice (1982) proposed a regression calibration
approach for proportional hazards models. Methods for dealing with measurement error can
be distinguished according to whether they assume the availability of a validation sample for
which both true and mismeasured covariates are observed. When there is no validation sam-
ple it is necessary to make assumptions about the measurement error process. In some cases
there may be repeat measurements for mismeasured covariates, which allows estimation of
measurement error variability.

A few recent references pertaining to these different settings are as follows. Wang et al.
(1997) considered regression calibration for the case where there is a validation data set. Hu,
Tsiatis and Davidian (1998) developed a likelihood based method that requires the specifica-
tion of the distribution of the true covariates, but no validation set. Zhou and Wang (2000) used
kernel smoothing to estimate the induced hazard function when a validation data set is avail-
able, but their approach is not feasible when the dimension of the covariates is large. Huang
and Wang (2000) avoided distributional assumption for the error process and proposed a non-
parametric approach to deal with the Cox model when repeated measurements on error-prone
covariates are available for each subject. Xie, Wang and Prentice (2001) used a least squares
estimation method to calibrate the induced hazard function, when repeat measurements are
available.

Another often discussed approach is to “correct” estimating functions that apply when
there is no measurement error, so as to make them exactly or approximately unbiased in the
presence of measurement error with a specified family of distributions. Nakamura (1992)
considered an approximate corrected partial likelihood score function to obtain estimators of
regression coefficients in the Cox model. Buzas (1998) proposed a similar unbiased score
function for regression coefficients. Hu and Lin (2002) extended the work of Nakamura
(1992) and Buzas (1998) to obtain consistent estimators for the regression parameters and
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the baseline cumulative hazard function of the Cox proportional hazards model. Song and
Huang (2005) gave a conditional score method for estimating the parameters in the response
model. Other discussions include Augustin and Schwarz (2002), Augustin (2004), Li and
Ryan (2004, 2006), Yi and Lawless (2007)ii¢henhoff, Bender and Langner (2007), Song

and Wang (2008), and the references therein.

For multivariate survival models Li and Lin (2000, 2003) discussed clustered survival data
with mismeasured covariates using frailty models where the conditional models are specified
as the proportional hazards models, given the random effects. Hu and Lin (2004) proposed
semiparametric regression methods for multivariate failure times. Greene and Cai (2004)
explored the use of the SIMEX procedure to correct bias induced by covariate measurement
error.

The emphasis of the most research work above is on the Cox proportional hazards mod-
els. Using generalized estimating equations, Cheng and Wang (2001) developed inference
procedures for failure time data that are modulated by a general class of linear transforma-
tion models. With accelerated failure time models, Yi and He (2006) and He, Yi and Xiong
(2007) investigated structural and functional inference methods to account for measurement
error effects. Tseng, Hsieh and Wang (2005) explored the joint modelling approach under
the accelerated failure time assumption when covariates are assumed to follow a linear mixed
effects model with measurement errors.

4.2 Clustered/Longitudinal Data

Covariate measurement error is a common source of bias in analysis of epidemiologic data
which are often correlated. These data include clustered data, longitudinal data and multi-
variate data. There has been substantial research dealing with covariate measurement error
in longitudinal studies. With generalized linear models with normal additive covariate mea-
surement errors, Stefanski and Carroll (1987) constructed unbiased estimating functions by
conditioning on certain sufficient statistics. Tsiatis and Davidian (2001) adapted this method
to jointly model survival and longitudinal data. This idea was also applied by Li, Zhang and
Davidian (2004) to analyze longitudinal data with generalized random effects models in which
there is no need to make distributional assumptions on random effects.

Within generalized linear mixed models Wang et al. (1998) conducted bias analysis to
investigate the impact of ignoring measurement error in covariates, and applied the SIMEX
method to correct the resulting bias. Assuming covariates are the regression parameters of
random effects models, Wang, Wang and Wang (2000) compared estimators obtained from the
pseudo-expected estimating equations, the regression calibration and the refined regression
calibration approaches. Buonaccorsi, Demidenko and Tosteson (2000) discussed likelihood
based methods for estimation of both the regression parameters and variance components in
linear mixed models when a time-dependent covariate is subject to measurement error.

Under nonlinear mixed models, Wang and Davidian (1996) and Tosteson, Buonaccorsi,
and Demidenko (1998), among others, explored the effects of measurement error in covari-
ates. Zidek et al.(1998) discussed a nonlinear regression analysis method for clustered data.
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Lin and Carroll (2000) considered using the SIMEX approach to correct for measurement
error effects in covariates under nonparametric regression models. Wu (2002) developed in-
ference methods to address censored data and error-prone covariates that are postulated by
nonlinear mixed models. Recently, Pan, Lin and Zeng (2006) described a structural method
using transitional models to modulate the response and covariate processes. Other discus-
sions may be found, for instance, in Higgins, Davidian and Giltinan (1997), Ko and Davidian
(2000), Liu and Wu (2007), Yi (2008), and the references therein.

4.3 Binary Data Analysis

In medical research binary data arise commonly. For example, it is often of scientific interest
to understand how a certain disease status is related to nutritional, environmental, genetic, and
other risk factors. In particular, in epidemiological research case-control studies are typical
tools that are used to identify factors contributing to a certain medical condition, represented
by a binary variable, say, a disease status. Conditioning on the disease response (e.g., yes
or no), we sample a number of subjects to measure the risk factors. Case-control studies
enable us to study rare health outcomes without having to follow thousands of subjects, and
are therefore generally quick and cheap to conduct. However, these studies are frequently
challenged by measurement error or misclassification that is caused by, for instance, imperfect
diagnosis instrument.

A number of analysis methods have been developed to address measurement error or mis-
classification problems arising from case-control studies. For example, Carroll, Gail and
Lubin (1993) explored a likelihood method to account for misclassification of a binary co-
variate under a retrospective logistic model. Roeder, Carroll and Lindsay (1996) discussed a
prospective logistic model with covariate measurement error using a semiparametric mixture
approach. For matched case-control studies Forbes and Santner (1995) investigated condi-
tional maximum likelihood methods for retrospective studies, while McShane et al. (2001)
considered a conditional score procedure with a prospective likelihood formulation. Freed-
man et al. (2004) proposed the so-called moment reconstruction method and they found this
method is superior to the regression calibration method for certain case-control studies. Other
discussions may be found, for example, in Armstrong, Whittemore and Howe (1989) and
Satten and Kupper (1993).

For ordinary binary response data, Stefanski and Carroll (1985) proposed an inference
method for logistic regression with covariates measured with independent normal error. Spiegel-
man and Casella (1997) explored both parametric and semiparametric inference procedures
when validation data are available. Spiegelman, Rosner and Logan (2000) presented efficient
maximum likelihood methods to accommodate both measurement error in continuous covari-
ates and misclassification in categorical ones. Huang and Wang (2001) proposed a functional
method when replicate measurements for error-prone covariates are available. Typically, they
invoked a nonparametric technique to relax the assumption on the error terms. With logistic
regression Sugar, Wang and Prentice (2007) compared the strengths and weaknesses of the
regression calibration, refined regression calibration and conditional score methods.
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5 Discussion

Measurement error may degrade the quality of inference and should be avoided whenever
possible. In designing questionnaire or sample survey, for example, properly addressing the
guestions or involving more experienced interviewers may allow us to collect more accurate
measurements. But in many situations, it is inevitable that collected measurements contain
error due to the nature of the variable, thereby investigators should be aware of the possible
bias in the results. In this article we are mainly concerned about measurement error in covari-
ates, especially focusing on life history data. In practice, however, measurement error may
arise from response variables as well (e.g., Neuhaus 1999, 2002; Buonaccorsi 1996). This is
typical for survey data. There are numerous sources that yield measurement error in variables.
These include poor design of questionnaires, difficult and ambiguous concepts, inexperienced
interviewers, recall bias, and issue of sensitivity. Biemer and Trewin (1997) gave an overview
of the measurement error effects on survey data analysis.

Various methods have been proposed to correct the bias induced by the errors in variables
arising from survey sampling. To name a few, Hwang (1986) considered a multiplicative er-
ror model to address error involved in some explanatory variables for an energy consumption
survey from the United States. When both misclassification and error in variables are present,
Sélen (1986) examined a method of adjusting subgroup means. Ekholm and Palmgren (1987)
discussed an extension of the generalized linear model to account for misclassification for dou-
bly sampled data. Chua and Fuller (1987) developed a model for the response error associated
with reported categorical data. Biemer and Wiesen (2002) discussed latent class analysis for
evaluating the error in self-reports of drug use from the US National Household Survey data.
Other discussions on misclassification or measurement error for survey data may be found in
Biemer et al.(1991), for instance.

As a final comment, there are a large number of research papers addressing measurement
error problems under the Bayesian framework. Bayesian analysis of measurement error mod-
els has been rapidly developed since Clayton (1992) and Stephens and Dellaprotas (1992).
For more detailed discussion sedilldr and Roeder (1997), Richardson and Green (2002),
and Gustafson (2004, 2005).
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