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Abstract

This paper proposes accurate semi-nonparametric approximations to the distri-
bution of certain portmanteau statistics that are expressible as sums of ratios of
guadratic forms. Two methodologies, namely the symbolic computational ap-
proach and a recursive formula expressing joint moments in terms of joint cu-
mulants, are being utilized to determine the exact moments of the portmanteau
statistics. The density functions of those statistics are then approximated on the
basis of those moments in terms of gamma density functions and Laguerre poly-
nomials. As verified by a simulation study, the proposed approximations prove
more accurate than those that are based on the asymptotic chi-square distribution,
especially in the case of time series of short or moderate length.
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1 Introduction

Box and Pierce (1970), Ljung and Box (1978), Pukkila (1982, 1984), and Dufour and Roy
(1985) proposed various portmanteau statistics to detect serial correlation up to a certain lag
in a given sequence. Those statistics are in fact linear combinations of squared serial correla-
tions. It has been observed that their distributions deviate markedly from the asymptotic chi-
square distribution for series of short or moderate length. Typically, if a portmanteau statistic
involves the firstn serial correlations from a time series of lengtrasymptotic quantities are
inaccurate for finite series unlesss much larger tham. The aim of this paper is to provide
accurate density approximations which hold even for short time series.

First, we introduce some notation in connection with the concept of serial covariance.
Given a series of residuats, o, . . . , &, having a joint normal distribution with mean vector
1 = 0 and positive definite covariance matdix= 021, the centered serial covarianeglag
k is defined as

k

(i — &)(Eirk — &) (1.1)
1

n

S~

C, =

<.
Il

for k =0,1,...,n — 1, whereg = Y " | ¢;/n. Throughout this paper will denote the
length of the series.
In matrix notation, one has

1
¢ = —¢& Be (1.2)
n
where
e = (e1,...,¢en),
B, = VAV,
1
V = I-=66
(- 58)
§ = (1,1,...,1),
1
A = §Mka

Mk = Lk—i—L?{:,

and L, is a null matrix with the zeros in itsth subdiagonal replaced by ones. Tdentered
lag+ serial correlatiortoefficient is then given by

. Crp €'Be
b ¢, €'Ve '
Note thatB, = VA,V = VIV = V, V being idempotent. This definition of the serial
correlation coefficient was used by Anderson (1971) and Anderson (1990), among others. The

(1.3)
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casek = 1 is treated in Hannan (1970), and Moran (1948) obtained the first four moments for
this case. Tha@oncentered lag-serial covariance given by

n—=k /
i€ e Are
o = izt Sk EAe (1.4)
n n

the correspondingoncentered lag=serial correlatiomeing

ry = =& (1.5)

Co

Merikoski and Pukkila (1983) made use of this simpler representation in connection with a
moment problem.

Definition (1.1) can be viewed as definition (1.4) applied to the centered (or mean-corrected)
seriesyy — 4, ..., yn — 4. In particular, for a series of residuals resulting from fitting a model
to data, the mean is zero. So, then, the properties of the noncentered serial covariances (1.4),
as opposed to (1.1), legitimately become of interest.

As pointed out by Box and Jenkins (1976), it is usual to verify the adequacy of a candidate
fit to the data by testing for the ‘whiteness’ of the resulting residual series. Consider a discrete
time series{Z;}, generated by a stationary autoregressive moving average process of order

(P, q),

(1—¢B— - —¢,B)Z=(1—0B— - —0,B% e, (1.6)

whereB is the backward shift operator such that, for any functfér), B*f(t) = f(t — s),
ande; denotes the random error at time

We assume that andg in model (1.6) have been correctly identified and that the coeffi-
cients¢, andd; have been efficiently estimated, and denote the residual ser{és by . , ¢, }.
In order to test for residual serial correlations up totagBox and Pierce (1970) proposed
the following overall or portmanteau statistic

T(m,n) = nY ri, m>p+g, (1.7)
k=1

which is asymptotically distributed as a chi-square random variablenwittegrees of free-
dom. Unfortunately]'(m, n) converges only rather slowly with increasingo its asymptotic
distribution, so that the test performs poorly for all but large data sets.

Ljung and Box (1978) and Davies, Triggs and Newbold (1977) gave some indication of
the shortcomings of considering (1.7) for finite series and discussed the improvement of using

T'(m,n) = zm: nn+2) 2. (1.8)
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This modification takes account of the fact thatr[ry] = (n — k)/(n(n + 2)), see for
example Moran (1948). The first two momentsidfm, n) are closer to those of the targeted
chi-square, but otherwise the problem of slow convergence is not being addressed. Clearly
whenn is large, T (m,n) ~ T'(m,n).

As shown in Section 2, on writing the portmanteau statistics as linear combinations of
squares of ratios of quadratic forms, one can express their moments in terms of certain linear
combinations of joint moments of the quadratic forms. A symbolic computational methodol-
ogy for determining such joint moments as well as a recursive formula expressing joint mo-
ments in terms of joint cumulants are introduced in Section 3. A semi-nonparametric density
approximant which is based on the fisghoments of the portmanteau statistics and expressed
in terms of Laguerre polynomials, is then presented in Section 4; a gamma approximation is
obtained as a particular case. Bounds for the supports of the distributions of the statistics are
determined in Section 5. Certain percentile§6fm, n) are evaluated under various approx-
imations and compared with those obtained by simulation for selected valuesnfin in
Section 6.

2 A Representation of the Moments

A useful representation of the moments of the portmanteau statistics as specified by (1.7) or
(1.8) is derived in this section. Let

Q; = X'A;X

whereX ~ N,,(0, I), that is,X has am-variate normal distribution wit® = (0,0, ...,0)’
as its mean vector anfl the identity matrix of order, as its covariance matrix, and;, =
L; + L, L; being as defined in (1.2). Consider a statistic having the following structure

m
@

T = C;
2
i=1 @

(2.1)

where the:;'s are known constants argh = X’ Ay X with Ag = I. The multinomial expan-
sion of T yields the following representations of thih moment off":

m Q2 T
E(T")=E (> s
i=1 @
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T r—ri r—r1—...—Tm-2

25 2, (ln)prl(6@) - (G)
_ B[ ()]
=0 19—0 —— T Tm 0 Q5
_ ZZZ( ] P
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( QQTl s otm er:m) (22)
where
r B r!
T1yeevyTm ol
and

m—1
Ty =T — E rj.
Jj=1

The last equality in (2.2) is obtained by expressifi@3" = 1/(x'x)?" as

oo L2r—1,—z(x'x)
/ e,
0 ['(2r)

noting that the integrand is proportional to a gamma density function with parartetensl
(x'x)~1. Thus,

l
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which, on lettingy = (1 + 22)'/2x is seen to be equal to

221y 21 (! 2rm 1Yy
/ / / (y'Ary) (' Amy) e 4yds
rer) 1+ 22)%Jr 2 (2m)n/2
— 2r 11 2 +2r T‘Z 271 L. ()2rm

1 © 1 _ (niom] . , .
i ></0 g L+ “*”Qd“) (e E@i i)

r(2r

_ I'(n/2) T o r o
= WM(EQ)E( Q) (2.3)

noting that

* N ~ T(a)I(B)
/0 ¥ 1+ y) +ﬁdy—ir(wrﬂ)-

For T'(m,n), the original portmanteau statistic, = n, i = 1,2,...,m, whereas;; =
n(n+2)/(n—1),i=1,2,...,min T'(m,n), the modified portmanteau statistic.

3 Methodologies for Evaluating the Moments

Two techniques are proposed for determining the exact moments of the test statistics, namely
the symbolic computational approach and the application of a general recursive formula which
expresses joint moments in terms of joint cumulants.

3.1 The Symbolic Computational Approach

By making use of symbolic computational packages such as Map#atitematicaone can
define an expected value operafonaving the following properties:

p

E[Z aYi] = > (V)

=1
and
p

eIy = JIew,
=1

i=1

where then;’s ands;’s are constants and thé’s are independently distributed random vari-
ables;i = 1,...,p. After expressing the quadratic forrqﬁ““ in (2.2) as
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QY = ZZak)XX 2 (3.1)

=1 j=1

where thexl(.’.“)'s are the elements of the mattiy, defined in (1.2), and expanding, one obtains
a linear combination of products of powers of independent standard Gaussian random vari-
ables, which on application of the expected value operator yieldgtth@oment ofl'(m, n)
orT'(m,n).

For example, the second moment®f2, 3) can be evaluated as follows. On applying
(2.2), one has

24;((;14) 32{(0 2) (@1 Q3) + (1721> E(Q1 Q3) + (2?0>E(Q% Qg)} (3.2)

whereQy, = S27F X, X, 11, so thatQ? = (X1 Xs + X»X3)? andQ3 = (X1 X3)2, which on
expanding and S|mpI|fy|ng gives

1 1
75 2 E(inXé +2X3 X5 X5+ X{XIX2 4+ 3X2X0X2 +2XX3X3 42X, X5 X3

1 1
+§XfX§ + XZX3X4 + 5)(;*)(gf),

where X, X, and X3 are independently distributetf’ (0, 1) random variables whoskth
moment is) whenk is odd anc/2T" (k + 1/2) /,/z whenk is even. The second moment so
obtained isl9/35.

Similarly, it can be verified that the first, third, fourth and fifth moment&'¢2, 3) are
respectivel\3/5, 3051/5005, 65853/85085, 341469/323323.

3.2 General Recursive Formula for Obtaining Joint Moments from Joint Cu-
mulants

Letting Q; = X'A;X, ¢ = 1,...,n7, where A; is a symmetric matrix and X ~
Nn(0,V), the joint cumulant generating function i, . .., @, is

_1 1 — N
KQu @t ty) =W =W[™2 = 55 (W) (3.3)

whereW = 237 . (t;V A;). This is explained for instance in Mathai and Provost (1992,
Section 3.3). The joint moment&[(Q1 — E(Q1))* -+ (Qn — E(Qy))*"] = gy, . » (We
note that£'(Q;) is equal to zero foi = 1,...,n in this case) can then be determined from
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the joint cumulants by making use of the following recursive relationship derived by Smith
(1995):

Hsy 5o msmis Z i Smi ( > ( m) <sm.+1 - 1)

11=0 tm =0 tm+1=0 tm+1
m=1,2,...,n—1(3.4)

X Ksl—21782—12,-~-7Sm+1—im+1 Mil,ig,...,im+1 ’

wherepgo o = 1and Ky, . q,.,, denotes the joint cumulant of ordeds, . . ., am+1 Of
Q1,--.,Qme1, Whichis equal to
aa1+“'+a7n+1

oot
o D

Kqi,..Qmir (t1, - tmg1) evaluated at t; =0,i=1,...,m+ 1L

Thus, therth moment ofl’(m, n) or T'(m, n) can be determined from the joint moments

E(Q¥-.-Q”"*). For example, for. = 3andk = 2, (3.2) becomesl /105) (E(QY Q%)+

2B(Q1 Q3) + E(Q1 Q3)) where
E(@Q Q) = n,

3
= Z()KOn —j Moy =9

Jj=0

4

85 1 ad tr(2t1A2)j
K = — | = —_— evaluated at¢; =0

0,0 81‘:{ 9 ; ] 1
= 21— 1) tr Al

E(Q% Q%) = 2#22

)

i=0 j=0

where

= S5O

i=0 j=0
oh+t
Kny = ——5Kg, 0,(t1,t2) evaluated at t; =0, to =0
othots o
hl o 2h+€
= St T M)

(h,£)
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and the notatior} -, (A1 42) stands for the sum of all the possible distinct permutations of
a product ofh matricesA; and/ matricesA,; and

E(Q1Q3) = g

. /3
i=0
This yieldsE(T(2,3)?) = 19/35. It should be noted that the moments so obtained agree
exactly with those determined by means of the symbolic computational approach which, inci-
dentally, was found to be computationally more intensive. Maghematicaode for evaluat-
ing the moments is available on request.

4 A Semi-Nonparametric Density Approximation Technique

The density functions of numerous statistics whose asymptotic distribution is chi-square can
be accurately approximated from their exact moments by means of sums involving Laguerre
polynomials. For instance, Laguerre series expansions for the density functions of quadratic
forms in normal variables and non-centsg&l and £ random variables were respectively ob-
tained by Gurland (1955) and Tiku (1965). A general methodology for obtaining such expan-
sions is described below. It is assumed that all the moments are finite and that the moment
sequence uniquely determines the distribution.

Consider a random variablé defined on the intervdl, co), whose tail behavior is con-
gruent to that of a gamma distribution. Let jth moment,E(Y7), be denoted by [j], j =
0,1,2,...,

oy [2] = py[1)?
c = %7 (41)
a = “Yc[l]—l 4.2)
and
X - % (4.3)

The parameters and« are chosen so that the leading term of the resulting approximating
sum given in (4.8) will in fact be a Gamma density function whose first and second moments
agree with those of".

Denoting thejth moment of the random variahle, E[X7] = py[j]/¢7, by 1, its density
function can be expressed as

fl@) = ) appy(x) (4.4)
k=0
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where
op(z) = x% “Li(a) (4.5)
and
o k!
a = (U D S T e (4.6)

Jj=0

Li(«) denoting a Laguerre polynomials of degfewith parametery, which can be obtained
as follows:

T %eT 8};; o
@) = S g (07)
k .
— (_1)k (- T (a+k+1) A
-y Zi!(k—i)!F(a+k—i+1)x , k=0,1,....,  (47)

1=0

wherea > —1, see for instance Gradshteyn and Ryzhik (1980). Density approximants for
T(m,n) or T'(m,n) are determined from their firstmoments by truncating the series given

in Equation (4.4). Then, on making the change of variables c.X, one obtains the following
density approximation foY:

yae—y/c S

fraly) = MM;F(QJFU%%(?J/C), y > 0. (4.8)

The distributions of the statistié8(m, n) or T’(m,n) can also be approximated by a gamma
distribution whose parameters, as estimated by the method of momentsi-arandc where
canda are as defined in (4.1) and (4.2), respectively. This approximation can also be obtained
by lettings = 2 in (4.8).

5 An Upper Bound for the Portmanteau Statistics
The following result, which is stated for instance in Mathai and Provost (1992, Section 2.4),
provides an upper bound for the ratios of certain quadratic forms.

Let B be anyn x n positive definite matrix, A be an x n symmetric matrix and the
eigenvalues oB~'A be); > \y > --- > \,; then assuming that is not equal to the null

vector,
sup 'A
Yy {y/ y} — .
y'By

Thus, an upper bound for the support of portmanteau statistics of the form
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m 2

e'Ase )

G ; , >0, 1=1....m,
- ee

wheree ~ N, (0, 1), is given by 7" | Ci)\%i) where); is the largest eigenvalue of;, i =
1,2,...,m. For example, an upper bound fbf(3, 5) is given by(35/4)(v/3/2)% + (35/3)

(1/v/2)% +(35/2)(1/2)? = 16.7708. Clearly, such portmanteau statistics are always nonneg-
ative.

6 Numerical Results

The 50", 90", 95" and 99" percentiles of the modified portmanteau statigti¢m, n),

as determined by simulation on the basis of 100,000 replications and under the gamma ap-
proximation, the Laguerre polynomial approximation based on the eight moments and the
asymptotic chi-square distribution with degrees of freedom, are reported in Taklds 4

for selected values af andm. As expected, the Laguerre polynomial approximants gen-
erally yield more accurate percentiles than the approximate chi-square distributions or the
two-moment gamma approximations.

TABLE 1 : 50" Percentiles of’(m, n)

n | m | Simulated | Laguerre | Gamma | Asymp. x?
5 |3 |2.69165 2.70916 | 2.58221 | 2.36597
6 |2 | 1.53712 1.52138 | 1.49215 | 1.38629
6 |3 | 2.57850 2.59577 | 2.49961 | 2.36597
7 12 | 1.50337 1.49804 | 1.47183 | 1.38629
7 |3 | 2.46886 2.48237 | 2.43169 | 2.36597
8 [1 ]0.51086 0.48987 | 0.55621 | 0.45494
8 |2 | 1.48937 1.48413 | 1.45901 | 1.38629
10| 2 | 1.47624 1.46878 | 1.44314 | 1.38629
10| 3 | 2.37574 2.38270 | 2.35094 | 2.36597
20 | 3 | 2.36643 2.37911 | 2.32377 | 2.36597
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TABLE 2 : 90" Percentiles of’(m, n)

n | m | Simulated | Laguerre | Gamma | Asymp. x?
5 |3 |5.44501 5.43122 | 5.63530 | 6.25139
6 |2 |4.29576 4.30120 | 4.37435 | 4.60517
6 |3 |5.69489 5.67796 | 5.88723 | 6.25139
7|2 |4.32332 4.32674 | 4.42068 | 4.60517
7 |13 |5.93427 5.91915 | 6.07815 | 6.25139
8 |1 |2.70660 2.74693 | 2.55310 | 2.70554
8 |2 | 4.35381 4.35174 | 4.44944 | 4.60517
10 [ 2 | 4.37041 4.38375 | 4.48440 | 4.60517
10 [ 3 |6.01153 6.07054 | 6.20401 | 6.25139
20 | 3 | 6.12558 6.12017 | 6.35778 | 6.25139
TABLE 3 : 95" Percentiles of’ (m, n)
n | m | Simulated | Laguerre | Gamma | Asymp. x>
5|3 |6.72258 6.70685 | 6.79204 | 7.81473
6 |2 |5.51856 5.48595 | 5.57098 | 5.99146
6 |3 |6.95853 6.98256 | 7.20240 | 7.81473
7 |12 |5.59186 5.55383 | 5.65383 | 5.99146
7|13 | 7.28998 7.33155 | 7.52045 | 7.81473
8 |1 |3.63472 3.61985 | 3.49434 | 3.84146
8 |2 |5.63245 5.59109 | 5.70560 | 5.99146
10 [ 2 | 5.67897 5.63575 | 5.76900 | 5.99146
10 [ 3 | 7.60121 7.62830 | 7.75374 | 7.81473
20 | 3 | 7.82557 7.71695 | 7.99824 | 7.81473
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TABLE 4 : 99" Percentiles of’(m, n)

n | m | Simulated | Laguerre | Gamma | Asymp. x?
5 13 | 9.70612 9.76050 | 9.33530 | 11.34490
6 |2 | 8.67075 8.62950 | 8.30870 | 9.21304
6 |3 |10.74810 | 10.68420 | 10.12620 | 11.34490
7 |2 | 8.80420 8.83770 | 8.48350 | 9.21304
7 |3 [ 11.25610 | 11.18960 | 10.75330 | 11.34490
8 |1 | 5.50168 5.44330 | 5.75490 | 6.63490
8 [2 | 8.85718 8.91670 | 8.59350 | 9.21304
10 {2 | 8.90635 9.00280 | 8.72870 | 9.21304
10| 3 | 11.56150 | 11.59800 | 11.25260 | 11.34490
2013 | 12.01090 | 11.69140 | 11.71930 | 11.34490
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