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Abstract

This paper proposes accurate semi-nonparametric approximations to the distri-

bution of certain portmanteau statistics that are expressible as sums of ratios of

quadratic forms. Two methodologies, namely the symbolic computational ap-

proach and a recursive formula expressing joint moments in terms of joint cu-

mulants, are being utilized to determine the exact moments of the portmanteau

statistics. The density functions of those statistics are then approximated on the

basis of those moments in terms of gamma density functions and Laguerre poly-

nomials. As verified by a simulation study, the proposed approximations prove

more accurate than those that are based on the asymptotic chi-square distribution,

especially in the case of time series of short or moderate length.
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1 Introduction

Box and Pierce (1970), Ljung and Box (1978), Pukkila (1982, 1984), and Dufour and Roy
(1985) proposed various portmanteau statistics to detect serial correlation up to a certain lag
in a given sequence. Those statistics are in fact linear combinations of squared serial correla-
tions. It has been observed that their distributions deviate markedly from the asymptotic chi-
square distribution for series of short or moderate length. Typically, if a portmanteau statistic
involves the firstm serial correlations from a time series of lengthn, asymptotic quantities are
inaccurate for finite series unlessn is much larger thanm. The aim of this paper is to provide
accurate density approximations which hold even for short time series.

First, we introduce some notation in connection with the concept of serial covariance.
Given a series of residualsε1, ε2, . . . , εn having a joint normal distribution with mean vector
µ = 0 and positive definite covariance matrixΣ = σ2I, thecentered serial covarianceat lag
k is defined as

c̄k =
1
n

n−k∑

i=1

(εi − ε̄)(εi+k − ε̄) (1.1)

for k = 0, 1, . . . , n − 1, whereε̄ =
∑n

i=1 εi/n. Throughout this paper,n will denote the
length of the series.

In matrix notation, one has

c̄k =
1
n

ε′Bkε (1.2)

where

ε′ = (ε1, . . . , εn),
Bk = V AkV,

V = (I − 1
n

δ δ’),

δ = (1, 1, . . . , 1)′,

Ak =
1
2
Mk ,

Mk = Lk + L′k ,

andLk is a null matrix with the zeros in itskth subdiagonal replaced by ones. Thecentered
lag-k serial correlationcoefficient is then given by

r̄k =
c̄k

c̄o
=

ε′Bkε

ε′V ε
. (1.3)

Note thatBo = V AoV = V IV = V, V being idempotent. This definition of the serial
correlation coefficient was used by Anderson (1971) and Anderson (1990), among others. The
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casek = 1 is treated in Hannan (1970), and Moran (1948) obtained the first four moments for
this case. Thenoncentered lag-k serial covarianceis given by

ck =
∑n−k

i=1 εiεi+k

n
=

ε′Akε

n
, (1.4)

the correspondingnoncentered lag–k serial correlationbeing

rk =
ck

co
. (1.5)

Merikoski and Pukkila (1983) made use of this simpler representation in connection with a
moment problem.

Definition (1.1) can be viewed as definition (1.4) applied to the centered (or mean-corrected)
seriesy1 − ȳ, . . . , yn − ȳ. In particular, for a series of residuals resulting from fitting a model
to data, the mean is zero. So, then, the properties of the noncentered serial covariances (1.4),
as opposed to (1.1), legitimately become of interest.

As pointed out by Box and Jenkins (1976), it is usual to verify the adequacy of a candidate
fit to the data by testing for the ‘whiteness’ of the resulting residual series. Consider a discrete
time series,{Zt}, generated by a stationary autoregressive moving average process of order
(p, q),

(1− φ1B − · · · − φpB
p) Zt = (1− θ1B − · · · − θqB

q) εt , (1.6)

whereB is the backward shift operator such that, for any functionf(·), Bsf(t) = f(t − s),
andεt denotes the random error at timet.

We assume thatp andq in model (1.6) have been correctly identified and that the coeffi-
cientsφi andθj have been efficiently estimated, and denote the residual series by{ε̂1, . . . , ε̂n}.
In order to test for residual serial correlations up to lagm, Box and Pierce (1970) proposed
the following overall or portmanteau statistic

T (m,n) = n
m∑

k=1

r2
k , m > p + q, (1.7)

which is asymptotically distributed as a chi-square random variable withm degrees of free-
dom. Unfortunately,T (m,n) converges only rather slowly with increasingn to its asymptotic
distribution, so that the test performs poorly for all but large data sets.

Ljung and Box (1978) and Davies, Triggs and Newbold (1977) gave some indication of
the shortcomings of considering (1.7) for finite series and discussed the improvement of using

T ′(m,n) =
m∑

k=1

n(n + 2)
n− k

r2
k . (1.8)
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This modification takes account of the fact thatVar[rk] = (n − k)/(n(n + 2)), see for
example Moran (1948). The first two moments ofT ′(m,n) are closer to those of the targeted
chi-square, but otherwise the problem of slow convergence is not being addressed. Clearly
whenn is large,T (m,n) ≈ T ′(m, n).

As shown in Section 2, on writing the portmanteau statistics as linear combinations of
squares of ratios of quadratic forms, one can express their moments in terms of certain linear
combinations of joint moments of the quadratic forms. A symbolic computational methodol-
ogy for determining such joint moments as well as a recursive formula expressing joint mo-
ments in terms of joint cumulants are introduced in Section 3. A semi-nonparametric density
approximant which is based on the firsts moments of the portmanteau statistics and expressed
in terms of Laguerre polynomials, is then presented in Section 4; a gamma approximation is
obtained as a particular case. Bounds for the supports of the distributions of the statistics are
determined in Section 5. Certain percentiles ofT ′(m,n) are evaluated under various approx-
imations and compared with those obtained by simulation for selected values ofm andn in
Section 6.

2 A Representation of the Moments

A useful representation of the moments of the portmanteau statistics as specified by (1.7) or
(1.8) is derived in this section. Let

Qi = X′AiX

whereX ∼ Nn(0, I), that is,X has ann-variate normal distribution with0 = (0, 0, . . . , 0)′
as its mean vector andI, the identity matrix of ordern, as its covariance matrix, andAi =
Li + L′i, Li being as defined in (1.2). Consider a statistic having the following structure

T =
m∑

i=1

ci
Q2

i

Q2
0

(2.1)

where theci’s are known constants andQ0 = X′A0X with A0 = I. The multinomial expan-
sion ofT r yields the following representations of therth moment ofT :

E(T r) = E

(
m∑

i=1

ci
Q2

i

Q2
0

)r
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=





r∑

r1=0

r−r1∑

r2=0

· · ·
r−r1−...−rm−2∑

rm−1=0

(
r

r1, . . . , rm

)

 E

[(
c1

Q2
1

Q2
0

)r1

· · ·
(

cm
Q2

m

Q2
0

)rm
]

=





r∑

r1=0

r−r1∑

r2=0

· · ·
r−r1−...−rm−2∑

rm−1=0

(
r

r1, . . . , rm

)



Γ(n
2 )

22rΓ(n
2 + 2r)

×E(cr1
1 Q2r1

1 · · · crm
m Q2rm

m ) (2.2)

where
(

r

r1, . . . , rm

)
=

r!
r1! · · · rm!

and

rm = r −
m−1∑

j=1

rj .

The last equality in (2.2) is obtained by expressing1/Q2r
0 = 1/(x′x)2r as

∫ ∞

0

z2r−1e−z(x′x)

Γ(2r)
dz ,

noting that the integrand is proportional to a gamma density function with parameters2r and
(x′x)−1. Thus,

E

[(
c1

Q2
1

Q2
0

)r1

· · ·
(

cm
Q2

m

Q2
0

)rm
]

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

cr1
1 Q2r1

1 · · · crm
m Q2rm

m

Q2r
0

e−
1
2
x′x

(2π)n/2
dx

=
∫ ∞

0

∫ ∞

−∞
· · ·

∫ ∞

−∞
cr1
1 Q2r1

1 · · · crm
m Q2rm

m

(1 + 2z)n/2

(1 + 2z)n/2

× e−
1
2
(x′x)(1+2z)z2r−1

(2π)n/2Γ(2r)
dx dz ,
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which, on lettingy = (1 + 2z)1/2x is seen to be equal to

∫ ∞

0

∫ ∞

−∞
· · ·

∫ ∞

−∞

z2r−1(y′A1y)2r1 · · · (y′Amy)2rm

Γ(2r)(1 + 2z)2r+n
2

e−
1
2
y′y

(2π)n/2
dy dz

=
1

Γ(2r)

(∫ ∞

0
z2r−1(1 + 2z)−(n

2
+2r)dz

)
(

m∏

i=1

cri
i ) E(Q2r1

1 · · ·Q2rm
m )

=
1

Γ(2r)

(∫ ∞

0

1
22r−1

u2r−1(1 + u)−(n
2
+2r) 1

2
du

)
(

m∏

i=1

cri
i ) E(Q2r1

1 · · ·Q2rm
m )

=
Γ(n/2)

22rΓ(2r + n/2)
(

m∏

i=1

cri
i ) E(Q2r1

1 · · ·Q2rm
m ), (2.3)

noting that ∫ ∞

0
yα−1(1 + y)α+βdy =

Γ(α)Γ(β)
Γ(α + β)

.

For T (m,n), the original portmanteau statistic,ci = n, i = 1, 2, . . . , m, whereasci =
n(n + 2)/(n− i), i = 1, 2, . . . , m in T ′(m, n), the modified portmanteau statistic.

3 Methodologies for Evaluating the Moments

Two techniques are proposed for determining the exact moments of the test statistics, namely
the symbolic computational approach and the application of a general recursive formula which
expresses joint moments in terms of joint cumulants.

3.1 The Symbolic Computational Approach

By making use of symbolic computational packages such as Maple orMathematica, one can
define an expected value operatorE having the following properties:

E [
p∑

i=1

αiYi] =
p∑

i=1

αi E(Yi)

and

E(
p∏

i=1

Y si
i ) =

p∏

i=1

E(Y si
i ) ,

where theαi’s andsi’s are constants and theYi’s are independently distributed random vari-
ables,i = 1, . . . , p. After expressing the quadratic formsQ2rk

k in (2.2) as
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Q2rk
k = (

n∑

i=1

n∑

j=1

a
(k)
ij XiXj)2rk (3.1)

where thea(k)
ij ’s are the elements of the matrixAk defined in (1.2), and expanding, one obtains

a linear combination of products of powers of independent standard Gaussian random vari-
ables, which on application of the expected value operator yields therth moment ofT (m,n)
or T ′(m, n).

For example, the second moment ofT (2, 3) can be evaluated as follows. On applying
(2.2), one has

Γ(3
2)

24Γ(3
2 + 4)

32

{(
2

0, 2

)
E(Q0

1 Q4
2) +

(
2

1, 1

)
E(Q2

1 Q2
2) +

(
2

2, 0

)
E(Q4

1 Q0
2)

}
(3.2)

whereQk =
∑3−k

i=1 XiXi+k, so thatQ2
1 = (X1X2 + X2X3)2 andQ2

2 = (X1X3)2, which on
expanding and simplifying gives

1
105

2! E(
1
2
X4

1X4
2 + 2X3

1X4
2X3 + X4

1X2
2X2

3 + 3X2
1X4

2X2
3 + 2X3

1X2
2X3

3 + 2X1X
4
2X3

3

+
1
2
X4

1X4
3 + X2

1X2
2X4

3 +
1
2
X4

2X4
3 ),

whereX1, X2 andX3 are independently distributedN (0, 1) random variables whosekth
moment is0 whenk is odd and2k/2Γ (k + 1/2) /

√
π whenk is even. The second moment so

obtained is19/35.
Similarly, it can be verified that the first, third, fourth and fifth moments ofT (2, 3) are

respectively3/5, 3051/5005, 65853/85085, 341469/323323.

3.2 General Recursive Formula for Obtaining Joint Moments from Joint Cu-

mulants

Letting Qi = X′AiX, i = 1, . . . , η, where Ai is a symmetric matrix and X ∼
Nn(0, V ), the joint cumulant generating function ofQ1, . . . , Qη is

KQ1,...,Qη(t1, . . . , tη) = ln|I −W |− 1
2 =

1
2

∞∑

j=1

tr(W j)/j (3.3)

whereW = 2
∑η

i=1(tiV Ai). This is explained for instance in Mathai and Provost (1992,
Section 3.3). The joint moments,E[(Q1 − E(Q1))s1 · · · (Qη − E(Qη))sη ] ≡ µs1,...,sη

, (we
note thatE(Qi) is equal to zero fori = 1, . . . , η in this case) can then be determined from
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the joint cumulants by making use of the following recursive relationship derived by Smith
(1995):

µs1,s2,...,sm+1
=

s1∑

i1=0

. . .

sm∑

im=0

sm+1−1∑

im+1=0

(
s1

i1

)
· · ·

(
sm

im

)(
sm+1 − 1

im+1

)

×Ks1−i1,s2−i2,...,sm+1−im+1 µi1,i2,...,im+1
, m = 1, 2, . . . , η − 1,(3.4)

whereµ0,0,...,0 = 1 andKa1,...,am+1 denotes the joint cumulant of ordersa1, . . . , am+1 of
Q1, . . . , Qm+1, which is equal to

∂a1+···+am+1

∂ta1
1 · · · ∂t

am+1

m+1

KQ1,...,Qm+1(t1, . . . , tm+1) evaluated at ti = 0, i = 1, . . . ,m + 1.

Thus, therth moment ofT (m,n) or T ′(m,n) can be determined from the joint moments
E(Q2r1

1 · · ·Q2rn−k

n−k ). For example, forn = 3 andk = 2, (3.2) becomes(1/105) (E(Q0
1 Q4

2)+
2E(Q2

1 Q2
2) + E(Q4

1 Q0
2)) where

E(Q0
1 Q4

2) = µ0,4

=
3∑

j=0

(
3
j

)
K0,n−j µ0,j = 9

with µ0,0 = 1 and

K0,` =
∂`

∂t`1


1

2

∞∑

j=1

tr(2t1A2)j

j


 evaluated at t1 = 0

= 2`−1(`− 1)! trA`
2 ;

2E(Q2
1 Q2

2) = 2µ2,2

= 2
2∑

i=0

1∑

j=0

(
2
i

)(
1
j

)
K2−i,2−j µi,j = 12

where

µr,t =
r∑

i=0

t−1∑

j=0

(
r

i

)(
t− 1

j

)
Kr−i,t−j µi,j ,

Kh,` =
∂h+`

∂th1∂t`2
KQ1,Q2(t1, t2) evaluated at t1 = 0, t2 = 0

=
h! `! 2h+`

2(h + `)
tr

∑

(h,`)

(A1A2),
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and the notation
∑

(h,`)(A1A2) stands for the sum of all the possible distinct permutations of
a product ofh matricesA1 and` matricesA2; and

E(Q4
1 Q0

2) = µ4,0

=
3∑

i=0

(
3
i

)
Kn−i,0 µi,0 = 36.

This yieldsE(T (2, 3)2) = 19/35. It should be noted that the moments so obtained agree
exactly with those determined by means of the symbolic computational approach which, inci-
dentally, was found to be computationally more intensive. TheMathematicacode for evaluat-
ing the moments is available on request.

4 A Semi-Nonparametric Density Approximation Technique

The density functions of numerous statistics whose asymptotic distribution is chi-square can
be accurately approximated from their exact moments by means of sums involving Laguerre
polynomials. For instance, Laguerre series expansions for the density functions of quadratic
forms in normal variables and non-centralχ2 andF random variables were respectively ob-
tained by Gurland (1955) and Tiku (1965). A general methodology for obtaining such expan-
sions is described below. It is assumed that all the moments are finite and that the moment
sequence uniquely determines the distribution.

Consider a random variableY defined on the interval(0,∞), whose tail behavior is con-
gruent to that of a gamma distribution. Let itsjth moment,E(Y j), be denoted byµY [j], j =
0, 1, 2, . . . ,

c =
µY [2]− µY [1]2

µY [1]
, (4.1)

α =
µY [1]

c
− 1 (4.2)

and

X =
Y

c
. (4.3)

The parametersc andα are chosen so that the leading term of the resulting approximating
sum given in (4.8) will in fact be a Gamma density function whose first and second moments
agree with those ofY .

Denoting thejth moment of the random variableX, E[Xj ] = µY [j]/cj , byµj , its density
function can be expressed as

f(x) =
∞∑

k=0

akϕk(x) (4.4)
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where

ϕk(x) = xαe−xLk(α) (4.5)

and

ak = (−1)k
k∑

j=0

(−1)i k!
j! (k − j)! Γ(α + k − j + 1)

µk−j , (4.6)

Lk(α) denoting a Laguerre polynomials of degreek with parameterα, which can be obtained
as follows:

Lk(α) =
x−αex

k!
∂k

∂xk

(
xk+αe−x

)

= (−1)k
k∑

i=0

(−1)iΓ (α + k + 1)
i!(k − i)!Γ (α + k − i + 1)

xk−i, k = 0, 1, . . . , (4.7)

whereα > −1, see for instance Gradshteyn and Ryzhik (1980). Density approximants for
T (m,n) or T ′(m,n) are determined from their firsts moments by truncating the series given
in Equation (4.4). Then, on making the change of variablesY = cX, one obtains the following
density approximation forY :

fYn(y) =
yαe−y/c

cα+1Γ(α + 1)

s∑

k=0

Γ(α + 1) ak ϕk(y/c) , y > 0. (4.8)

The distributions of the statisticsT (m,n) or T ′(m,n) can also be approximated by a gamma
distribution whose parameters, as estimated by the method of moments, areα+1 andc where
c andα are as defined in (4.1) and (4.2), respectively. This approximation can also be obtained
by lettings = 2 in (4.8).

5 An Upper Bound for the Portmanteau Statistics

The following result, which is stated for instance in Mathai and Provost (1992, Section 2.4),
provides an upper bound for the ratios of certain quadratic forms.

Let B be anyn × n positive definite matrix, A be ann × n symmetric matrix and the
eigenvalues ofB−1A beλ1 ≥ λ2 ≥ · · · ≥ λn; then assuming thaty is not equal to the null
vector,

sup
y

{
y′Ay
y′By

}
= λ1 .

Thus, an upper bound for the support of portmanteau statistics of the form
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m∑

i=1

ci

(
ε′Aiε

ε′ε

)2

, ci > 0, i = 1, . . . , m,

whereε ∼ Nn(0, I), is given by
∑m

i=1 ciλ
2
(i) whereλ(i) is the largest eigenvalue ofAi, i =

1, 2, . . . , m. For example, an upper bound forT ′(3, 5) is given by(35/4)(
√

3/2)2 + (35/3)
(1/
√

2)2 +(35/2)(1/2)2 = 16.7708. Clearly, such portmanteau statistics are always nonneg-
ative.

6 Numerical Results

The 50th, 90th, 95th and 99th percentiles of the modified portmanteau statisticT ′(m,n),
as determined by simulation on the basis of 100,000 replications and under the gamma ap-
proximation, the Laguerre polynomial approximation based on the eight moments and the
asymptotic chi-square distribution withm degrees of freedom, are reported in Tables1 to 4
for selected values ofn andm. As expected, the Laguerre polynomial approximants gen-
erally yield more accurate percentiles than the approximate chi-square distributions or the
two-moment gamma approximations.

TABLE 1 : 50th Percentiles ofT ′(m,n)
n m Simulated Laguerre Gamma Asymp. χ2

5 3 2.69165 2.70916 2.58221 2.36597

6 2 1.53712 1.52138 1.49215 1.38629

6 3 2.57850 2.59577 2.49961 2.36597

7 2 1.50337 1.49804 1.47183 1.38629

7 3 2.46886 2.48237 2.43169 2.36597

8 1 0.51086 0.48987 0.55621 0.45494

8 2 1.48937 1.48413 1.45901 1.38629

10 2 1.47624 1.46878 1.44314 1.38629

10 3 2.37574 2.38270 2.35094 2.36597

20 3 2.36643 2.37911 2.32377 2.36597
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TABLE 2 : 90th Percentiles ofT ′(m,n)
n m Simulated Laguerre Gamma Asymp. χ2

5 3 5.44501 5.43122 5.63530 6.25139

6 2 4.29576 4.30120 4.37435 4.60517

6 3 5.69489 5.67796 5.88723 6.25139

7 2 4.32332 4.32674 4.42068 4.60517

7 3 5.93427 5.91915 6.07815 6.25139

8 1 2.70660 2.74693 2.55310 2.70554

8 2 4.35381 4.35174 4.44944 4.60517

10 2 4.37041 4.38375 4.48440 4.60517

10 3 6.01153 6.07054 6.20401 6.25139

20 3 6.12558 6.12017 6.35778 6.25139

TABLE 3 : 95th Percentiles ofT ′(m,n)
n m Simulated Laguerre Gamma Asymp. χ2

5 3 6.72258 6.70685 6.79204 7.81473

6 2 5.51856 5.48595 5.57098 5.99146

6 3 6.95853 6.98256 7.20240 7.81473

7 2 5.59186 5.55383 5.65383 5.99146

7 3 7.28998 7.33155 7.52045 7.81473

8 1 3.63472 3.61985 3.49434 3.84146

8 2 5.63245 5.59109 5.70560 5.99146

10 2 5.67897 5.63575 5.76900 5.99146

10 3 7.60121 7.62830 7.75374 7.81473

20 3 7.82557 7.71695 7.99824 7.81473
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TABLE 4 : 99th Percentiles ofT ′(m,n)
n m Simulated Laguerre Gamma Asymp. χ2

5 3 9.70612 9.76050 9.33530 11.34490

6 2 8.67075 8.62950 8.30870 9.21304

6 3 10.74810 10.68420 10.12620 11.34490

7 2 8.80420 8.83770 8.48350 9.21304

7 3 11.25610 11.18960 10.75330 11.34490

8 1 5.50168 5.44330 5.75490 6.63490

8 2 8.85718 8.91670 8.59350 9.21304

10 2 8.90635 9.00280 8.72870 9.21304

10 3 11.56150 11.59800 11.25260 11.34490

20 3 12.01090 11.69140 11.71930 11.34490
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