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Abstract

This paper discusses the problem of testing the equality of two nonparametric

regression functions against two-sided alternatives for random design on[0, 1]

with long memory moving average errors. The standard deviations are possibly

different for the two errors. The paper applied the marked empirical processes to

construct the tests and derives their asymptotic null distributions. The paper also

shows that these tests are consistent for general alternatives.
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1 Introduction

This paper is concerned with testing the equality of two regression functions against the two-
sided alternatives when the errors form long-memory moving averages under a random design.
More precisely, letµ1 andµ2 be real valued continuous functions on[0, 1], σ1, σ2 be positive
numbers. Suppose12 < H < 1 and let

αj = 0, for j < 0, α0 = 1, αj : = j
2H−3

2 for j ≥ 1. (1.1)
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In the problem of interest, one observes two stochastic processesY1,i andY2,i, i = {0, 1, · · · }
such that

Y1,i = µ1(Xi) + σ1u1,i, u1,i =
∞∑

j=0

αjε1,i−j , (1.2)

Y2,i = µ2(Xi) + σ2u2,i, u2,i =
∞∑

j=0

αjε2,i−j ,

where,{ε1,i, i ∈ Z = {0,±1, · · · }} are i.i.d. standard r.v.’s and so are{ε2,i, i ∈ Z}; {Xi, i ∈
Z} are i.i.d. r.v.’s on[0, 1]. Moreover,{ε1,i, i ∈ Z}, {ε2,i, i ∈ Z} and{Xi, i ∈ Z} are
mutually independent.

Note that

∞∑

j=0

αj = ∞,
∞∑

j=0

α2
j < ∞.

Hence, the error processesu1,i andu2,i have long-memory.
The problem of interest is to test the null hypothesis:

H0 : µ1(x) = µ2(x), ∀x ∈ [0, 1],

against the two-sided alternative hypothesis

Ha : µ1(x) 6= µ2(x), for somex ∈ [0, 1]. (1.3)

based on the data(Xi, Y1,i, Y2,i), i = 1, · · · , n, wheren is a positive integer.
The motivation of studying long memory processes is from their important applications

in hydrology, economics, finance and various other physical sciences. For example, long
memory processes describe well with financial data such as exchange rates, stock returns and
inflation rates. Please see Beran (1992, 1994) and Baillie (1996) and the references therein.

In both one-sample and two-sample settings with independent errors, related testing prob-
lems have been addressed by several authors. For one-sample setting, see Cox, Koh, Wahba
and Yandell (1988), Eubank and Spiegelman (1990), Raz (1990), Härdel and Mammen (1993),
Koul and Ni (2004) and monograph of Hart (1997). For two sample setting, see Härdle
and Marron (1990), Scheike (2000), Hall, Huber and Speckman (1997) and Koul and Schick
(1997, 2003).

There have been some works on fitting a regression function in the presence of long mem-
ory, including Cs̈orgö and Mielniczuk (1995, 1999, 2000), Robinson (1997), Koul and Stute
(1998), Koul, Baillie and Surgailis (2004), Hurvich, Lang and Soulier (2005) and Guo and
Koul (2007). Koul and Stute (1998) studied a class of such tests based on partial sum pro-
cesses of certain residuals when the design is either fixed or random. Koul, Baillie and Sur-
gailis (2004) studied those tests further when the covariate is of dimension one and also forms
a long memory moving average process.



Li: Comparing Two Nonparametric Regression Curves 153

The papers that address the above two-sided nonparametric testing problem with inde-
pendent errors include Hall and Hart (1990), Kulasekera (1995), Delgado (1993) and Ferreira
and Stute (2004). Delgado (1993) used the absolute difference of the cumulative regression
functions assuming the same covariates in the two samples while the two samples are possi-
bly dependent on each other. Li (2006) extends Delgado’s test to the above long-memory set
up, but under a fixed design, i.e.Xi = i/n. Ferreira and Stute (2004) introduced a marked
empirical process to serve as a basic test process for the above two sided testing problem
with design variable being stationary and with independent errors. For our model (1.2) under
random design and with long memory error, this current paper will adapt the idea of marked
empirical process in Ferreira and Stute (2004) to construct our test.

As in Ferreira and Stute (2004), let

Dj := Y1,j − Y2,j , j = 1, · · · , n

and define

Un(x) :=
n∑

j=1

DjI(Xj ≤ x), x ∈ [0, 1].

Hence,Un is an empirical process marked byDj .
It can be shown that1n Un(x) provides a uniformly consistent estimator of

∆(t) :=
∫ x

0

(
µ1(x)− µ2(x)

)
dQ(x), ∀ 0 ≤ t ≤ 1, (1.4)

whereQ is the distribution function (d.f.) of the design variable, assumed to be continuous.
This suggests to base tests ofH0 on some suitable functions of this process, for example, the
Kolmogorov-Smirnov and Craḿer-von Mises type tests. In this paper we shall focus on the
Kolmogorov-Smirnov type tests based onsup0≤t≤1 |Un(t)|.

To determine the large sample distribution of the processUn(t), one needs to normalize
this process suitably. As in Li (2006), the normalizing sequence depends on the parametersH
andσ2

i .
To make this more precise, let

c2(H) =
1

H(2H − 1)

∫ ∞

0
(y + y2)−

1+θ
2 dy, θ := 2− 2H, (1.5)

and

τ2
n,i = σ2

i c
2(H)n2H , τn = (τ2

n,1 + τ2
n,2)

1
2 . (1.6)

Now define

T : = sup
0≤x≤1

∣∣∣ 1
τn

Un(x)
∣∣∣. (1.7)
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In the caseH andσi’s are known, the tests ofH0 could be based onT , being significant for
its large value. But, usually these parameters are unknown which rendersT of little use. This
suggests to replace the parameters inT by their estimates. Therefore, the proposed tests will
be based on the adaptive versions ofT , namely

T̂ := sup
0≤x≤1

∣∣∣ 1
τ̂n

Un(x)
∣∣∣, τ̂n = (τ̂2

n,1 + τ̂2
n,2)

1
2 , τ̂2

n,i = c2(Ĥ)σ̂2
i n

2Ĥ , i = 1, 2, (1.8)

where,σ̂i, (i = 1, 2) andĤ are the estimates ofσi andH.
The estimates of these parameters might be necessarily based on the residualsYi,j −

µ̂i(Xj), i = 1, 2; j = 1, · · · , n, whereµ̂i, i = 1, 2, are some estimators of the regression
functionsµi, i = 1, 2,. The latter estimation problem in the presence of long memory has
been addressed by some authors. See Csörgő and Mielniczuk (1995), Cs̈orgő and Mielniczuk
(2000) and Robinson (1997). They all studied the kernel regression function estimators. We
shall also use the kernel method to estimate the two nonparametric regression functions in our
model when needed.

The estimation of the long memory parameterH are also of interests here. Fox and Taqqu
(1986) and Dahlhaus (1989) studied the MLE and Whittle estimators. Robinson (1995a) dis-
cussed a form of log-periodogram regression estimator under the condition of Gaussianity.
Robinson (1995b) considered another estimator that maximizes an approximate form of fre-
quency domain Gaussian likelihood in a semiparametric setting. Its consistency and asymp-
totic normality is obtained with a rate less thann1/2. In Robinson (1997), this consistency
rate is shown to belog n under some mild conditions. Li (2006) adapted Robinson (1997)’s
estimator and here we shall again use this estimation method to estimateH under our model.

We shall study the asymptotic behaviors ofT̂ as the sample sizen tend to infinity. Theo-
rem 2.1 of section 2 shows that underH0, T weakly converge to the absolute value of standard
normal. Then in Corollary 2.1, under a general set of assumptions on the estimatesσ andH,
we derived the same asymptotic distribution ofT̂ underH0. Remark 2.1 proves that the test
based onT̂ is consistent, at the fixed alternative (1.3). In section 3, under some additional
conditions, appropriate estimatesσ̂1, σ̂2 andĤ are constructed.

2 Asymptotic behavior ofT and T̂

This section investigates the asymptotic behaviors ofT given in (1.7) and the adaptive statistic
T̂ given in (1.8) under the null hypothesis and the alternatives (1.3). We writeP for the
underline probability measures andE for the corresponding expectations.

First give the following assumption:

(A.1) For i = 1, 2, Eε4
i,1 < ∞, whereεi,1 is as in model (1.2).
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Forx ∈ [0, 1], define

Un,i(x) :=
n∑

j=1

σiui,jI(Xj ≤ x),

U1
n,i(x) :=

n∑

j=1

[σiui,j(I(Xj ≤ x)−Q(x))], U2
n,i :=

n∑

j=1

σiui,j .

Recall thatQ is the distribution function of the design variableXj . It is easy to see that
Un,i(x) = U1

n,i(x) + Q(x)U2
n,i. We are now ready to state the following lemmas:

Lemma 2.1. Under model (1.2) and Assumption (A.1), we have

n−1/2 sup
x∈[0,1]

|U1
n,i(x)| = Op(1). (2.1)

Proof: The proof appears in Koul and Stute (1998). Hence it is omitted here. ¤
The proof of the next lemma is implied by the invariance principle of long memory linear

processes, which is proved in Davydov (1970), Taqqu (1975), Avram and Taqqu (1987), Sowel
(1990), among others.

Lemma 2.2. The long memory linear processesui,j , i = 1, 2 of model (1.2) satisfy:

1
τn,i

n∑

j=1

σiui,j =
1

τn,i
U2

n,i =⇒ Z, (2.2)

whereZ represents standard normal.

Next, let

T1(x) =
1
τn

(Un,1(x)− Un,2(x)), 0 ≤ x ≤ 1. (2.3)

It is easy to see thatT = supx∈[0,1] |T1(x)| under the null hypothesis. Now, we are ready to
give the first main result.

Theorem 2.1. Under model (1.2) and assumption (A.1), we have

T1(x)
D[0,1]
=⇒ Q(x)Z, 0 ≤ x ≤ 1, (2.4)

in D[0, 1].
D[0,1]
=⇒ stands for the weak convergence of random elements with values in the

Skorohod spaceD[0, 1], with respect to the uniform metric. Consequently, under the null
hypothesis,T of (1.7) satisfy

T =⇒ |Z|
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Proof: It suffices to prove (2.4) sinceT = supx∈[0,1] |T1(x)| under the null hypothesis. Now,
by decomposition,

1
τn,i

Un,i(x) =
n1/2

τn,i
n−1/2 U1

n,i(x) + Q(x)τ−1
n,i U2

n,i, i = 1, 2.

This, Lemma 2.1 and 2.2, and the fact thatn1/2

τn,i
→ 0 give

1
τn,i

Un,i(x)
D[0,1]
=⇒ Q(x)Z, in D[0, 1], i = 1, 2

This, τn,i

τn
→ σi/

√
σ2

1 + σ2
2 for i = 1, 2 and the fact that{u1,j}’s are independent of{u2,j}’s

implied (2.4) and hence completes the proof of the theorem. ¤
Next, we need the following additional assumptions to obtain the asymptotic distribution

of T̂ given in (1.8).
Assumption 2.1 Let the estimatorŝH, σ̂2 of H andσ2 = σ2

1 + σ2
2 be such that under null

hypotheses,

(log n)(Ĥ −H) →P 0, σ̂2 − σ2 →P 0, n →∞. (2.5)

Corollary 2.1. Suppose that the Assumption 2.1 holds. Then under the model (1.2) and the
null hypothesis,

T̂ =⇒ |Z|.
Proof: By Theorem 2.1, it suffices to prove

τ̂2
n

τ2
n

→P 1. (2.6)

By the definition ofc(H) and simple calculation, (2.5) implies that

c(Ĥ)2 − c(H)2 →P 0, and
c(Ĥ)2σ̂2

c(H)2σ2
→P 1,

This together with the first part of (2.5) gives

τ̂2
n

τ2
n

=
c(Ĥ)2σ̂2n2Ĥ

c(H)2σ2n2H
=

c(Ĥ)2σ̂2

c(H)2σ2
exp{2 log(n)(Ĥ −H)} →P 1,

which implies (2.6). This corollary is proved. ¤
Remark2.1. Testing property of T̂ . Under the model (1.2), consider the following alterna-
tive that is the same as in (1.3):

Ha : µ1(x)− µ2(x) = δ(x) 6= 0 for somex ∈ [0, 1],
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whereδ is continuous on [0,1] sinceµ1, µ2 are continuous. Theorem 2.1 and its corollary
suggest to reject the null hypothesis for large values ofT̂ given in (1.8).

First, suppose Assumption 2.1 is satisfied. Let

T̂ (x) =
1
τ̂n

Un(x), T̂1(x) =
1
τ̂n

(Un,1(x)− Un,2(x)).

Then,

T̂ (x) = T̂1(x) + h(x), h(x) =
1
τ̂n

[nx]∑

j=1

δ(
j

n
)

By (1.8) and the fact that1n
∑[nx]

j=1 δ( j
n) → ∫ x

0 δ(t) dt uniformly,

T̂ (x) =
τn

τ̂n
T (x), h(x) =

n

τ̂n

1
n

[nx]∑

j=1

δ(
j

n
) ∼ n

τ̂n

∫ x

0
δ(t) dt = OP (n1−Ĥ). (2.7)

By (1.6), (1.8), (2.3) and Theorem 2.1,

sup
x∈[0,1]

|T̂1(x)| = τn

τ̂n
sup

x∈[0,1]
|T1(x)| = OP (nH−Ĥ) = oP (n1−Ĥ)

Hence,

T̂ = sup
0≤x≤1

|T̂ (x)| = sup
0≤x≤1

|T̂1(x) + h(x)| →P ∞. (2.8)

Let zα be the(1− α) ∗ 100 percentile of standard normal. By Corollary (2.1),

lim
n→∞P (T̂ > zα/2) = α underH0 and lim

n→∞P (T̂ > zα/2) = 1 underHa.

Therefore, the test based on̂T is consistent forHa.

3 Construction of Ĥ and σ̂2

In this section, under some additional conditions, we shall now construct estimates ofH, σ2 =
σ2

1 + σ2
2 that satisfy Assumption 2.1. Now consider the following conditions:

(A.2) The regression functionsµ1, µ2 are Lipschitz-continuous on[0, 1].
(A.3) For some1 > ∆2 ≥ H ≥ ∆1 > 1/2 and for someδ0 > 0, asn →∞,

(log n)2(
m

n
)β +

n2−2H

m1−2max(δ0, H−∆1)
→ 0, β = H − 1

2
> 0.
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First, we will construct the estimates ofH that satisfy Assumption 2.1. The following
estimator is analogues of the estimator defined at (4.8)-(4.10) in Robinson (1997).

Fork = 1, · · · , m ∈ [1, n
2 ), Let λk = 2πk/n and

G̃(h) =
1
m

m∑

k=1

λ2h−1
k IDD(λk), R̃(h) = log G̃(h)− (2h− 1)

1
m

m∑

k=1

log λk, (3.1)

IDD(λ) = wD(λ)wD(−λ), wD(λ) =
1

(2πn)
1
2

n∑

t=1

Dte
itλ. (3.2)

Recall,eix always represent the complex valuecosx + i sinx, i =
√−1. Define

Ĥ := arg minh∈[∆1,∆2]R̃(h). (3.3)

The following lemma shows the consistency of the estimator.

Lemma 3.1. Suppose the model (1.2), and the Assumptions (A.1) - (A.3) hold. Then, the
estimatesĤ given in (3.3) satisfy Assumption 2.1, i.e.

(log n)(Ĥ −H) →P 0, underH0. (3.4)

Proof: First, underH0, Di = σ1u1,i − σ2u2,i =
∑∞

j=0 σ1αjε1,i−j + σ2αjε2,i−j . Let εi−j =
σ1ε1,i−j+σ2ε2,i−j√

σ2
1+σ2

2

. Then,{εj} are i.i.d. standard r.v.’s and the processDi = σ
∑∞

j=0 αjεi−j

is another long memory moving average process. By Theorem 4 in Robinson (1997), to
prove (3.4), it suffices to verify the assumptions of his theorem for our model. By a careful
comparison of our assumptions to that of Robinson (1997) and by a close inspection of the
proof in Robinson (1997), it suffices to prove the following two assumptions. The labels here
are correspondent to that in Robinson’s paper.
Assumption 3.1. In a neighborhood(0, δ) of the origin,α(λ) =

∑∞
j=−∞ αje

ijλ is differen-
tiable and(d/dλ)α(λ) = O(|α(λ)|/λ), asλ → 0+.
Assumption 3.2. ForH ∈ [∆1, ∆2], there exist someβ ∈ (0, 2] andG > 0,

f(λ) ∼ Gλ1−2H
(
1 + O(λβ)

)
as λ → 0+, f(λ) = |α(λ)|2/2π.

In view of (1.2) and (2.3.11) of Zygmund (1968, page 70), Assumption 3.2 is satisfied with
β = 2H − 1, while Li (2006) has shown that Assumption 3.1 is also satisfied here. Hence we
proved the lemma. ¤

Next, we are to give the estimator ofσ2 = σ2
1 + σ2

2 as below:

σ̂2 =
1

2nF̂

n−1∑

j=1

(Dj+1 −Dj)2, F =
∞∑

j=0

αj(αj − αj+1), (3.5)

where,F̂ is F given above withH in the expression ofαj ’s replaced by its estimator̂H
given in (3.3). This estimating method is adapted from Delgado (1993). The following lemma
shows its consistency underH0.
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Lemma 3.2. Suppose the model (1.2) and the assumptions (A.1)-(A.3) hold. Then the se-
quence of estimatorŝσ2 given in (3.5) satisfies the Assumption 2.1, i.e.

σ̂2 →P σ2 := σ2
1 + σ2

2, underH0. (3.6)

To prove Lemma 3.2, we need the following two lemmas.

Lemma 3.3. The coefficients{αj} of (1.1) satisfy

∞∑

j=0

αjαj+|t−s| ∼ H(2H − 1)c2(H)|t− s|2H−2, |t− s| → ∞.

Proof: By the Karamata Theorem

∞∑

j=0

αjαj+|t−s|

= |t− s|2H−2
∞∑

j=1

(
j

|t− s|
( j

|t− s| + 1
))− 3−2H

2 1
|t− s| + αi,|t−s|

∼ H(2H − 1)c2(H) |t− s|−θi , |t− s| → ∞, i = 1, 2. (3.7)

Lemma is proved. ¤

Lemma 3.4. The long memory linear processesui,j , i = 1, 2 of model (1.2) satisfy

1
n

n∑

j=1

u2
i,j →P A A =

∞∑

j=0

α2
j , i = 1, 2. (3.8)

Proof: The proof appears in Li (2006), page 631-632. Hence it is omitted here. ¤
We are now ready to present the

Proof of Lemma 3.2: SinceH, Ĥ < ∞, by the consistency of̂H, guaranteed by Lemma 3.1,
and the continuity ofF̂ in Ĥ, we obtain thatF̂ →P F . Thus, by decomposition, to prove
(3.6), it suffices to prove the following results:

1
n

n−1∑

j=1

(ui,j+1 − ui,j)2 →P F, i = 1, 2, (3.9)

1
n

n−1∑

j=1

(u1,j+1 − u1,j)(u2,j+1 − u2,j) →P 0. (3.10)

First, to prove of (3.10), it suffices to prove

1
n

n∑

j=1

u1,ju2,j →P 0. (3.11)
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By Lemma 3.3,

E(u1,ju2,ju1,ku2,k) = E(u1,ju1,k)E(u2,ju2,k) =

( ∞∑

i=0

αiαi+|j−k|

)2

∼ H2(2H − 1)2c(H)4|j − k|4H−4.

Hence,

E


 1

n

n∑

j=1

u1,ju2,j




2

∼ 1
n2

n∑

j=1

n∑

j 6=k=1

H2(2H − 1)2c4(H)|j − k|4H−4 +
1
n2

n∑

j=1

V (u1,j)V (u2,j)

≤ H2(2H − 1)2c4(H)
n2H−2

n2

n∑

j=1

n∑

j 6=k=1

∣∣∣∣
j

n
− k

n

∣∣∣∣
2H−2

+
A2

n

= O

(
n2H−2

∫ 1

0

∫ 1

0
|x− y|2H−2 dxdy

)

→ 0,

which implies (3.11) by the Chebyshev inequality, and hence proves (3.10).
Finally, consider (3.9) fori = 1. Let

ũ1,j+1 =
∞∑

k=0

α̃kε1,j+1−k, α̃k =
1√
2

(α1,k − α1,k−1)

Then the left hand side of (3.9) can be rewritten as

1
n

n−1∑

j=1

ũ2
1,j+1 →P

∞∑

k=0

α̃2
k = F,

by Lemma 3.4. This proves (3.9), and hence completes the proof of the lemma. ¤
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