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Abstract

Let A be an m x n matrix of nonzero row vectors over the field K (C or
R). Let X = K" and Y = K™ be Euclidean normed spaces of column
vectors. Then A defines a linear map from X into Y. Let y € Y be given
and consider the problem of finding an x such that Ax = y. It is clear that
the problem is solvable only if y € R(A), the range of A. If the notion of
solution is generalized by finding an x € X such that ||Ax —y|| is minimum
over X (we call it a least square solution of Ax =y ) then it can be proved
that for every y € Y the equation Ax = y has a least square solution.
Among the least square solutions of Ax =y the one with the smallest norm
is called the best approximate solution or the Moore-Penrose generalized
solution. Geometrically the matrix equation Ax = y represents a system
of linear equations and multiplying some of them by nonzero scalars the
system remains unchanged but the Moore-Penrose generalized solution of
the resultant system may be different from that of Ax = y. We wish to have
the same generalized solution for all geometrically identical system. In this
paper we define such a generalized solution and we prove that this solution
gives a geometrical meaning. We also prove that elementary operations on
a linear system effect the Moore-Penrose generalized solution to move on
the subspace N(A)* of X.
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1 Introduction

Let A be an m x n matrix over the field K (C or R). Let X = K" and ¥ = K™
be Euclidean normed spaces of column vectors. Let y € Y be given. An element
xg € X satisfying the condition ||Axg — y|| = mingex ||Ax — y|| is called a least
square solution of the matrix equation Ax =y. The reason behind this terminology
is that |[Ax —y|?> = 3, |aix — y;|?, where a; is the ith row vector of A and y =
(Y1,92, - .-, ym)T, and xo minimizes this sum. If X is a least square solution of Ax =y
then clearly from the definition of least square solution the set xg+ N(A), where N(A)
is the null space of A, is the set of all least square solutions of Ax =y. Since N(A) is
a closed subspace of X, the set xg+ N(A) contains an element of smallest norm. The
element of xg + N(A) with smallest norm is called the best approximate solution
or the Moore-Penrose generalized solution of Ax = y. The following theorem
guarentees the existence of Moore-Penrose generalized solution of any matrix equation.

Theorem 1.1. Let A, X, Y be defined as above and let'y € Y be given. Then the
matriz equation Ax =y has a least square solution.

Proof. Since R(A) is a closed subspace of Y, Y = R(A) @ R(A)*. Hence there exists
unique y; € R(A) and yo € R(A)* such that y = y; + yo. It is clear that the matrix
equation Ax = y; is consistent. We will now prove that all solutions of Ax =y, are
least square solution of Ax = y. Let xg be a solution of Ax = y; then Axg = yi.
Since for any x € X,

| Ax — y]|? [(Ax = y1) — y2
1(Ax = y1) [ + [ly=/

22

AV

and ||Axg — y|| = ||ly2]|- This completes the proof.

We know that if the matrix equation Ax = y is consistent and if xq is a solution of
the equation then the set xo + N(A) = {x¢ +x : x € N(A)} is the set of all solutions
of the equation. Similar result holds for least square solutions. In fact we have:

Theorem 1.2. Let xq be a least square solution of the matrix equation Ax =y then
the set of all least square solutions of Ax =y is xg + N(A).

Proof. Let y; and y be respectively the projections of y on R(A) and R(A)*, and let
x1 be another least square solution of Ax = y. Then according to the argument in the
proof of Theorem 1.1, xg and x; are both solutions of the consistent equation Ax =y
and so A(x; —xg) = 0. Hence x; € xg + N(A). Conversely, let x; € xg + N(A) then
X1 = X + X3 for some x2 € N(A). Now,

[Ax; —y[|*? = [I(A(xo+x2) —y1) — y2?
= [(Axo — y1) — y2l?
= [ly2.



Asaduzzaman: Geometrical Deficiencies of Moore-Penrose 43

Hence x7 is a least square solution of Ax = y. The proof is thus complete.

We know that if Ax =y is a consistent matrix equation and if B is a matrix such
that BA is defined then the matrix equation BAx = By is consistent but the converse
may not be true. In fact we have:

Theorem 1.3. Let Ax =y be a matrix equation consistent or inconsistent. Then
the matriz equation A*Ax = A*y is always consistent.

Proof. The theorem will be proved if we can show that A*y € R(A*A). Let y; and
y2 be respectively the projections of y on R(A) and R(A)*. Since R(A)* = N(A*),
therefore yo € N(A*) and so A*(y2) = 0. Now,

Aty = A*(y1+y2)
— A*y; € R(A*A).

We now prove that the solutions of A*Ax = A*y are least square solutions of
Ax =y. In fact we have:

Theorem 1.4. Lety € Y be given and let y1 be its projection on R(A). Then a
point Xq is a solution of Ax =y if and only if it is a solution of A*Ax = A*y.

Proof. Let y, be the projection of y on R(A)*. Then y = y; + y2 and A*yy = 0.
Let xg be a solution of Ax = y;. Then it is a solution of A*Ax = A*y;. But
A*y = A*(y1 +y2) = A*y1. Hence x( is a solution of A*Ax = A*y. To prove
the solution sets for the equations Ax = y; and A*Ax = A*y identical, we need to
prove that N(A) = N(A*A). Trivially, N(A) C N(A*A). To prove the converse, let
A*Ax = 0. Then Ax € N(A*) = R(A)*. But Ax € R(A). Hence Ax € R(A)NR(A)*
and so Ax = 0. Thus x € N(A).

2 Properties of Moore-Penrose generalized solutions

A matrix equation Ax =y repesents a system of linear equations if and only if none
of the row vectors of A are zero. From now on we assume that the row vectors of
A are nonzero. By a least square solution of a system of linear equations we mean
that for the corresponding matrix equation. It is clear from the definition of least
square solutions of a matrix equation Ax =y that the set of all least square solutions
of a system of linear equations remains unchanged due to any permutation among
them. So, the Moore-Penrose generalized solution of a system of linear equations
is invariant under any permutation among them. It is a nice property. But if we
multiply some equations by nonzero scalars then the set of least square solutions of the
original system may be different from that for resultant system though geometrically
the system remains unchanged. Hence Moore-Penrose generalized solutions of different
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geometrically identical linear systems may be different. This is a defficiency of Moore-
Penrose generalized solution. We give a method to overcome this defficiency and
the generalized solutions obtained by our method will be called the best standard
approximate solution.

Theorem 2.1. Let xq be the Moore-Penrose generalized solution of Ax =y. Then
Xo € N(A)J‘

Proof. Let x; be a least square solution of Ax =y. Then by Theorem 1.2, the set of
all least square solutions of Ax =y is x; + N(A). Hence

xo—x1 € N(A) and |[xo| = inf [x3+x].
xEN(A)
Let x € N(A) with x # 0 and let ¢ be any nonzero scalar then xo — tx € x; + N(A4)
and xg — tx # xg. Hence

Ix0 — tx[* > [|x0]|?
= (x0 — tx,x0 — tx) > ||x0|*
= [t]?||x]|* — 2Re(t(x,xq)) > 0.

The above inequality holds for all nonzero scalar t. If (x,xg) # 0 then we put ¢t =
(x,x0)s, where s is any positive real, in the above inequality. We have

s2|(x, x0>|2 — 2s|(x, X0>|2 > 0.
Thus if we choose s = 1 then we have
|x|> > 2 for any nonzero x € N(A),

which is absurd. Hence (x,xg) = 0 for all x € N(A). Therefore xg € N(A)=*.

Theorem 2.2. Moore-Penrose generalized solution of the resultant system of linear
equations obtained from elementary operations applied in a linear system whose matriz
equation is Ax =y lies on N(A)* .

Proof. Suppose a series of elementary operations is applied on a linear system of
equations whose matrix equation is Ax = y and let the matrix equation of the resul-
tant system be Bx = z. Then there exists a nonsingular matrix P such that B = PA
and z = Py. Let xg be a least square solution of Bx = z then by Theorem 1.2,
the set of all least square solution of Bx = z is xg + N(B). Since P is nonsingular
and B = PA, therefore N(B) = N(A). Hence the set of all least square solutions of
Bx = z is xg + N(A). Thus the Moore-Penrose generalized solution lies on N (A)*.

Cor. The Moore-Penrose generalized solution of a geometrically identical system to
the linear system whose matrix equation is Ax = y lies on N(A)*.
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3 Best standard approximate solution

In order to define a best standard approximate solution of a system of linear equations
we need the following definitions:

Definition 1. For any m xn matriz A with nonzero row vectors we define a diagonal
matriz D4 = diag(A1, Ag, ..., A\p), where \; is the reciprocal of the norm of the ith row
vector of A, and call it the normalizer of the matriz A.

Definition 2. A square matrixz P is called a matriz of essentially diagonal if each
row and each column contain exactly one nonzero element. In other words, P is of
essentially diagonal if P is nonsingular and reducible to a diagonal matriz by some
permutations among the rows of P.

Definition 3. A matriz equation Ax =y is called geometrically identical to another
matriz equation Bx = z if there exists a matriz P of essentially diagonal such that
B = PA and z = Py.

Definition 4. Let Ax =y be a matriz equation of a system of linear equations. We
call the equation DpAx = D4y as the normalized form of Ax =y.

Definition 5. Let Ax =y be a matriz equation of a system of linear equations. The
Moore-Penrose generalized solution of the normal form DsAx = Day of Ax =y is
called the best standard approximate solution of Ax =y.

Lemma 3.1. Let P = diag(aq, ag, ..., qy) be a nonsingular diagonal matriz and let
A be an m X n matriz with nonzero row vectors then

P*D%,P = D3.

Proof. Let Dy = diag(\, A2,...,A\p), where \;’s are defined as in Definition 1.
Since the ith row of the matrix PA is «; times that of A, by Definition 1, Dpy =

(A X A 2 Jiae( MM A
dlag(‘al‘, FALRRER |a2\) and so Dy 4 = dlag(|a1|2, EALIRREE IamP)‘ Thus
2 . . A2 _ A2 I )\3
P*DPAP = dlag(almgal,QQﬁgOéQ,...,Oémmg()ém)
— 2 2 2
= diag(Af, A5, ..., A%)
_ 2
e DA.

Lemma 3.2. Let P be a nonsingular diagonal matriz and let Ax =y be the matrix
equation of a system of linear equations. Then the best standard approrimate solutions
of Ax =y and PAx = Py are identical.

Proof. The lemma will be proved if we can show that the set of least square solutions
of DsAx = Dy and that of DpgaPAx = DpaPy are identical. Let x¢ be a least
square solution of DpgaPAx = Dp4Py. Then x( satisfies the consistent equation

(PA)*D},,(PA)x = (PA)* D} , Py
<  A*P*D%,PAx = A*P*D%,Py
= A*DiAx = A*Diy.
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Hence xg is a least square solution of DgAx = D 4y.

Lemma 3.2 and the fact that the Moore-Penrose generalized solution of a system
of linear equations is invariant under permutations among the equations imply the
following theorem:

Theorem 3.1. All geometrically equivalent system of linear equations have the same
best standard approrimate solution.

4 Geometrical Interpretation of best standard approxi-
mate solutions

Let K = R and let Ax =y be the matrix equation of a system of m linear equations.
Let x¢ be the best standard approximate solution of Ax = y. Then by definition xq
is the Moore-Penrose generalized solution of Dy Ax = D4y. Hence xg minimizes the
norm ||DgAx — Day|* = Y72, A?|la;x — y;|?, where a;x = y; is the ith linear equation
of the system and \; = m But

< o~ aixo — il
X0 — U;
Z/\ﬂaixo - yi|2 = Z 1722,
i=1 i=1 2
which is the sum of the square distances of the point x( from the hyperplanes a;x = y;.

Hence best standard approximate solution minimizes the sum of the square distances
of a point from the hyperplanes given by the system of linear equations.
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