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Abstract

A new diagnostic test is developed for detecting departures from parallel
mean functions in analysis of covariance and related settings. The new test
is derived from an elementary regression perspective using nonparametric
smoothing methodology. Its large sample null distribution is shown to
be standard normal under certain mild conditions and its finite sample
power properties are investigated via a small scale simulation experiment.
Within the context of this simulation study, the new test is found to have
substantially better empirical power than the classical linear models test
when the covariate enters the model nonlinearly and has competitive or
better empirical power than another nonparametric smoothing based test
that has been proposed by Young and Bowman. The test is applied to a
data set concerning cancer and pregnancy where we show that the classical
linear models approach apparently leads to a false rejection of the parallel
means hypothesis.
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1 Introduction

A frequently arising issue in the analysis of data concerns the assessment of treatment
(or other parametric) effects in the presence of a covariate. Under the assumption of
an additive model, treatment effects can be most easily understood when the covariate
influences each treatment group in the same way resulting in group means that are
parallel to one another. If the covariate’s influence can be modeled parametrically,
tests for parallelism can be obtained via standard linear or nonlinear models method-
ology. However, in many cases a suitable parametric form may not be known for the
covariate’s effect which makes it necessary to treat this aspect of the model nonpara-
metrically. Tests derived from this latter perspective have been proposed by Young
and Bowman (1995), for example. In this paper, we use an elementary regression
approach to develop a new diagnostic test for parallelism that can be employed when
the covariate term in the model cannot be handled parametrically.

The data in Figure 1 provides an illustration of a situation where our methodology
appears to be useful. The response in this case is the logarithm of alpha-fetal protein
measured in 858 different women on various days of their particular pregnancies. The
subjects were monitored for a period of time subsequent to delivery over which inci-
dences of cancer were recorded. The question here is whether there is a cancer effect
which is easy to assess if the two mean curves (for the cancer and non-cancer popula-
tions) that relate the level of alpha-fetal protein to day of pregnancy are parallel. We
will analyze this data in detail in Section 4.

In the next section we derive our test for parallelism and discuss its large sample
properties. This is accompanied by a small simulation in Section 3 to explore its finite
sample power and level behavior. Section 4 then contains an analysis of the alpha-fetal
protein data using our methodology. Technical results and proofs are collected in the
Appendix.

2 A test for parallelism

Assume now that we have Y and Z responses of the form

yi = α1 + f1(ti) + εi, i = 1, . . ., n1, (1)

and

zi = α2 + f2(xi) + ηi, i = 1, . . ., n2. (2)

Here α1 and α2 represent unknown parameters of interest while ε1, . . ., εn1 , η1, . . ., ηn2

are presumed to be iid random variables with mean zero and unknown variance σ2.
The ti and xi are taken to be nonrandom with 0 ≤ t1 ≤ · · · ≤ tn1 ≤ 1, 0 ≤ x1 ≤ · · · ≤
xn2 ≤ 1. They can be viewed as values which are chosen at possibly different points for
some common covariate X. The functions f1 and f2 are unknown apart from satisfying



Eubank and Li: A Diagnostic Test for Parallelism 15

day

lo
g(

al
ph

af
et

al
 p

ro
te

in
)

100 150 200 250 300 350

0
2

4
6

8
1 1

0

0

0
0

0
0

00

0

1 1
0

0

1

1

11
0

0

0
1

0

00

1

0
0

0

10

0

1
1

0
1

0 0
1

0

00 0
0

1

0

0

0

0

0

0 01
0 1

0

1

0

1
1

0

1
0

0

1
0

0
1

1
0

0

0

0
0 1

0

0

00

0

0

0

0
1

1 0

0

0

0

0

0

0

1

1 0

0

0

0

101

0
0

0

0

1
0

0

0
1

1

0

0
01

1

1

0
0

0
1

0
0

000

0
1

0

1 1 1

1
0

0

0

0
0

0

0

0

0
0

1

0

01

0
1

1

0

1
0

0

000

1

0

0
0

0

0

0

0

0

01
1

0

0

0 1

101

0

0

0

0

0

0
1

0
0

0

0 0

1

1 0

0
1

0

0 00

0

1

01

0

0

0

1
1

0

0

0
0 0

1

0
0

1

1 01
1

1
0

0

0 1 1
00

0
1

10

0

1

0

1

0
00

1

0

0

0

0

0 0

0 00

0 1

0

1 1

1
0

1

1

1

1

0

0
0

1

0
1 0

1

0

0
1

0

0

0

0
0

1
0

0
0

1 0

1
1

00

01
0

0

1
0

1
1

0

1

0

1
1

1

0

0

0 1 0

0

0

0

0 1

0
0

0

0
1

0

1

0
1 00

1

0

0

01
1

0

0

0

0

0

1

0

0

00
0

0

0
0

0

0

1
1

0

0

0

0

10

0

1 00

0 1

0

0
01

0

1
0

1

0

0

0 1
1

0

1

0

0

0

0

1
0
0

0

1

1 11
00

0

0

1 00

1
1

11 0

0

0
1

1
0

0

1
1

0

0

1

0
0

0

1

1
0

00

0

0

0

10
0
1

1
0

0

1
1

0
0

0

1

1

0
0

0

1

0 1
0

0

0

011

01
0 0

1
0

0

1

0

1

1
0

1 0 0

0
0

1
01

1

0 0

1

1

0
0

0
0 0

00 0

1
0

0

0

0

0
0

1

0
0

00

0

0
00

0

0

1 0
0

0
0

0

0

0
00

0
0

0
0 1

1 0

1

1

0
1

0

0

0 01 0

0

0
00 0

1
0

1

1
0
0

1
0 0

0

0 10 0
1

1

000
1

0 1

11

1

0
0

11 0
0

1

1

10

1
1

0
0

0

0

1 11

1

0

0
0

0
0

0
0

0

00

01

0

0

10

1

0
0

0
0

1
1

0

0 0
0

0 1

0

0

1

0

0
1

1

0 0

0

1

1

0

0

0
0

1
1

1

1

1

0

0

0

10
01 0

00
0

0
0

1

0

0

0
0

0

0
0

1 0

0
00

1

1

0

1 0
0

00
0

0

0

0

0

0
01

0
0

01
1 0

0
0

0
10

0

1

1

0
1

0 1

0

0
0

1

0

0

0
1 0

1

0

0

1
0

1

0

0

1 0
0

0

0

0
1

0

0

0

0

01

1
0

0

1

0
0

0

0
0 0

0

0

0

001 0

0

0 0

1

0

0

0
1

1

1
1

0
0

0

0

0

0

1

1

1

1
0

1

0

0

0

0

0

1

1
1

1

0

0

1 1
0

1

0

0

01

1

00

0

0
0

1 0

01
1

0

0

0

00

0

1
0

0

01 0

1

1
1

0

1

0

0

1

0
011

1

0

0

0

1
1

0

0
0

0

10

0
1

1
1 0

1 0

0

0

0

1 00 0

0

1

0

0

1

1
1

0

1 1

1

0

1

1
1

1

0
0 0

1

1
0

0

0
0

0 noncancer subject
1 cancer subject

Figure 5: Alpha-fetal protein data

some type of identifiability condition such as
∑n1

i=1 f1(ti) =
∑n2

i=1 f2(xi) = 0. Under
this formulation the two mean functions in (1)-(2) are parallel if the null hypothesis

H0 : f1(t) = f2(t) for all t ∈ [0, 1]

is true. We will now derive a test for H0.
The motivation for our test stems from the following simple regression perspective.

If we actually knew f1 and f2, we could fit models of the form

Eyi = α1 + β1f2(ti), i = 1, . . . , n1,

and

Ezi = α2 + β2f1(xi), i = 1, . . . , n2,

to the Y and Z data and then test H0 by testing that β1 = β2 = 1. The standard
linear models test statistic for such a hypothesis would have the form

T̃ =
(
b̃1 − b̃2

)
/σ
[(
n1(||f2||)21n1

)−1
+
(
n2||f1||22n2

)−1
]1/2

(3)

with

||f2||21n1
= n−1

1

n1∑

i=1

f2
2 (ti), ||f1||22n2

= n−1
2

n2∑

i=1

f2
1 (xi) (4)
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and

b̃1 =

∑n1
i=1(yi − ȳ)f2(ti)

n1||f2||21n1

, b̃2 =

∑n2
i=1(zi − z̄)f1(xi)

n2||f1||22n2

(5)

for ȳ and z̄ the two response averages. Of course f1 and f2 are unknown which makes
(3) uncomputable in practice. Our solution to this problem is to replace f1 and f2 by
nonparametric estimators in (3)-(5).

The basic idea is to use nonparametric smoothers applied to the Y and Z data
separately to estimate the unknown functions f1 and f2. Thus, one obtains a nonpara-
metric estimator f̂1 of f1 by fitting yi− ȳ, i = 1, . . ., n1, and a nonparametric estimator
f̂2 of f2 from zi − z̄, i = 1, . . ., n2. In our simulations and data analysis we have used
cubic smoothing splines to obtain f̂1 and f̂2 which automatically produces estimators
with

∑n1
i=1 f̂1(ti) =

∑n2
i=1 f̂2(xi) = 0 analogous to the identifiability conditions for f1

and f2. However, the choice of smoother is unlikely to be crucial and similar empirical
results should be obtainable from kernel or series type smoothers, for example.

Given nonparametric estimators f̂1 and f̂2, the test statistics we now propose for
H0 is

T =
(
b̂1 − b̂2 − Â

)
/σ̂

[(
n1||f̂2||21n1

)−1
+
(
n2||f̂1||22n2

)−1
]1/2

(6)

with ||f̂2||21n1
, ||f̂1||22n2

defined as in (4),

b̂1 =

∑n1
i=1(yi − ȳ)f̂2(ti)

n1||f̂2||21n1

, b̂2 =

∑n2
i=1(zi − z̄)f̂1(xi)

n2||f̂1||22n2

(7)

and

Â =
1

2

(∑n1
i=1 f̂1(ti)f̂2(ti)

n1||f̂2||21n1

−
∑n2

i=1 f̂1(xi)f̂2(xi)

n2||f̂1||22n2

)
. (8)

The additional term (i.e., Â) in (6) is there to remove a bias effect arising from
estimation of f1 and f2. The standard deviation estimator σ̂ in (6) can be any√
n-constraint estimator of σ2. For example, one can use the difference based es-

timator of Gasser, et al. (1986) to obtain estimates σ̂2
1 and σ̂2

2 from the Y and Z
data, respectively, that can be pooled as in Young and Bowman (1995) to obtain
σ̂2 = [(n1 − 2)σ̂2

1 + (n2 − 2)σ̂2
2 ]/(n1 + n2 − 4). This is the estimator that was used in

our simulations and data analysis.
In the Appendix we give conditions under which T can be expected to have an

approximate standard normal distribution when H0 is true and min(n1, n2) is large.
Thus, when these conditions hold one can consider rejecting H0 at level α if |T | exceeds
the 100(1 − α/2) percentage point of the standard normal distribution.

Roughly speaking, one can expect a normal approximation to be effective for large
samples where the two sets of design points have a large amount of overlap (i.e.,
common or nearly common points as described in the Appendix) and neither f1 nor
f2 are the zero function. The need for some shared design space can be illustrated
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by noting that in the null case where f1 = f2 = f we cannot effectively estimate f
over {t1, . . ., tn1} using the Z data if x1 > tn1 , for example. The condition that f1,
f2 cannot vanish identically means that one must model carefully and not include a
spurious covariate that has no effect on the responses.

The power of the test obtained from T in (6) can be expected to grow, asymptot-
ically, as a function of

√
nCn with

Cn =

∑n1
i=1 f1(ti)f2(ti)∑n1

i=1 f
2
2 (ti)

−
∑n2

i=1 f1(xi)f2(xi)∑n2
i=1 f

2
1 (xi)

.

This is essentially a comparison of “regression” coefficients for the regression of f1 on
f2 and of f2 on f1 under the two designs. In the simplest case where n1 = n2 = n and
ti = xi = i/n, i = 1, . . . , n, we have

Cn ∼
∫ 1
0 f1(t)f2(t)dt∫ 1

0 f2
1 (t)dt

−
∫ 1
0 f1(t)f2(t)dt∫ 1

0 f2
2 (t)dt

.

Thus, Cn
.
= 0 if

∫ 1
0 f2

1 (t)dt =
∫ 1
0 f2

2 (t)dt so that the test cannot detect alternatives
such as f1(t) = cos πt, f2(t) = cos 2πt which differ but have the same L2[0, 1] norm.
More generally, T will have trivial asymptotic power against any alternative for which
Cn → 0. Since the chances of a real data scenario having Cn = 0 seem somewhat
remote, we expect T to provide a useful diagnostic tool for most situations that could
arise in practice.

3 Empirical results

In this section we report the results of simulation experiments that were conducted to
assess the performance of the test for parallelism discussed in the previous section. All
of our experiments employed data generated from model (1)-(2) using normal random
errors. Various choices were then considered for f1 f2, n1, n2 and the design points.
All the tests we considered are invariant with respect to additive constants so the
values of α1 and α2 have no influence on our results.

For comparison purposes we considered two other possible test statistics including
the classical linear models statistic

L =

[∑n1
i=1(yi − ȳ)ti

(∑n1
i=1 t

2
i

)−1 −∑n2
i=1(zi − z̄)xi

(∑n2
i=1 x

2
i

)−1
]

σ̂2
[(∑n1

i=1 t
2
i

)−1
+
(∑n2

i=1 x
2
i

)−1
]1/2 (9)

which arises from least-squares fitting under the assumption that f1 and f2 are linear in
(1)-(2). We choose σ̂2 in (9) to be the pooled Gasser, et al. (1986) estimator discussed
in the previous section rather than the more standard residual mean squared error.
This is because the latter choice can have a large positive bias when f1 and f2 are
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not linear which can adversely effect both the power and level of the test. This was
demonstrated in the simulations of Young and Bowman (1995), for example.

The other test we considered was a version of the Young and Bowman (1995) test.
Specifically, we used a statistic of the form

B =

[
n1∑

i=1

(
f̃1(ti)− f̃(ti)

)2
+

n1∑

i=1

(
f̃2(xi)− f̃(xi)

)]
/σ̂2 (10)

with f̃1, f̃2 and f̃ obtained from smoothing the mean corrected Y , Z and combined
(i.e., pooled Y and Z) data, respectively.

All our data smoothing was accomplished using cubic smoothing splines. Given
pairs of points (ui, vi), i = 1, . . ., r, with 0 ≤ u1 ≤ · · · ≤ ur ≤ 1, a cubic smoothing
spline fit to the vi is defined to be the minimizer of

r∑

i=1

(vi − f(ui))
2 + λ

∫ 1

0
(f ′′(t))2dt, λ > 0, (11)

over all functions with two absolutely continuous derivatives. The resulting estimator
is a natural cubic spline with knots at u1, . . ., ur that can be efficiently computed in
O(r) operations. More detailed discussions can be found in Wahba (1990) and Eubank
(1999). The parameter λ in (11) governs the smoothness of the fit. Its choice will be
discussed subsequently.

To obtain the estimators for f1 and f2 in (10) we used smoothing spline fits f̃1
and f̃2 to the data (ti, yi − ȳ), i = 1, . . ., n1, and (xi, zi − z̄), i = 1, . . ., n2, respectively.
In obtaining these fits we used λ = [2R/n]4 with R being the range of the design
and n the number of observations (i.e., either n1 or n2). The pooled data fit f̃ in
(10) was obtained similarly using the combined (ti, yi − y) and (xi, zi − z̄) data. The
particular choice of λ used here derives from the bandwidth employed by Young and
Bowman (1995) and the relationship between the spline smoothing parameter λ and
the bandwidth for its “equivalent” kernel estimator. See, e.g. Eubank (1999, Chapter
5)

In the case of our proposed test (3) the estimators f̂1 and f̂2 were also obtained by
cubic spline smoothing. However, data driven choices were used for λ that minimize
an unbiased risk or Mallow’s type criterion. This was done for the mean corrected Y
and Z data separately using Gasser, et al. (1986) variance estimators for the variance
term that arises in the smoothing parameter selection criterion. See, e.e., Eubank
(1999) for further discussion of smoothing parameter selection.

All our tests were conducted at a nominal 5% level. Critical values for T in (6)
and L in (9) were obtained from the standard normal distribution. Critical values
for the Young/Bowman type statistic (10) were obtained by simulating from its null
distribution in each of the various experimental settings described below.
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Our power study involved three basic scenarios. The first two of these are motivated
by empirical work reported in Young and Bowman (1995). In one case we took

f1(t) = t, f2(t) = βf1(t) (12)

with ti = i/n1, i = 1, . . ., n1, xi = i/n2, i = 1, . . ., n2, and examined this over an
(increasing) grid of β’s starting at the null model case with β = 1. For σ we used .05
and .1 and generated 500 replicate samples of size n1 = n2 = 30 or n1 = 30, n2 = 50,
for each value of β. A similar type of simulation was conducted using

f1(t) = t2 − t+ 1/6, f2(t) = βf1(t) (13)

over the same type of grid for β, starting at β = 1, with the same choices of sample
sizes, designs and variances as under (12).

Our third simulation experiment was motivated by the alpha-fetal protein data
discussed in the introduction. Here we used the distinct covariate (or time) values
from the non-cancer and cancer groups (rescaled onto [0,1]) to obtain the ti and xi
values. This resulted in n1 = 141, n2 = 103 and we again generated 500 replicate pairs
of samples at each experimental setting. We also took σ to be .5 because this is the
pooled Gasser, et al. standard deviation estimator from the alpha-fetal protein data.
The choices of f1 and f2 were obtained by fitting cubic polynomials f∗

1 and f∗
2 to the

non-cancer and cancer groups respectively, and then translating these two functions
onto [0,1]. Plots of typical Y and Z data sets obtained in this fashion along with f∗

1

and f∗
2 are shown in Figures 2–3. The choices we used for f1 and f2 in model (1) were

then
f1 = f∗

1 , f2 = (1− β)f∗
1 + βf∗

2 (14)

with β = j/9, j = 0, . . ., 9. Note that β = 0 gives the null model case and that (14)
differs from (12)-(13) in that f2 is no longer a constant multiple of f1 when H0 is false.

Figures 4–8 show some representative empirical power curves corresponding to
some of the cases treated in our simulation. Figures 4–5 give results for the linear case
(12) with σ = .1 and n1 = n2 = 30 or n1 = 30, n2 = 50. The power for all three tests
(T , L and B) are quite similar in this situation and the tests all attain their nominal
level when β = 1. Things change for the quadratic case (13). The quadratic and linear
functions are essentially orthogonal here so that the power of the L test reverts to its
level asymptotically. This is seen to be true in finite samples as well from Figures 6–7
which give simulation results for the quadratic case with σ = .05 and n1 = n2 = 30 or
n1 = 30, n2 = 50. Our proposed test performs well in this case and has substantially
better power than the Young/Bowman type test. This is as one would hope since the
alternatives being considered are of the precise form our test was designed to detect.

Simulation results for the cubic case are shown in Figure 8. None of the tests per-
form particularly well in this setting and, in particular, the L test has level difficulties.
This problem occurs because of the difference between the number and location of
the covariate values for the Y and Z data and because the null regression function



20 International Journal of Statistical Sciences, Vol. 7, 2008

t

y

0.0 0.2 0.4 0.6 0.8 1.0

4
5

6
7

8

Figure 6: Example Y data for cubic case

t

z

0.0 0.2 0.4 0.6 0.8 1.0

-8
-7

-6
-5

-4

Figure 7: Example Z data for cubic case
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Figure 8: Linear case: n1 = n2 = 30, σ = .1
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Figure 9: Linear case: n1 = 30, n2 = 50, σ = .1
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Figure 10: Quadratic case: n1 = n2 = 30, σ = .05
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Figure 11: Quadratic case: n1 = 30, n2 = 50, σ = .05
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Figure 12: Cubic case: n1 = 141, n2 = 103, σ = .5

is not linear. The presence of nonlinearity entails that the linear fits are only giv-
ing approximations to the true regression curve while the design disparity causes the
resulting approximating slopes to differ. Consequently, the linear models hypothesis
of equal slopes is false even when the two mean functions are identical and, accord-
ingly, the L test fails to provide an effective tests for parallelism in this setting. This
simulation also illustrates that our proposed test can perform at least as well as the
Young/Bowman test in a case where f2 is not a constant multiple of f1.

4 Example

We now return to the alpha-fetal protein data discussed in the introduction and pre-
sume that this data can be analyzed using a model of the form (1)-(2). In this context
the yi and zi represent the log-alpha-fetal protein levels for non-cancer and cancer sub-
jects, respectively, while the ti and xi are the corresponding values for the covariate
day of pregnancy.

A standard linear models analysis of covariance treatment for this data would
involve fitting model (1)-(2) with f1(t) = β1t and f2(x) = β2x. The resulting test
statistic for the hypothesis that β1 = β2 has the value L = 2.4 which might lead one
to conclude that the two population mean functions are not parallel. However, in light
of the simulation results from the previous section, the large magnitude for L is likely
to be a reflection of mean function nonlinearity rather than an indication of departure
from paralellism.
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Figures 9-10 show smoothing spline fits to the non-cancer and cancer subjects in
the alpha-fetal protein data. Figure 9 is a plot of the mean corrected log-alpha-fetal
protein values for the non-cancer subjects upon which the fits from the non-cancer
and cancer subjects (i.e., f̂1 and f̂2, respectively) have been superimposed. Figure 10
is a similar plot for the cancer subjects. The regression coefficient for the regression
of f̂2 on the mean corrected non-cancer subject values is b̃1 = 1.4 while the regression
of f̂1 on the cancer subjects gives b̃2 = .75. The resulting value of our test statistic T
is 1.8 and is not significant at the 5% level. Thus, in terms of our test there is only a
mild suggestion that the underlying mean functions are not of a parallel nature.

Appendix

In this section we give technical details and proofs concerning the large sample prop-
erties of our proposed test for parallelism. As in Section 1 we have responses

yi = α1 + f1(ti) + εi, i = 1, . . . , n1, (15)

and
zi = α2 + f2(xi) + ηi, i = 1, . . . , n2, (16)

with α1, α2 unknown constants, f1 and f2 unknown functions, 0 ≤ t1 ≤ · · · ≤ tn1 ≤ 1
and 0 ≤ x1 ≤ · · · ≤ xn2 ≤ 1 nonstochastic design points and ε1, . . ., εn1 , η1, . . ., ηn2

independent and identically distributed random variables with zero mean and common
variance σ2 = 1. Given estimators f̂1 and f̂2 of f1 and f2 obtained from the yi, i =
1, . . . , n1 and zi, i = 1, . . . , n2, respectively, our test statistic is derived from

T =

(
∑n1

i=1(yi−ȳ−f̄(ti))f̂2(ti)

n1||f̂2||21n1

−
∑n2

i=1(zi−z̄−f̄(xi))f̂1(xi)

n2||f̂1||22n2

)

[(
n1||f̂2||2n1

)−1
+
(
n2||f̂1||22n2

)−1
]1/2 (17)

where f̄ = 1
2

(
f̂1 + f̂2

)
,

||f̂2||21n1
= n−1

1

n1∑

i=1

f̂2
2 (ti) (18)

and

||f̂1||22n2
= n−1

2

n2∑

i=1

f̂2
1 (xi) (19)

for ȳ =
∑n1

i=1 yi/n1 and z̄ =
∑n2

i=1 zi/n2 the response averages.
In Theorem 1 below we state that T in (17) has a limiting standard normal distri-

bution when f1 = f2 in (15)–(16). This result holds under certain technical conditions
that we now list and discuss.
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C1: There are positive constants ||f1||2 and ||f2||1 such that

∑n1
i=1 f

2
2 (ti) = n1||f2||21 + o(n1) (20)∑n2

i=1 f
2
1 (xi) = n2||f1||22 + o(n2) (21)

and
n1∑

i=1

f1(ti) = O(1) =

n2∑

i=1

f2(xi). (22)

C2: The estimators f̂1 and f̂2 satisfy

n1∑

i=1

f̂2(ti) = op(min(n1, n2)) =

n2∑

i=1

f̂1(xi), (23)

n1∑

i=1

(f̂2(ti)− f2(ti))
2 = op

(√
min(n1, n2)

)
=

n2∑

i=1

(
f̂1(xi)− f1(xi)

)2
(24)

and

E

n1∑

i=1

(
f̂2(ti)− f2(ti)

)2
= o(min(n1, n2)) = E

n2∑

i=1

(
f̂1(xi)− f1(xi)

)2
. (25)

C3: If f1 = f2 ≡ f , then

∑n1
i=1

[
f(ti)− f̄(ti)

]
f̂2(ti)

n1||f̂2||21n1

−
∑n2

i=1

[
f(xi)− f̄(xi)

]
f̂1(xi)

n2||f̂1||22n2

= op

(
min(n1, n2)

−1/2
)
. (26)

Condition (20)–(21) ensures that f1 and f2 do not vanish identically over the x and
t design spaces. Restriction (22) can be viewed as an identifiability restriction since
it essentially means that f1 and f2 must integrate to zero over the t and x designs,
respectively.

Conditions (24)–(25) are rather mild consistency conditions on the nonparametric

smoothers. If, for example, the f̂i were kernel smoothers with bandwidths bi, i = 1, 2,
it is known (Müller 1988, Section 11.2) that under certain restrictions

sup
u∈[0,1]

|f̂i(u)− fi(u)| = Op

((
log ni

nibi

)1/2

+ bmi

)
, i = 1, 2,

when f1, f2 have m ≥ 1 continuous derivatives. As a result, the bandwidths need
only be chosen so that (log ni/bi) = op(

√
ni) = nib

2m
i . In particular, an “optimal”
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global smoothing level of bi ∝ n−1/(2m+1) will satisfy this condition. In the case of
deterministic levels of smoothing both (24) and (25) can be replaced by

E

n1∑

i=1

(f̂2(ti)− f2(ti))
2 = o

(√
min(n1, n2)

)
= E

n2∑

i=1

(
f̂1(xi)− f1(xi)

)2
.

Condition (26) is a technical restriction that will be discussed later in this section.
With the above preliminaries, our major results can be stated as follows.

Theorem 1. Assume that conditions C1–C3 hold and that min(n1, n2) → ∞ with
n1/n2 → θ ∈ (0,∞). Then, if f1 = f2 = f for some bounded function f , T has a
limiting standard normal distribution.

Proof. The proof consists of showing that under the null model where f1 = f2 = f , T
behaves like

T̃ =

∑n1
i=1 εif(ti)/n1||f ||21n1

−∑n2
i=1 ηif(xi)/n2||f ||22n2

σ
[(
n1||f ||21n1

)−1
+
(
n2||f ||22n2

)−1
]1/2

with ||f ||21n1
, ||f ||22n2

defined as in (18)–(19). T̃ can be seen to have a limiting stan-
dard normal distribution using the Lindeberg-Feller Theorem for double arrays (e.g.,
Serfling 1980, pg 31–32) along with conditions (20)–(22), the iid and finite variance as-
sumption for the ε’s and η’s, the boundedness of f and the fact that n1/n2 is bounded
away from 0 and ∞.

We must now show that T = T̃ + op(1). In this regard, observe that

n1∑

i=1

(
yi − ȳ − f̄(ti)

)
f̂2(ti) =

n1∑

i=1

εif̂2(ti)−
n1∑

i=1

f̂2(ti)

[
ε̄+ n−1

1

n1∑

i=1

f(ti)

]

+

n1∑

i=1

(f(ti)− f̄(ti))f̂2(ti)

with ε̄ = n−1
1

∑n1
i=1 εi. Conditions (20)–(22) along with ε̄ = Op

(
n
−1/2
1

)
imply that

the second term in the last expression is op
(
min(n1, n2)/

√
n1

)
. Similarly,

n2∑

i=1

(zi − z̄ − f̄(xi))f̂1(xi) =

n2∑

i=1

ηif̂1(xi) +

n2∑

i=1

(f(xi)− f̄(xi))f̂1(xi)

+op (min(n1, n2)/
√
n2) .

Since f̂2 is independent of the εi a conditional expectation argument reveals that∑n2
i=1 εi(f̂2(ti) − f(ti)) has mean zero and variance σ2E

∑n1
i=1(f̂2(ti) − f(ti))

2. Ap-

plying the same approach to
∑n2

i=1 ηif̂1(xi) along with condition (25) then gives that
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∑n1
i=1 εif̂2(ti) =

∑n1
i=1 εif(ti)+op

(√
min(n1, n2)

)
and

∑n2
i=1 ηif̂1(xi) =

∑n2
i=1 ηif(xi)+

op

(√
min(n1, n2)

)
.

The proof is completed by using (20)–(21) and (24) to obtain ||f̂2||21n1
= ||f ||21 +

op(1) and ||f̂2||22n2
= ||f ||22 + op(1). Combining this with condition (26) and n1/n2 →

θ ∈ (0,∞) gives the desired result. •

There are a number of situations where one can verify condition C3. Perhaps
the simplest of these is when the two designs coincide, i.e., n1 = n2 ≡ n and ti = xi,
i = 1, . . . , n. In that case we will have ||f ||1 = ||f ||2 ≡ ||f || and find that

∑n
i=1 f̂

2
j (ti) =

n1||f ||2(1 + op(n
−1/4)), j = 1, 2. The Cauchy-Schwarz and triangle inequalities along

with (24) can then be used to show that
n∑

i=1

(f(ti)− f̄(ti))f̂j(ti) = op(n
−3/4), j = 1, 2,

and that
n∑

i=1

(f(ti)− f̄(ti))
(
f̂2(ti)− f̂1(ti)

)
= op(

√
n).

In combination these results imply C3.
One would hope that similar results obtain when the x and t designs are only close

in some asymptotic sense. An example of such a situation can be described as follows.

Suppose that n2 ≥ n1 with n1
n2

= 1 + o
(
n
−1/2
2

)
and that for each ti, i = 1, . . . , n1,

there exists an element of the x design, x′i, such that ti−x′i = o
(
n
−1/2
1

)
. The physical

meaning of these conditions is that there are x design points that are close to, and can
be “paired” with, all the t design points and the number of remaining x design points
(that cannot be paired) is not too large. By adding uniform boundedness conditions

on the derivatives of f , f̂1 and f̂2 the closeness of the t and x designs can be exploited
to again verify C3.

The basic conclusion that one might infer from all this is that T should be expected
to have an approximate normal distribution in practical settings where the x and t
designs cover the same interval with a substantial amount of overlap or sharing of
common points. In particular, we would expect Theorem 1 to be applicable to the
designs for the alpha-fetal protein data discussed in Sections 1 and 4.

A final question concerns the behavior of the test under alternatives where f1 6= f2.
Suppose that

n1∑

i=1

f1(ti)f2(ti) = n1 < f1, f2 >1 +o(n1)

and
n2∑

i=1

f1(xi)f2(xi) = n2 < f1, f2 >2 +o(n2)
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for finite constants < f1, f2 >
j
, j = 1, 2. Then, asymptotically T is dominated by√

n1C with

C =

(
< f1, f2 >1 /||f2||21

)
−
(
< f1, f2 >2 /||f1||22

)
(
||f2||−2

1 + θ||f1||−2
2

)1/2 . (26)

This provides us with the following companion result for Theorem 1.

Theorem 2. Assume that conditions C1–C3 hold and that min(n2, n2) → ∞ with
n1/n2 → θ ∈ (0,∞). Then the test obtained by rejecting H0 : f1 = f2 for large values
of |T | is consistent against any alternative for which C in (26) does not vanish.

The noncentrality parameter C can be viewed as a comparison of projections of f1
on f2 and f2 on f1 in different metrics dictated by the two designs. In the simple case
n1 = n2 = n with ti = xi, i = 1, . . . , n, C vanishes if and only if ||f1||2 = ||f2||2 with
|| · || now representing the common norm in (20)–(21). Thus, the test will not be able
to detect function that differ but have the same norms in this case.
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