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Abstract 

Warranty is a critical element in the implementation of marketing strategy and assurance to 

customers used by manufacturers. It also assures to customers that the manufacturer will provide 

compensation, through repair, replacement, or refund, for purchased products that fail within the 

warranty period. There are situations where two-lifetime variables are considered together for 

offering the warranty period. For example, for automobiles, sometimes warranty coverage has both 

age and mileage or usage limits, whichever occurs first. The warranty policy characterized by a 

region in a two-dimensional plane with one axis representing product age and the other axis 

representing product usage is known as a “two-dimensional” or “two-attribute” warranty policy. 

This paper aims to analyse a set of two-dimensional warranty claims data of a component of an 

automobile. It derives the joint probability models for age and usage and hence estimates the 

reliability function of the component.  It also estimates the fractiles of the joint probability 

distribution that focus on the practical use of the information regarding the two-dimensional 

warranty limits of the component.  
 

Keywords: Automobile component, Reliability, Two-dimensional warranty, Weibull 

model. 
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1. Introduction 

Manufacturers use warranty services at the time of sale to indicate the high level of quality and 

reliability of their products. The warranty declaration ensures that the customer undertakes all or 

part of the cost of some specified conditional failures in a specified warranty period/region. For a 

one-dimensional warranty, this period only involves the one lifetime variable of the product and 

for a two-dimensional warranty, the period involves the two-lifetime variables simultaneously of 

the product. Generally, the larger warranty region indicates an attractive compensation to the 

customers and helps the manufacturers to increase the volume of sales. However, without having 

sufficient reliability of the product, the margin profit for manufacturers will hit severely, increase 

the warranty cost and also decrease the goodwill of the manufacturers. Therefore, it is important to 

determine the optimum warranty period for the product from both manufacturers’ and customers’ 

perspectives.  
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Much of the literature on warranty analysis considers one-dimensional warranty which is indexed 

by a single lifetime variable, such as age or usage. The age is measured by calendar time such as 

day, month, year, and so on, and the usage is measured by real operating time in terms of mileage, 

the number of copies, etc. However, there are situations where two-lifetime variables are 

considered together for offering the warranty period. For example, for automobiles, sometimes 

warranty coverage has both age and mileage limits, whichever occurs first (such as a five-

year/50,000-mile protection plan). The warranty policy characterized by a region in a two-

dimensional plane with one axis representing product age and the other axis representing product 

usage is known as a “two-dimensional” or “two-attribute” warranty policy (Karim and Suzuki, 

2005). Moskowitz and Chun (1994) assumed that the number of events under the two-attribute 

warranty policies is distributed as Poisson and suggested a Poisson regression model. Lawless et 

al. (1995) discussed methods to model the dependence of failures on age and mileage and to 

estimate survival distributions and rates from warranty claims data using supplemental information 

about mileage accumulation. Singpurwalla and Wilson (1998) proposed an approach for 

developing probabilistic models indexed by two variables, time and amount of use, and applied 

these variables in an additive hazard model. Kim and Rao (2000) considered the two-dimensional 

warranty policy and implemented the expected warranty cost analysis based on a bivariate 

exponential distribution. Pal and Murthy (2003) applied Gumbel’s bivariate exponential 

distribution for estimating the warranty cost of motorcycles under the two-dimensional warranty 

policy. More on two-dimensional warranty analysis can be found in Blischke and Murthy (1994), 

Mitra and Patankar (2010), Blischke, Karim and Murthy (2011), Gupta and Chatterjee (2014), 

Wang and Xie (2017), Muhammed and Almetwally (2020) and Lin and Chen (2021). 

Automotive manufacturing companies utilized the warranty database as a prime source of field 

reliability data, which can be collected economically and efficiently through repair service 

networks. They analyze these data to enhance the quality and field reliability of their products and 

to improve customer satisfaction. In this paper, an approach is discussed for modelling the 

reliability of an automotive component based on two-dimensional warranty claims data. It derives 

the joint probability model for age and usage and hence estimates the reliability function of the 

component.  

The outline of the paper is as follows. Section 2 describes the warranty claims data set of an 

automobile component. The paper analyses this data set. Section 3 presents the preliminary 

analysis results of the data set. Sections 4 and 5 derive the joint probability density function and 

reliability function, respectively. Section 6 concludes the paper with a discussion and possible 

implementation issues for future research. 
 

2. Description of Data 

In this paper we consider a set of warranty claims data for an automobile component. The 

component was produced during one year, sold during 26-month period and warranty claims were 

recorded during four years observational period under the two-dimensional warranty with age=18 

months (age limit) and usage=100000 km (usage limit). Therefore, the warranty region can be 

represented by a rectangular constructed by the points (0, 0) and (18, 100000) and the failed 

components are replaced free of charge if they failed within this region. There are 4240 failed 

observations and 45760 censored observations for the component. The main limitation of the 

database is that for all failed observations the age and usage are known but for any censored 

observation the age is known whereas the usage is unknown. The structure of the age-based 

aggregated warranty claims and censored data are shown in Table 1, where t, dt and rt denote the 
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age in month, number of units failed at t and number of units that are right-censored at t, 

respectively. The usage of each failed component is also given in the warranty database. 
 

Table 1: Aggregated warranty claims data of the automobile component 

Age in month (t) No. of failures at 

t (dt) 

No. of censored at t 

(rt) 

1 d1 r1 

2 d2 r2 

⁝ ⁝ ⁝ 

18 d18 r18 

Total n=4240 r=45760 

 

3.  Preliminary Analysis of Data 

Two-lifetime variables, Age denoted by T, and Usage denoted by X, are considered in this paper 

for modelling the reliability of the component. The descriptive statistics of these two variables 

based on only failure data are shown in Table 2. In Table 2, the measurement units for Age and 

Usage are respectively, month and kilometer (km). The descriptive statistics given in Table 2 are 

conditional estimates in the sense that they are estimated based on items that failed during the 

warranty period and led to claims but the censored observations are ignored. This means the 

summary statistics for the variables Age and Usage given that the Age is less than or equal to 18 

months and Usage is less than or equal to 100000 kilometers. Table 1 indicates that the conditional 

average and median lifetimes with respect to Age are 10.768 and 11.0 months and Usage are 

27001 and 25128 kilometers. In the case of the Usage variable, the mean exceeds the median, 

indicating skewness to the right. On the other hand, Age variable shows negative skewness. 

Table 2: Descriptive statistics of lifetime variables for n=4240 observations 

Statistics 

 

Variable 

Age (T) Usage (X) 

Mean 10.768 27001 

Standard deviation 4.588 15938 

Minimum 1 26 

First quartile 7 15665 

Median 11 25128 

Third quartile 15 36381 

Maximum 18 96394 

Skewness -0.33 0.82 

Kurtosis -0.82 0.96 
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Figure 1 shows the marginal plot of Usage versus Age, which is a scatterplot with histograms in 

the margins of the X- and Y-axes. This figure can be used to assess the relationship between two 

variables and examine their distributions.  
 

 
  

Figure 1: Marginal plot of Usage versus Age 
 

The scatterplot in Figure 1 indicates a positive correlation between Age and Usage; that is, the 

Usage increases as Age increases. The numerical value of the Pearson correlation coefficient 

between Age and Usage is 0.603 with the p-value of 0.000 for the hypothesis test of the 

correlations being zero indicates sufficient evidence at α=0.01 that the correlation is not zero. The 

marginal distributions have clusters of points (about 19000 - 21000 for Usage and about 15 - 16 

for Age).  
 

4.  Joint Probability Density Function 

In this section, we derive the bivariate joint probability density function (pdf) and joint cumulative 

density function (cdf) of the lifetime variables Age (T) and Usage (X). To find the joint pdf, first, 

we find the suitable distribution of T and then derive the conditional distribution of X given Age T. 

It is observed that the Weibull distribution can be considered as the best fitted distribution for T 

among the four distributions, Weibull, Lognormal, Exponential and Normal, in the sense that it 

gives the smallest value of the adjusted Anderson-Darling (AD) statistic. The AD values for the 

competitive four distributions are for Weibull = 93655.506, Lognormal = 93655.555, Exponential 

= 93656.762, and for Normal = 93655.904. In this case, the variable T with its corresponding 

frequency and failure/censored indicator (δt=1 for failure and δt=0 for censored at age t) are 

considered.   

If   and   denote respectively the scale and shape parameters of the Weibull distribution, then 

the pdf of T can be written as, 
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We apply the maximum likelihood estimation method to estimate the parameters of the model. The 

maximum likelihood estimates (MLE) of the parameters of Weibull distribution (1) are 
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ˆ 82.2409   and ˆ 1.57953  . The MLE of the shape parameter of Weibull distribution greater 

than one indicates an increasing failure rate (IFR) with respect to the Age of the component. 

Next, we find the conditional distribution of Usage (X) given Age (T), f(x|T=t). It is noted that for a 

given Age in month, the number of censored observations are known but the censored usage are 

unknown in the warranty database. Therefore, to estimate the censored usage and hence the 

conditional distribution, f(x|T=t), we propose the following step-by-step procedure.   

Step 1: Find the suitable probability distributions for the usages (X) of failed components 

separately for each age in months, t, t=1, 2, …, 18. Here we assume the Weibull distributions with 

the scale and shape parameters, 0

t and 0

t , for t=1, 2, …, 18.  

Step 2: Find the maximum likelihood (ML) estimates of the parameters, 0

t and 0

t , for t=1, 2, …, 

18 of Weibull distribution. These estimates are based on only failure usages for each age. 

Step 3: Derive the relationships between the ML estimates of both parameters and the age in 

month. We assume the linear relationships which are shown in Figure 2. Figure 2 indicates that the 

scale parameter is a linear function and the shape parameter can be expressed roughly as linear of 

the age in month. According to Figure 2, the relationship between the shape parameter 0

t  and age 

(t) can be approximated as 

0 1.39314 0.080058t t        (2) 

Similarly, the relationship between the scale parameter 0

t  and age (t) can be approximated as 

0  3407.634 2496.967  t t       (3) 

  

Figure 2: Linear relationships for MLEs of the parameters and age for failure data only  

 Step 4: Generate Weibull random variates Xt of size (nt + rt) with parameters 0

t  and 0

t , given in 

(2) and (3), for t=1, 2, …, 18, and arrange the values of each Xt in ascending order. Repeat this for 

a large number of times, e.g., k =10000 times, compute averages of k sets of ordered Xt and denote 

it by Xt
*
, t=1, 2, …, 18.    
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Step 5: Divide Xt
* 
in two sets, the first set (Aft) with the smallest nt and the second set (Act) with the 

largest rt observations, for t=1, 2, …, 18. Assume the second set (Act) as the estimated censored 

usages. Here it is assumed that for a given age, the distributions of the failure and censored usages 

are the same but the mean usage of censored units would be higher than that of the mean usage of 

failure units.  

Step 6: Fit Weibull distributions and estimate parameters based on the nt observed failure usage 

and rt censored usage (set Act, estimated in Step 5) for each age t=1, 2, …, 18.     

Step 7: Like Step 3, derive the relationships between the estimates of both parameters and the age 

in month. Here we again assume the linear relationships which are shown in Figure 3. According 

to Figure 3, the relationship between the shape parameter βt and age (t) and the relationship 

between the scale parameter ηt and age (t) can be approximated
1
, respectively as,  

1.07298 0.09297t t        (4) 

and  

 -1783.000 4386.329  t t       (5) 

 

  

Figure 3: Linear relationships for MLEs of the parameters and age for failure and censored data  

Step 8: Consider the conditional distribution of usage given age, f(x|T=t), as Weibull with shape 

parameter βt and scale parameter ηt. That is, the pdf of X given T is 
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 To derive the relationship for the scale parameter, the estimate of the scale parameter for age 18 months has been 

excluded assuming it is an outliner as it gives a very large value compared with others because of having a huge 

number of censored observations for this age.  
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After implementing the above eight-steps, the joint probability density function for T and X can be 

obtained by using the marginal and conditional density functions as follows. 

( , ) ( | ) ( ), , 0f t x f x T t f t t x       (7) 

Inserting the density functions (1) and (6) in (7), we get 
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where the two shape parameters , 0t    and two scale parameters , 0t   . The maximum 

likelihood estimates of the parameters β and η are obtained using the failure and censored data 

likelihood for T derived based on the pdf (1) and βt and ηt are obtained from (4) and (5).  

A plot of the joint probability density function f(t,x) given in (8) is shown in Figure 4. 

 

 

Figure 4: Plot of joint pdf of T and X, f(t,x)  

 

According to (8), the probability of failure of a component in the interval (ti-1 < T ≤ ti, xj-1 < X ≤ xj) 

is 
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where for this data set i=1, 2, …, I; j=1, 2, …, J; I and J denote the number of intervals for T and 

X, respectively, with t0=0, x0=0, and F(t,x) denotes the joint cumulative density function of T and X 

defined by 

 
0 0

( , ) Pr , ( , )

t x

F t x T t X x f u v dudv           (10) 

If n denotes the total number of failures, the expected number of failures for the component (nij) in 

the ijth interval (ti-1<T ≤ ti, xj-1<X ≤ xj) for the variables lifetime variables T and X can be estimated 

by using (9) as 

 1 1Pr , , for  1,2,...,18 &  1,2,...,6 ij i i j jn n t T t x X x i j           (11) 

 

5.  Joint Reliability Function 

The joint reliability function of T and X becomes 

 ( , ) Pr , ( , ) 1 ( , ), 0, 0.

t x

R t x T t X x f u v dudv F t x t x



            (12) 

Note that the closed-form solutions of the cdf F(t,x) and the reliability function R(t,x) cannot be 

obtained. To estimate these functions numerically, we apply the “integral2( )” function given in the 

R program. 

To compare the nonparametric and parametric estimates of reliability function numerically, we 

make 10 groups of Usage with 10,000 kilometers intervals, given in Table 3.  

Table 3: Ten different groups of Usage 

Group No. Usage limit No. of observations 

1 0 – 10000 534 

2 10000 - 20000 981 

3 20000 – 30000 1130 

4 30000 – 40000 758 

5 40000 - 50000 523 

6 50000 - 60000 156 

7 60000 - 70000 81 

8 70000 - 80000 52 

9 80000 - 90000 17 

10 90000 - 100000 8 

 Total 4240 

For testing the equality of the mean ages in month for ten uses groups, we use the analysis of 

variance (ANOVA) procedure and the output is given in Table 4. 
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Table 4: ANOVA Table for Age with ten groups of Usage 

Source DF Adj SS Adj MS F-Value p-Value 

Usage group 9 40815 4534.97 396.08 0.000 

Error 4230 48431 11.45   

Total 4239 89246    

In the ANOVA Table 4, the p-value (0.000) indicates that there is sufficient evidence that not all 

the means of the Ages are equal when alpha is set at 0.05. The means and confidence intervals (CI) 

of Ages for ten different Usage groups are given in Table 5. 

Table 5: Means and confidence intervals (CI) of Ages for ten Usage groups 

Usage group  n Mean Standard deviation 95% CI 

1 534 3.633 2.299 (3.3459, 3.9200) 

2 981 9.521 3.840 (9.3090, 9.7330) 

3 1130 11.693 3.577 (11.496, 11.890) 

4 758 12.649 3.490 (12.408, 12.890) 

5 523 13.208 3.183 (12.918, 13.498) 

6 156 14.487 3.024 (13.956, 15.018) 

7 81 14.827 2.355 (14.096, 15.564) 

8 52 15.423 2.396 (14.503, 16.343) 

9 17 15.824 1.629 (14.215, 17.432) 

10 8 16.750 1.581 (14.405, 19.095) 

The confidence intervals for groups 6 to 10 indicate that they are overlapping. Therefore, next, we 

merge the groups 6 to 10 and perform the ANOVA again based on the new six groups, where the 

new group No. 6 means the merged of the old groups 6-10. In this case, the p-value (0.000) again 

indicates that there is sufficient evidence that not all the means of the Ages are equal when alpha is 

set at 0.05, and the means and confidence intervals of Ages for six different Usage groups are 

given in Table 6. 

Table 6: Means and confidence intervals (CI) of Ages for six Usage groups 

Usage group  n Mean Standard deviation 95% CI 

1 534 3.633 2.299 (3.3458, 3.9201) 

2 981 9.521 3.840 (9.3090, 9.7330) 

3 1130 11.693 3.577 (11.496, 11.890) 

4 758 12.649 3.490 (12.408, 12.890) 

5 523 13.208 3.183 (12.918, 13.499) 

6 314 14.860 2.708 (14.485, 15.234) 

Table 6 shows that all the confidence intervals are distinct (non-overlapping). Hence the next 

analyses (to find the conditional distribution of Age given Usage), will be conducted based on 

these six Usage groups. 

To evaluate the performance of the proposed method, we estimate the parametric reliability 

function (12) by applying the maximum likelihood estimation method and compare it with the 

nonparametric estimate of the reliability function which can be easily estimated from the observed 

data. Figure 5 compares these estimates. 
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Figure 5: Plots of nonparametric and parametric reliability functions for six groups of usage 

Figure 5 indicates that the nature and estimates of the parametric reliability functions (colour lines) 

are approximately similar to the nonparametric reliability functions (black lines) for the six groups 

of usage. This implies the applicability of the proposed method. Parametric estimates would be 

more close to the nonparametric estimates if much better approximations of the parameters, Eqs. 

(2) (5), can be used. 

    

5.1  Fractiles of Distribution 

The p-fractile of the continuous bivariate probability distribution, F(t,x), is any pair of values of 

the random variables T and X, call (tp, xp), such that F(tp, xp) = p, where 0 ≤ p ≤ 1. The related 

terms of fractile are percentile, decile, and quantile. The p-fractile of a sample indicates that at 

least a proportion p of the sample lies at or below the values (tp, xp) of the random variables T and 

X, and at least a proportion (1- p) lies at or above of the values (tp, xp). The estimating equation for 

(tp, xp) can be expressed as {tp, xp} = F
-1

(p, p), where F
-1

(.,.) denotes the inverse function of the 

cumulative distribution function F(.,.). 

Figure 6 illustrates the quantiles for p=0.05 (left-hand side) and p=0.10 (right-hand side). There are 

many possible pairs of values for {tp, xp}. For example, for p=0.05, some possible values are {tp, 

xp}={(15, 51000), (18, 44000), (24, 40000)}, and for p=0.10, some possible values are {tp, 

xp}={(24, 80000), (30, 72000), (36,70000)}. These estimates and Figure 6, as for example, 

indicate that 5% of the component will fail by 18 months and 44000 kms and 10% will fail by 30 

months and 72000 kms. The estimates of fractiles can be used for deciding on the suitable two-

dimensional warranty limits of the component. 
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Figure 6: Plots of 0.05-fractile (left-hand side) and 0.10-fractile (right-hand side) 
 

6. Conclusions 

This paper analyzed a set of two-dimensional warranty claims data of a component of an 

automobile, where two lifetime variables, age and usage, are considered together for offering the 

warranty period. It proposed a method to derive the approximated joint distribution of age and 

usage and then this distribution is applied to estimate the reliability function of the component. The 

estimates of fractiles of the bivariate lifetime distribution would be useful to the manufacturer for 

selecting suitable two-dimensional warranty limits and deciding on the optimum maintenance 

policy for the component. A comparison of the parametric reliability function with that of the 

nonparametric estimate implies the applicability of the proposed method. The relationships 

between the ML estimates of both scale and shape parameters and the age in month are assumed 

linear because of easy computation and interpretation. However, better approximations would 

improve the applicability of the method. 

An extension of the method concerning more lifetime distributions would be valuable. Also, 

simulation studies can be performed for investigating the performance of the approach.  
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