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Abstract 

Hypergeometric probability arises in the context of sampling without replacement from a finite 

population. We describe four methods for computing hypergeometric probability, discus their 

relative merits and a connection between the two widely used methods. In turn, it has been 

transparent that the sample space is not unique though they result in the same probability model on 

the real line. 

Keywords: Hypergeometric probability, finite sampling, sampling without replacement, binomial 

distribution 
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1. Introduction 

There are two major ways of calculating hypergeometric probabilities. One assumes that the items 

in the finite population are distinguishable, or, can be labelled to make them distinguishable. This 

is widely known as the Combinatorial Method (Method 3). At the beginning we present two other 

methods: Permutation Method (Method 1) and another method (Method 2) based on it.  In these 

methods items are selected in a group which is an outcome in the sample space. Each outcome is 

equally likely guaranteeing the simple random sampling. The sample can also be drawn by a 

random number table or by any other method devised for simple random sampling. 

In the other case, it is immaterial whether the items in the finite population are distinguishable or 

indistinguishable. Items are sequentially drawn one after another without having replaced the 

previous ones popularly known as sampling without replacement. This will yield a sample space 

where outcomes are based on dichotomous nature of the population. The sample space has lesser 

number of elements compared to the first two methods and calculation of probability transparently 

shows the sequential nature of the change in probability, it is getting popularity. This will be 

discussed in Method 4 called Sequential Sampling Method.  

In this note, we derive the probability of an event { }X x in an instructive way by all four 

methods available, try to pinpoint the way they are connected through the sample space, and 
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discuss their relative merits. Finally we present an algorithm for ease of calculation. The examples 

have been presented in a way that shows insights into the fundamentals so that undergraduate 

students from broad spectrum of areas can easily grasp the proof.  
 

2. Distinguishable Items  

Suppose that an urn contains K items of one kind (say non-defective items) and N K items 

are of a different kind (say defective items). The items may be distinguishable or can be made 

distinguishable by labelling in case they are indistinguishable. Let X denote the number of  non-

defective items, generally called successes, selected at a time. The probability of x  successes in 

n trials is derived by 3 methods in this section. 
 

Method 1 (Permutation Method)  

Theorem 1 Let an urn contain K items of one kind (say non-defective items) and N K items 

are of a different kind (say defectives). The items may be distinguishable or indistinguishable. The 

probability of x non-defective items in a sample of size n is given by  

( ) ,
K N K

n x n x
x N

n

P P
P X x C

P



      max{0, ( )} min{ , }.n N K x n K               (1)   

where 
n

xP and 
n

x

n
C

x

 
 

 
 are usual notations for permutation and combination. 

Proof. Let ( 1) ( 1)K

xP K K K x     be the number of permutations of K elements taking 

x elements at a time. Then there are 
K N K

x n xP P 

 sequences in the sample space  that have x

consecutive successes, a typical sequence of which is  1 2 1 ,xii i x nG G G D D
 say, where 

1 1,2,..., ;i K 2 1, 2,..., ;i K …, 1,2,...,xi K and 

max{0,  ( )} min{ ,  }.n N K x n K     Then the probability of a sequence of x successive 

successes, say,  
1 2 1 ,x x nG G G D D

 in a sample of size n  selected at a time is given by 

1 2 1( ) ,
K N K

x x n x n x

N

n

P P
P G G G D D

P


  max{0,  ( )} min{ ,  }.n N K x n K           (2) 

Each of the 
n

xC  outcomes in the sample space generates x successes with probability equal to (2). 

Hence, the probability of x  successes in the sample is given by (1). 

 

Joarder and Al-Sabah (2007) proved it without combinatorial arguments. In this method, elements 

of the sample space can be written out on 
N

nP pieces of papers, thoroughly mixed and one can 

randomly be taken blindly.  This will be the required sample. Note however that in this method, 

the n elements of the experiment are not sampled sequentially but selected as a combination. 
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Example 1 A sample of 3 digital voice recorders is selected at a time from a set of 5 of which 1 is 

defective.  
 

a. What is the probability that only the first two voice recorders will be non-defective?  

b. What is the probability that any 2 voice recorders in the sample will be non-defective? 
 

Solution: The sample space of the experiment is provided below. Here the order of the 

arrangement is important. 

                                                                  

                                                                  

                                                                  

                                                                  

                                                                  

                                                                  

                                                                  

                                                                  

                                                                  

                                                                  
 

Table 1 

Permutation Sample Space 

Note that 1 2 3 4{ ,  ,  ,  }e e e e is the sample space in Sequential Sampling Method which will be 

discussed in Section 3. Each of the 60 outcome has the same probability of 1/60. 

a. The event A comprises of the following elements from the permutation sample space: 

                                                                                 
  

                 

Then the probability is 
12

( ) 0.20.
60

P A     

Note that we have selected 12 elements from a population of 60 elements. It can be solved by 

preparing the following table and then using formula (2).  
  

 Non-defective items Defective items Total 

Population K  N K  N  

Sample x  n x  n  
  

Table 2 

 Here 5, 4, 3, 2N K n x    (see (2) or preferably the above table), the required probability 

is 

4 5 4

2 3 2

5

3

12
0.20

60
.

P P

P



     
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b. The event B comprises of the following elements from the permutation sample space: 

                                          

                                          

                                          

                                          

                                          

                                          
 

Table 3 

Then the probability is 
3

2

12
( ) 0.60.

60
P B C    

By (2), or preferably by using the above table, the required probability is  

4 5 4
3 2 3 2
2 5

3

12
( 2) 3 0. 0

6
.6

0

P P
P X C

P



       

Method 2 (Sampled and Un-Sampled Decomposition) 
 

The probability of a sequence of x successes in a sample of size n  is given by

1 2 1( ) ,x x n
N n N

P G G G D D
K x K


   

    
   

                                                                      (3) 

where max{0, ( )} min{ , }.n N K x n K    The probability of x  successes in a sample of 

size n is given by  

( ) ,
n N n N

P X x
x K x K

       
         

      
                      (4)   

where max{0,  ( )} min{ ,  }.n N K x n K     
 

Joarder (2011) mentioned the above without a logical proof though it follows from (1) of the 

Permutation Method. Note however that in this method as well, all n elements of the experiment 

are sampled as a pre-sequenced group, not sequentially. 

A closer examination of equation (4) reveals that the probability of obtaining x successes in n  

trials (samples) can be expressed as the product of combination of the un-sampled and the sampled 

successes divided by the combination of the total successes in the population. The example in 

Method 1 is solved by Method 2 below. 
 

Solution:  

 Sampled Un-sampled Total 

Any item n  N n  N  

Non-defective items x  K x  K  
 

 Table 4 
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Solution to Example 1 

a. Here 5, 4, 3, 2N K n x    and then by looking at the formula (3) or preferably by the 

above table, the required probability is 

5 3 5 1
0.20

4 2 4 5
.

N n N

K x K

        
           

        
  

b. Here 5, 4, 3, 2N K n x    and then by looking at the formula (4) or preferably by the 

above table, the required probability is  

3 5 3 5 3
( 2) 0.60.

2 4 2 4 5
P X

       
           

      
 

The sample space contains the following 5 elements: 

1 2 3 4 1 3 2 5 1 2 4 5 1 3 4 5 2 3 4 5{ ,  ,  ,  ,  },G G G G G G G D G G G D G G G D G G G D  

each having the same probability (0.20).  
 

Method 3: Combinatorial Method  

This is the most widely used method and will be called Combinatorial or Popular Method. The 

probability of x  items in a sample of size n is given by  
 

( ) ,
K N K N

P X x
x n x n

      
       

     

  max{0,  ( )} min{ ,  }.n N K x n K             (5) 

The above is obvious from Table 2. Again note however that in this method, all n elements of the 

experiment are sampled as a group rather than sampling sequentially. The proof is available in 

most books on elementary probability. The example in Method 1 is solved by Method 3 below. 
 

Solution to Example 1 

a. The sample space contains 10 elements. Let the non-defective voice recorders be distinguishable 

and denoted by 
1 2 3 4, , ,G G G G and the defective one by

5.D  In case, the items are not 

distinguishable, the items may be labelled to make them distinguished. The method does not write 

out the sample space nor calculate the probability of outcomes in it. And there is no obvious way 

to calculate the probability of the event of interest. For a sample of 3( )n items, from the 

population of 5( )N items, then the sample space can be written as  

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5

1 4 5 2 3 4 2 4 5 2 3 5 3 4 5

{ ,  , , , ,

, , , , }.

G G G G G G G G D G G G G G D

G G D G G G G G D G G D G G D
 

Since the order of the arrangement of outcomes in the sample space is not important, this part of 

the question does not have a solution by this method. 

b. The event of interest is  
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1 2 5 1 3 5 1 4 5 2 4 5 2 3 5 3 4 5{ ,  ,  ,  ,  ,  }A G G D G G D G G D G G D G G D G G D which has probability 

( ) 0.60P A  since each of the 10 sample points has a probability of 0.10. Note that any column 

of Permutation Sample Space is the sample space in this method.   

Alternatively by using (5), with 5, 4, 3, 2,N K n x     or preferably, by looking at the table 

in Method 1, the required probability is  

4 1 5 6
( 2) 0.60.

2 1 3 10
P X

     
         

     
 

Notice that the 10 elements of the sample space in this method has been permuted 3!( !)n times 

resulting in ! 6 10N

nn C   elements in the sample space in Method 1.  For example, the first 

outcome
1 2 3G G G can be permuted to  

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1{ , , , , , },G G G G G G G G G G G G G G G G G G  

i.e., 6 ways which is the row 1 of the permutation sample space in Method 1.  
 

3. Distinguishable or Indistinguishable Items  
 

Method 4 (Sequential Sampling Method)  

In this method, the ordering of arrangement in the sample space refers to the particular draw and is 

important. Suppose that a population containing K items of one kind (say non-defective items) 

and N K items are of different kind (say defective items). Let n items be drawn at random in 

succession, without replacement, and X denote the number of  non-defective items selected. The 

quantity 1 2 1x x nG G G D D denotes the x successive non-defectives and n x successive 

defective items. The probability is expressed by truncated factorial by Joarder and Al-Sabah 

(2007). It can also be expressed by permutations or combinations (Joarder, 2011). 

Theorem 3.1 Let n items be drawn at random in succession, without replacement, and X denote 

the number of non-defective items, generally called successes, selected. Then the probability of x  

successes in n trials is given by the following:  

  ,
K N K

x n x

N N x

x n x

n P P
P X x

x P P









 
   

 
  max{0, ( )} min{ , }.n N K x n K               (6) 

Proof.  

a. Let 
1 1 2( ... ).xP G G G 

 
Then by using conditional probability, we have   

1 1 2 1 1 2 1( ) ( | ) ( | ),x xP G P G G P G G G G 

 
which is tabulated below: 



 

 

 

 

 

 

 

Joarder and Omar: Four Ways to Compute Hypergeometric ...                                     7 

 

 

Event          …                          

Probability    

       
   

 

       

           
   

 

…          

             
   

 1 2... xa a a

 

 

Table 5  

 

i.e., 
1 1 2 1... ,x xa a a a 

  
   

   

       
 

       

           
   

         

             
 

  
 

  
  

                                                    

(7)

  

b. Let 2 1 2 1 1 2 1( | ).x x n n x xP D D D D G G G G      Then by using conditional probability, 

we have  

2 1 1 2 2 1 2 1 3 1 2 1 2

1 2 1 1

( | ) ( | ) ( | )...

    ( | ),

x x x x x x x x x

n x x n

P D G G G P D G G G D P D G G G D D

P D G G G D D

      

 




 

  which equals 

   
       

           
 

         

             
   

  [           ]

      [           ]
   

The above simplifies to 

 

   
                          

                    
 

    
   

    
    

                                                                 

(8) 

By (7) and (8), we have   

             
 
      

        
  

 

  
  

    
   

    
                 (9) 

Each of the 
n

xC  outcomes in the sample space generates x successes with probability equal to (1). 

Hence, the probability of x  successes in the sample is given by  (6). Note that in this method, the 

n elements of the experiment are sampled sequentially rather than as a group. The example in 

Method 1 is solved by Method 4 below by making the fundamental arguments prominent. 
 

Solution to Example 1 

a. A tree diagram is drawn below to write out the sample space:  
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Figure 1 

 
 

By following the branches of the tree diagram, the sample space is then given by 

                                               where ( 1, 2,3)iG i  is the event that in 

the -thi selection, a non-defective recorder was obtained, and ( 1, 2,3)iD i  is the event that a 

defective recorded was obtained in the -thi selection. In this method, for a sample of size 3,n 

the number of elements in the sample space should have been be 
32 8  but it has been only 4 

because of smaller size of 1.N K   The probability of one sample outcome, say, 1 2 3G G D  is 

given by  

1 2 3

4 0 3 0 0 1 12
( ,

4 1 3
)

1 2 1 60
P G G D

  
   

  
 

which can be done by the following table: 

Event                         

Probability    

   
   

   

   
   

   

   
   

    

 

Table 6 

The number 60 in the denominator of the above probability is not obvious from the sample space 

of 4 elementary outcomes but it is clear from the permutation sample space in Method 1. 

b. The other outcomes have probability  

1 2 3

4 0 3 0 2 0 24
( ) ,

4 1 3 1 2 1 60
P G G G

  
   

  
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and  

          
   

   
 

   

   
 

   

   
 

  

  
  

respectively. Any of the above probability can simply be calculated by (2) or (3). The event of 

interest is                         has the probability  

       
  

  
 

  

  
 

  

  
 

  

  
  

which can also be calculated by 1 2 3

36
1 ( ) .

60
P G G G   

Each of the 4 elementary outcomes in the sample space of this method maps on to 24, 12, 12 and 

12 elementary outcomes in permutation sample space in Method 1.  The probability mass function 

simplifies to ( 2) 0.60P X    and ( 3) 0.40.P X    

Though the method appears simple, we cannot do it let alone drawing a tree diagram in case 

sample size is large. Thus a method is required that provides insight, and yet amenable to calculate 

probability for large sample sizes.  
 

4. Comparisons Among the Methods 

The probability in (1) given by 

K N K
n x n x
x N

x n

P P
C

P




 is algebraically the same as 

!

! ( )!

K N K

x n x

N
x n

P P n

x n x P



 


 which is the same as (5). That (4) and (5) are also probability mass 

functions can be easily checked by Vandermonde’s identity. Since ,N N x N

x n x nP P P

   from (2), 

we have  

1 2 1( ) .
K N K

x n x
x x n N N x

x n x

P P
P G G G D D

P P




 



    

In case , ,K N  such that ,
K

p
N
  then 

K
xx

N

x

P
p

P
 and (1 )

N K
n xn x

N x

n x

P
p

P








 

proving that (1) converges to ( ) (1 ) ,n x n x

xP X x C p p     0 1,p   0,1,2,..., ,x n  

which is the mass function of binomial probability distribution. In case of sampling with 

replacement, the outcomes will be independent, probability of success at any trial will be constant 

but a connection to binomial distribution requires the binomial coefficient.  

Because Method 1 (Permutation Method) has the binomial coefficient ,n

xC  the particular form of 

hypergeometric probability function transparently provides connection with binomial probability 
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function.  But if the sample large is large, or even moderate,  Method 1 will generate formidable 

number of outcomes in the sample space, and hence, we recommend using the sample space of 

Sequential Sampling Method and use (1) or (6) to calculate probability. We are hesitant to 

recommend Method 3 (the popular Combinatorial Method) as its probability mass function neither 

provides the probability of the sequential outcome directly nor shows any insight of its connection 

with the binomial probability mass function. 

 

The probability mass function (1) or (6) given by Method 1 (Permutation Method) or Method 4 

(Sequential Sampling Method) can also be extended naturally to multivariate hypergeometric 

distribution. If 1x items are selected without replacement from 1N items, 2x items are selected 

from 2N items and 3x items are selected without replacement from 3N items from a finite 

population of size 1 2 3 ,N N N N    then for a sample of size 1 2 ,nn x x x    we have

31 2

1 2 3

1 1 2 2 3 3

1 2 3

( , , ) ,
, ,

NN N

x x x

N

n

P P Pn
P X x X x X x

x x x P

 
     

   

where 

1 2 3 1 2 3

!

, , ! ! !

n n

x x x x x x

 
 

 
The above is also exactly the same as an extension of (5) of 

Method 3 (Combinatorial Method) as 

 

 

for integers 1 10 ,x N  2 20 ,x N  3 30 ,x N  1 21 .nn x x x N      
 

5. The Recommended Algorithm 
 

We present our recommendation in the form of an algorithm:  

STEP 1: Prepare Table 1 

 Non-defective items  Defective items  Total 

Population 4K   1N K   5N   

Sample 2x   1n x   3n   
 

Table 7 
 

STEP 2: Calculate the probability of a sample point say, 1 2 1 ,x x nG G G D D which is a part 

of the event of interest, say { }X x by Sequential Sampling Method if the sample size is small, 

say, not exceeding 5. Once having been efficient, or, for a large sample, do it by the formula: 

1 2 1( ) ,
K N K

x n x
x x n N

n

P P
P G G G D D

P




   

31 2

1 1 2 2 3 3

31 2

( , , ) ,
NN N N

P X x X x X x
xx x n

      
          

     
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which is given in (2). Observe that it is easy to write the above formula using information from 

Table 2. 

For our example, by using Sequential Method (Method 4), or by formula in Method 1, we have 

4 1

2 1
1 2 3 5

3

12
( ) .

60

P P
P G G D

P
    

STEP 3: The probability of a compound event, say ( ),P X x is 
n

xC  times the probability in 

STEP 2.  

For our example, the required probability is 
3

2

12
( 2) 0.60.

60
P X C     

6. Conclusion 
 

We believe that the connection of sample spaces in Permutation Method, Combinatorial Method 

and the Sequential Sampling Method demonstrated in the paper provides insight into the issue and 

will inspire undergrad students and instructors. We conclude that sample space of an experiment is 

not unique though it generates the same probability model on the real line, in particular, on 

{ : 2,3}x x  for our example. The Combinatorial Method and Sequential Sampling Method are 

well known but the connection between the sample space is never clearly explained in textbooks. 

Moreover, we feel, the way we decomposed the number of items in the population and the 

favorable number of ways in calculating the probability of a sample outcome in Sequential 

Sampling Method has less chance of making mistakes by students especially for small samples.  

We refer to an interesting paper by Trong (1993) that provides a method for calculating cumulative 

probability of hypergeometric distribution by appealing to prime numbers. We finally recommend 

that the four methods can be generalized to multivariate hypergeometric probability model. 
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