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Abstract

We revisit the problem of deriving analytically tractable expressions for lower order
moments of the ordinary least squares (OLS) estimator in autoregressive models with unit
roots. Simple algebraic techniques are used to approximate the series sums of the first two
moments derived by Tsui and Ali (1991). Compared to the exact moment values obtained
by numerical methods, it is found that our approximate closed forms in simple functions
are reasonably accurate for a wide range of sample sizes. We also validate the numerical
accuracy of asymptotic mean and variance derived by Shenton and Vinod (1995).
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1. Introduction

Since the seminal work of Hurwicz (1950) and White (1961) on distributional
properties of the OLS estimator ¢ of the first-order autoregressive parameter ¢, it has
spawned a vast statistical and econometric literature on autoregressive models and the
unit root models. However, without knowledge of the exact distributions, the
distributional properties of ¢ in finite samples have been extensively explored in both
analytical and computational approaches. Among others, Ullah (2004) and Choi
(2015) provide excellent surveys of the methodology and salient tools for finite
sample econometrics and the unit root models. For a standard AR(1) model with zero
initial value and NID disturbance terms, there is a long history of studies deriving
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series expansions to approximate lower-order moments of the OLS estimator. For
example, Hurwicz (1950) obtains a closed form expression for the first moment of ¢
for |¢| < 1 when the sample size is 3. Later, White (1961) obtains the first three
terms for each of the first and second moments of ¢. Shenton and Johnson (1965)
extend White (1961) to obtain the first five terms for each of the first and second
moments of ¢. In early 1990's, Tsui and Ali (1991) extend Shenton and Johnson
(1965) to approximate the first four moments of ¢ by series sums. And Abadir (1993)
obtains an impressive but complicated closed-form expression of the first moment of
&, which needs evaluation of infinite sums based on generalized hyperbolic functions.
Moreover, Shenton and Vinod (1995) re-examine the moment issue and obtain
asymptotic expressions for the mean, mean squared error and variance of ¢, but there
has been little discussion of their numerical accuracy. More recently, Phillips (2012)
obtains an integral representation of the finite sample bias of ¢ and also provides
asymptotic expansions for the bias. In this paper, we extend Tsui and Ali (1991) to
sum their moment series by integrals and obtain tractable closed-form expressions in
simple functions for the mean and variance of ¢.

Although multivariate frameworks and more flexible structures of autoregressive
models have been the subject of recent research, there is still a continuing interest in
the finite-sample distributional properties of ¢. For example, Phillips (2012) explores
the application of the delta method and continuous mapping theorem to the indirect
inference estimator in first order autoregressive estimation. Convenient expressions
for E(¢) are in demand to correct finite sample bias and to price derivative securities
(Phillips and Yu (2009). Tang and Chen (2009) indicate that the OLS bias and mean
squared error of ¢ have bearings on the estimation of continuous models with the
mean-reversion parameter in interest rate processes.

The main contribution of this paper is to provide convenient expressions in simple
functions for the OLS bias and mean squared error (MSE) of ¢ in a standard unit root
model. In addition, the tractable bias and MSE expressions are useful in correcting
parameter estimation. Moreover, it avoids numerical inaccuracy of moment values
obtained by conventional simulation estimation, as Hansen (2014) remarks that such
simulated moments can be substantially inaccurate unless the simulation size is very
large. As a by-product, we validate the numerical accuracy of the apparently
neglected expressions for mean and variance of ¢ derived by Shenton and Vinod
(1995).
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The remainder of this section highlights the gist of the approach by Shenton and
Johnson (1965) and the extension by Tsui and Ali (1991). Section 2 introduces the
algebraic techniques to sum the Tsui and Ali's moment series for the mean of ¢.
Sections 3 extends the approach to the second moment. Asymptotic moment values
are also compared. Section 4 assesses the numerical accuracy of the moment
formulas, which are compared with exact values obtained by numerical methods and
with values obtained from other closed form approximations in the literature. Section
5 contains our final remarks.

Consider the following first order autoregressive (AR(1)) model,
yt:¢yt—1+6t1 t:1i2'3p"';n (1)

where the initial value y, =0, |¢| =1, and €,~NID(0,0%). Without loss of

generality, o2 can be set to 1. For a sample of n observations, y = (y1, Y2, .o, Yn)
the OLS estimator of ¢ is

(;{):M_E )

Yie1 ytz—1 v’

White (1961) shows that ¢ is expressible in terms of a ratio of two quadratic forms in
normal variables U and V. The joint density function of y is

1 n
f) =Q@m)™ ZeXp{—zz e — ¢yt_1)2}

and the joint moment generating function of U and V is well-established that
M(p,q) = Elexp(pU —qV)]
1
=Dn(p,q) 2,
where D, (p, q) is the determinant of a symmetric tri-diagonal matrix, C = (c; ;) with

the non-zero elements being: ¢;; =1+ ¢*+2q,i=1,2,3,..,(n—1); ¢, = 1;
and ¢; ;41 = €41, = — (@ +p),i =123, .., (n— 1), respectively.

®3)

Following White (1961), Shenton and Johnson (1965) obtain expressions for the first
two moments of ¢ about ¢, with

E(d— ) =["(05U,)dq, (4)
E@—¢)?=[" (05U, + U,)dg, (5)
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where
Ur = % (Dn(o' q))_l/z (6)

and a;; = (%)f denotes the j* partial derivative with respect to ¢, which is

evaluated at ¢ = 1 after differentiation. In order to evaluate these integrals explicitly,
Shenton and Johnson (1965) show that

Dn(O, q) — Z;},:—g Agn)(PZS , (7)
where Dy (0,q) = D;(0,q) = 1 and
AP = O g (M) O — s - 25 (2)  for 1S T < m -2,
r® = r(r—1)(r = 2) - (r—s + 1),

I 8)
Ay’ =@ +2q¢)" 1, forn >0,
A = 2q(n—2)(1 +29)"3, forn = 2.
The inverse of the square root of D, (0, q) can be expanded as an infinite series,
(M) 425
-1/2 _ V™ Bs "¢
Dn(0,0) = X520 o ©)
where BS(") is a function of n and g, which satisfies the recurrence relation
S
B = T3 1(n>z (s +r)B™MA®,, (10)
s4g =0

in which A™ =0 for s> (n—2) and B{” = 1. By Fubini's theorem, moment
expressions in (4)-(5) involving integrals of sums can be evaluated as sums of
integrals by using (6) and (9). As an example, the OLS bias of ¢ can be obtained as

E(p—o)=" D

ZSB( )¢23 1 © ZSB(")¢25 1

dq_ZsOf

Zq) T (1+2q) -

—dq (12)

Theoretically, one can obtain many terms in series expansion of the moments of ¢
about ¢ by term-wise integration. However, it is very burdensome as the number of
integrals to be evaluated at the st" terms is proportional to s. Tsui and Ali (1991)
compute more than 15 terms for each of the first two moments of ¢ about ¢ in (4)-
(5), and have been able to use algebraic techniques to detect regularities among the
terms for each of the moments. These regularities are useful in establishing general
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expressions in series expansions for the moments of ¢ about ¢, when |p]| < 1.
However, Tsui and Ali's infinite series converges quite slowly for |¢p| =1,
particularly for large sample sizes. In this paper, we suggest to approximate the upper
limit of summation of the infinite series by matching moment values of ¢ with those
computed numerically using the algorithm by Tsui and Ali (1994). Such upper limits
will serve as the upper bounds of integrals when deriving closed form approximations
to the moments of ¢.

2. Approximation to the first moment

When |¢| < 1, the OLS bias of ¢ in series expansion derived by Tsui and Ali (1991)
is given as follows:

E(p—¢) =32, asp>7?, (12)
where
—2(n-2 12
1= (nf—rill)[z])' 2 = m, as = 6SAn(S), for s = 3, (13)

withnlsl =n(n —2)(n —4) ... (n — 2s + 2),

(n+ 4s — 4)ls72
T (n+ 4s — 3)b+1]
_(nt+4s-4)(n+4s—-6)-(n+4s—4—-2(s—2)+2)
 (n+4s—3)(n+4s—5)(n+4s—3—-2(s+1)+2)°

An(s)

(14)

We note that the upper limit of summation for all four moment expressions of ¢
about ¢ in Tsui and Ali (1991) should have been written as oo instead of n — 2. In
what follows we employ algebraic techniques to approximate the infinite sum of
series in (12) and derive a closed form approximation for the bias of ¢ in terms of
simple functions. The idea is to express A, (s) as ratios of the gamma function and to
exploit its well-known properties to obtain the approximation. Dividing each term in
the numerator and denominator of A4,,(s) in (14), we get

n/2+2s—1)/T(n/2+s+1)

() = 2 e ¥ 25 —1/2)/T(nj2 + 5 = 3/2)

(15)
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where I'(+) is the gamma function. Expression (12) can be rewritten as an infinite sum

of gamma functions,

. —2(n—-2) 12
Ee=8)~ Gripm * * Grr e

3 T(n/2+2s—1)/T(n/2 +s+1)

4Ly ST(n/2 + 2s — 1/2)/T(n)j2 + 5 — 3/2)

¢3

+ 2s-1

(16)

To simplify the ratios of gamma functions in (16), we apply the uniqueness theorem
of the gamma function, which states that for a constant ¢, I'(x)/T'(x + ¢) can be
approximated by x~¢ as x — oo (see Titchmarsh (1939, p. 58)). For convenience, let

a, =n/2+2s,anda, =n/2 +s, a7

we have

r(n/2+2s-1) _T(a—1) _ {1 i}'l/z _1/2
F(n/2+25—%) F(al—%) !

a;
1 3 ~1/2
#{l+—+-—+0(n3 /% and
{+2a1+8af+ (n )}a1 an

T'm/2+s—3/2) _ I'(a, —3/2) N {1 ~ i}_S/Z s
rm/2+s+1) I(a, + 1) 2a, 2
{1 15 315

~il+—+
4a, 32a?

+ 0(n‘3)} a2—5/2.

(18)
Substituting results in (18) into (15), we have

_ -1/2 -5/2
An(s) = 273By(s)a; a;*,

with

Bn(s):1+<i+

15) 3 15 315
2a, 4a,

+ 2) +0(n™3).

+
8a? 8aja, 32aZ

(19)
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The approximate bias of ¢ in (16) becomes

) —2(n -2 12 3w i
E(p—¢) = (n(-:ll)[zl) ¢+ ot 5)[3] ¢3 + ZZ sB,(s)a, 1/2a2 5/2¢zs—1_
s=3

(20)
For large n, a, and a, will also be large. We may truncate B, (s) up to terms of
0(n~?) so as to confine 4,,(s) to O(n~>). After some algebra, the following
proposition is in order.
Proposition 1.1: When ¢ = 1 and n > 50, the bias of ¢ can be approximated by

1.78260 5.10887 12.97932 44.50000 443.37500+9662.12500

E@-¢)~ -

n n2 n3 nt ns nb
175557.21875 2.64222 x 10® 3.53654 x 107
- 7 + 8 - 9
n n n
(21)
Proof:

Based on the result in (20), for ¢ = 1, we approximate the infinite sum in (12) by
straightforward integration, with the change of variables of s/n to u. We have

3% s - 3 (™ DY
Zz sB,(s)a, 1/2a2 2 & ZL sBp(s)a, 1/2012 512 gs,
s=3

6 nqy/n
= —f B (mw)u(1 + 4u)~Y2(1 + 2u)~5/?du,
n 3/n

(22)
where B;:(s) denotes the truncated B, (s) in (19) containing six terms up to O(n™2).
Also, n; = 0.7n, which is the approximate upper limit of summation obtained by
matching the infinite sum in (12) with exact values of E(¢ — ¢) computed
numerically by Tsui and Ali (1994). For convenience, define

m/n L . .
L, )=6 f By (i, )2WDnCi=i=Dy (1 + 4u) Y2741 + 2u) "5/ du,
3/n

(23)
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where B;*(i, ) denotes the coefficient associated with the product of (1/a,)! and
(1/a,)’ in B;*(nu). We have
2-i

0.7
SL B:(nw)u(l + 4u)~Y2(1 + 2u)~52du = Z Z 1,Gi,))

2
/n i=0 j=0
(24)

For each I, (i,j) in (24), we obtain its Maclaurin series expansion up to 0(n~19).
They include

0.21741 27 4 378 4070.250 4 40095 382269.3750 + 3.620 x 10°

L(00) = nz  nd  n ns noé n’ n8
345163 x 107
(25)
0.26883 1.52079 x 107'* 54 972 12514.50 140259.60
LOD = nz n3 BT T n’
1.46584 x 10° 1.47787 x 107
- 5 + 5 + 0(n™19),
n n
(26)
0.20150 5.63788x 107'* 54 1188 18832.50 260982
L(L0) = n2 + n3 G + n’
3.37436 x 10° 4.19478 x 107
- 5 + 5 +0(n19),
n n
(27)
0.20871 1.18141x107'2 108 3240 66825
h(20) = nd n* Tt Tt
1.16348 x 10° 1.83836 x 107
5 — 5 + 0(n™19),
n n

(28)
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0.26834 4.54348x 1073 108 2808 50301
+ -—+ — +

11(1,1) = n3 nt ns né n’?
763409 1.05658 x 107 10
. 5 + 0(n~1),
(29)
0.34939 4.25589 x 107'* 108 2376 35721
L(02)= ———- " T T e T T
451980 5.19157 x 106 oy
. 5 +0(n ).
(30)

We also obtain series expansion of a; and a, in (13) with terms up to O(n19),

where
2 4 2 4 2 4 2 4 2

a:__+———-|————+———+———+0Tl_lo;
1 n n? n3 n* n> n® n? nd no ( )

(31)

12 108 696 3960 21252 110628 566256
= +— - + - +

= - _ +0(n~19).
n3 nt ns noé n’? ns n® ( )

(32)

Substituting the expansions in (25)-(32) into (20) and after some algebra, we obtain
the result as shown in (21).

a;

3. Approximation to the second moment

In this section, we derive approximate closed form expressions for the second
moment of ¢ about ¢ by a similar procedure used in Section 2. Details of the
derivations are relegated to the Appendix.

3.1. Second moment

When |¢] < 1, the second moment of ¢ about ¢ (mean squared error) in series
expansion is given by Tsui and Ali (1991) as follows:

E@—9)" =) 0,
s=0

(33)
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where
n—dn+7
% = v DT
(34)
_ —(n® —6n® — 25n + 42)
@1 (n + 5) ’
(35)
_ 3(n*+16n—57)
N I
(36)
ws = 3H,,(s)C,(s), fors = 3
@37)
and
— 4)[s-3]
) = g 1
(38)
H,(s) = —20s3 + (16n — 38)s? + (10n2 — 8n — 16)s + (n® + 2n? —9n + 2),
(39)

withnlsl =n(n —2)(n —4) - (n — 2s + 2).

Proposition 2.1: When ¢ = 1 and n > 50, the mean squared error of ¢ can be
approximated by

13.28574 69.91775 260.85853 160.81440 10294.15388

E@—¢)~ n? n3 + nt + ns né
33943.18750 2.27422 x 10® 7.25612 x 107
+ - + . -~ . :
n n n

(40)
Proof: See the Appendix.
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Proposition 2.2: When ¢ = 1 and n > 50, the variance of ¢ can be approximated by

R 10.10807 51.70360 188.48408 452.08518
/“‘2((1)) ~ N2 - 3 e + ns -
12498.02670 74076.04414 1.53611 x 10® 6.10571 x 107
6 + 7 + 8 - 9
n n n n

(41)
Proof: See the Appendix.

Proposition 2.3: When ¢ = 1 and n > 50, the standard deviation of ¢ can be
approximated by

3.17932 8.13124 19.24422 120.31565 1716.04901

O'(qb) & n ) n3 ne ns
6532.54243 266396.60080 8.89550 x 10° 5.00310 x 107
no + n’ B ns B n? '

(42)
Proof: See the Appendix.
3.2. Comparison with other results

The dominant terms in the first two moments of ¢ can be obtained from expressions
(21), (40) and (42). They are:

1lli_>rgnE(d3 —1) ~ —1.78260
%ergoan(é —1)2 ~ 13.28574
limno($) ~ 3.17932
(43)

The corresponding values obtained by Shenton and Johnson (1965), and Vinod and
Shenton (1996) are -1.7814, 13.2857 and 3.17996, respectively. Our results match at
least to the second decimal place with those numerically reported in the literature. The
discrepancy may be due to the loss of partial information when applying the
uniqueness theorem to convert ratios of gamma functions, when approximating the
infinite upper limit of summation of the moment series by a finite upper bound, and
when approximating the series sum by definite integration.
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4. Accuracy checking

Performances of the closed form approximations to the first two moments of ¢ are
compared to those analytical expressions available in the literature, with the exact
values computed numerically by using the algorithm of Tsui and Ali (1994). The
following specifications are in order.

[a] TA-1 to TA-2 denote the first two moment expressions of ¢ about ¢ by Tsui and
Ali in (12) and (33), with the infinite upper limits of summation truncated to 0.7n and
0.16n. MV-1 to MV-2 denote the approximate closed forms of the corresponding
moments of ¢ about ¢ in (21) and (40).

[b] MN-TA denotes Tsui and Ali's series sum of E(¢) in (12), with the infinite upper
bound truncated to 0.7n. MN-3 terms, MN-6 terms and MN-9 terms denote the first
three, six and nine terms of E(¢) in (21). Also, MN-SV denotes the expression for
E (¢) derived by Shenton and Vinod (1995), which is truncated to 0 (n~*), with

3.562860 4 22.251441370 96.542980535 _
2n—1 (2n —1)2 2n-1)3 '’

E((f)) =~1-—
(44)

[c] SD-TA denotes the standard deviation of ¢ obtained indirectly from Tsui and Ali's
infinite series for the first two moments of ¢ about ¢ in (12) and (33), with the
corresponding infinite upper bounds truncated to 0.7n and 0.16n, respectively. SD-3
terms, SD-6 terms and SD-9 terms denote the first three, six and nine terms of o (¢)
in (42). Moreover, SD-SV denotes the asymptotic standard deviation of ¢ by Shenton
and Vinod (1995), which is obtained by taking the square root of the variance with
terms truncated to O(n~%). That is

Var(§) ~ 10448692 _ 73646468 23750884,
M)~ =12 @n—17 " @n=1*"

(45)

All approximations and exact values are computed by Mathematica and in most of the
cases, we take various sample size n=20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100, 150,
200, 250, 300, 350, 400, 450 and 500. To save space, Tables 1-3 display some
representative results for assessing the numerical accuracy of the approximations
considered in [a]-[c]. All the exact and approximate moment values can be obtained
upon request.
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The exact and approximate values of the first two moments of ¢ about ¢ are
displayed in Panels A-B of Table 1. As can be gleaned from Panel A, TA-1 and MV-
lapproximate exceptionally well, matching the exact values of the OLS bias almost
all the time to the fifth decimal place for n > 150. For n < 100, they are reasonably
accurate at least to the third decimal place. The accuracy improves as sample size
increases. In addition, as can be observed from Panel B, TA-2 and MV-2 match exact
values of the second moment of ¢ about ¢ at least to the sixth decimal point for
n > 200, and at least to the fifth decimal place for n < 150. As such, our results
provide some justifications for truncating the infinite upper limits of summation of
Tsui and Ali series for the first two moments of ¢ about ¢ to 0.7n and 0.16n,
respectively.

Table 2 displays the exact and approximate values of E(¢) computed by various
approaches. As can be observed from Columns [2]-[5], values of all the five
approximations are almost identical to each other for sample sizes ranging from 50 to
500. They match the exact values up to the fourth decimal place for n = 75. In
addition, there are no differences among the values computed by MN-3 terms, MN-6
terms and MN-9 terms, which are also identical to those obtained by MN-SV. As

such, MN-SV and MN-3 terms can be used to correct the OLS bias of ¢ when ¢ = 1.

Table 3 reports values of the standard deviation of ¢ computed by various
approximations. As can be observed, when n < 100, SD-SV performs relatively
better than the other four approximations, matching the exact values at least to the
fifth decimal place; whereas those by the four approximations match the exact values
to the fourth decimal place in most of the cases. However, the relative discrepancy
among SD-SV and SD-3 terms to SD-9 terms disappears for n > 150, as all five
approximations match the exact values at least to the fifth decimal place for almost all
of the cases. For example, when n =50, the standard deviations of ¢ are
(0.06405,0.060402,0.060488) for Exact, SD-SV and SD-3 terms, respectively;
whereas for n = 150, the corresponding values are (0.020825,0.020825,0.020828)
for Exact, SD-SV and SD-3 terms, respectively. Hence, both SD-SV and SD-3 terms
could be used as convenient approximations for o(¢) when n > 50.

5. Concluding remarks

We have derived analytical expressions in simple functions for the OLS bias and
mean squared error of ¢ in a standard unit-root model. They are obtained by
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summing the hitherto unresolved series sum of moments of ¢ derived by Tsui and Ali
(1991). When compared to the exact moment values computed by numerical methods,
our tractable expressions are reasonably accurate for a wide range of sample sizes.
Hence, they may serve as benchmarks for comparison with approximations derived
from other approaches. In addition, expressions for the bias and mean squared error of
¢ could be useful for bias correction and variance reduction in parameter estimation.
Moreover, the algebraic techniques introduced in this paper is applicable to summing
those Tsui and Ali's series expansion in the stationary case, alongside setting
appropriate bounds for the series sum to yield tractable expressions for the moments
of ¢, which will be taken up in future research.
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Table 1: Comparison of exact and approximate moment values of ¢ when ¢ = 1

n_ | 50 | 75 100 150 200 300 400 500
Panel A: E(¢p — ¢) x 1072
Exact [-3.3813 [-2.2938 [-1.7354 |-1.1671 |-0.8791 |-0.5886 | -0.4424 | -0.3544
TA-1 |-33337 [-22917 |-1.7358 |-1.1675 | -0.8795 | -0.5887 | -0.4427 | -0.3546
MV-1 [-3.3706 | -2.2889 | -1.7328 [ -1.1661 | -0.8787 | -0.5886 | -0.4425 [ -0.3545
Panel B: E(¢ — ¢)? x 10~*
Exact [47.9208 [22.0232 [12.6018 [5.6989 |3.2340 | 1.4500 [0.8191 | 0.5258
TA-2 479819 |22.0410 |12.6093 | 57011 |[3.2348 [ 1.4503 | 0.8194 [ 0.5258
MV-2 | 47.9661 | 22.0444 |12.6127 |5.7028 [3.2357 | 1.4506 [ 0.8195 | 0.5259

Notes: Exact: values computed by using the algorithm of Tsui and Ali (1994);
TA-1-TA2: Series sum of Tsui and Ali (1991) for the first two moment of ¢ about ¢ in
(12) and (33), with upper limit of summation truncated to 0.7n and 0.16n;
MV-1 to MV-2: Approximate closed form expressions in (21) and (40).

Table 2: Approximate mean of ¢ when ¢ = 1

n Exact MN-SV MN-TA | MN-3terms MN-6 terms MN-9 terms
50 0.9662 0.9667 0.9662 0.9663 0.9663 0.9663
75 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771
100 0.9826 0.9826 0.9826 0.9827 0.9827 0.9827
150 0.9883 0.9883 0.9883 0.9883 0.9883 0.9883
200 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912
300 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941
400 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956
500 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965

Notes: Exact: values computed by using the algorithm of Tsui and Ali (1994);
MN-SV: values computed by using the series expansion of Shenton and Vinod (1995) in (44);

MN-TA: values computed by using the series sum of Tsui and Ali (1991) in (12), with the
upper limit of summation truncated to 0.7n;
MN-3 terms to MN-9 terms: values computed by using the first 3 terms, 6 terms and 9

terms of the closed form of E(¢ — ¢) in (21).

Table 3: Approximate standard deviation of ¢(x 1072) when ¢ = 1

n Exact SD-SV | SD-TA SD-3 terms | SD-6 terms SD-9 terms
50 6.0405 6.0402 | 6.0720 6.0488 6.0502 6.0502
75 4.0941 4.0940 | 4.0974 4.0991 4.0994 4.0994

100 3.0968 3.0968 | 3.0978 3.0999 3.1000 3.1000
150 2.0825 2.0825 | 2.0828 2.0840 2.0840 2.0840
200 1.5688 1.5688 | 1.5688 1.5696 1.5696 1.5696
300 1.0505 1.0505 | 1.0506 1.0508 1.0508 1.0508
400 0.7896 0.7896 | 0.7896 0.7898 0.7898 0.7898
500 0.6326 0.6326 | 0.6325 0.6326 0.6326 0.6326
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Notes: Exact: values computed by using the algorithm of Tsui and Ali (1994);

SD-SV: values obtained from taking the square root of var(¢) derived by Shenton and
Vinod (1995) in (45);

SD-TA: values computed by using the series expansion of Tsui and Ali (1991) in (12) and
(33), with the upper limit of summation truncated to 0.7n and 0.16n;

SD-3 terms to SD-9 terms: values computed by taking the first 3 terms, 6 terms and 9
terms of the closed form of o(¢) in (42).

Appendix
Proof of Proposition 2.1:
Applying the similar algebraic techniques to C,,(s) of E(¢ — ¢)? in (38), we have

Co(s) = 2‘6Pn(s)a1_5/2a2_7/2, (46)
where
- 1+( 5 21) 35 105 567 oo
niS) = 2a, 4a, 8a? 8aja, 32a2 o
(47)
We have
A 3 ¢ s/2 -
E($—9)? = g + 0+ 0y + o ) Ha()P()a; ™ a5,
s=3
(48)

where w,, w; and w, are as defined in (34)-(36), and H,,(s) is a polynomial of
degree 3 in s as defined in (39).

For ¢ = 1, we approximate the infinite sum in (48) by a finite sum, with the
infinite upper limit of summation replaced by n, = 0.16n. Here, for a given
sample n, n, is calibrated by matching values of E(¢ — ¢)? in (33) with exact
values numerically computed by the algorithm of Tsui and Ali (1994). See Panel
B of Table 1 for the numerical comparison under various sample sizes.

We approximate the series sum by straightforward integration, with the change of
variables from s/n to u to obtain

B 3 26 ny/n
Z Hu(S)Pu(s)a;, *ay """ = — f Hy (mw) P (1 + 4u)~5/2(1 + 2u)~7/2du,
s=3 3/n

(49)

* — S o2

where P; =1+ ™ + y e
For convenience, we define the following function
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0.16
(i, j, k) = 26¥+Ink=5"12T H (k) uk(1+4u)™>/2 (1 4 2u)77/* T du
3/n
(50)
where H;;(k) denotes the coefficient associated with u* in the product of
polynomials H,, (*) and B,
The integral in (49) can be decomposed into a sum of integrals
3
6 ,0.16
= a0 Bi (4 )21+ 2u) 2 du = Z L(i,j, k)
3/n e -

(51)
For each I,(i,j, k) in (51), we obtain its MacLaurin series expansion up to
0(n~19).

3.85046 184.29909 4477.34590 8725629909 1.49527 x 10°
— + — +

1,(0,0,0) =

n? n3 n* nd® nb
2.35747 x 107 3.51105x 10® 5.02087 x 10° )
— 7 + 5 - e +0(n"19)
(52)
2.00710 1.60568 2883.2113 100224 2.29637 x 10°
(0,0,1) = - e t— s~ n6
433164 x 107 7.28503 x 108  1.13651 x 101°
+ 7 - 8 + 9
n n n
+0(n"19
(53)
0.27423 0.65129 1.63891 x 1072 9216 37440
15(0,0,2) = nz  n3 + e T s n6
9.37215 x 10° 1.87050 x 108 3.27077 x 10° L
- 7 + 5 - 5 +0(n™19)
(54)
0.03609 7.32258 x 107'? 821172 x 1071
£(0.0,3) =~ nz n3 + n4
1.08112 x 10™° 25920 1.05754 x 10° 2.66717 x 107
- 5 + 6 7 + 8
n n n n

5.36077 x 108

5 + 0(n~19)

(55)
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7.01176 369.97649 10112.89421 215985.97649

12(0,1,0) = n3 n4 n5 n6
3.97867 x 10° 6.64720 x 107 1.03750 x 10° 10
+ > - 3 + 5 +0(n™°)
n n n
(56)
3.44579 2.75663 5765.51326 223488 5.59613 x 10°
(01,1) = 3 FEE 5 T~ 7
n n n n n
1.13449 x 10® 2.02356 x 108 10
+ 3 - — +0(n )
(57)
0.45473 1.07998 2.90059 x 10~° 18432 831744
LOL)=— - — s 5 T
2.27236 x 107 4.87344 x 108 1
- 5 + 5 +0(n~1%)
(58)
0.05859 3.35498 x 1071 3.11125%x10™° 9.79270 x 108
51840 2.36390 x 10® 6.51629 x 107 10
+—- 3 + 5 +0(n™ ")
n n n
(59)
6.48543 371.02915 11269.63115 266675.02915
12(10.0) = nd nt + ns B né
5.42530 x 10° 9.97624 x 107 1.70743 x 10° 10
+ > - 3 + 5 +0(n™*%)
n n n
(60)
3.03871 2.43097 5764.86194 246528 6.80688 x 10°
(1,0,1) = 3 PEE 5 T~ 7
n n n n n
1.51877 x 108  2.97405 x 10°
+ 5 — 5 +0(n~1%)
n n

(61)



98 International Journal of Statistical Sciences, Vol. 22(1), 2022

0.39019 0.92671 1.49349 x 108 18432 N 914688

12(1)0;2) = n3 n4 n5 Tl6 7,1’7
2.74991 x 107 6.48263 x 10° "
- e + — +0(n™%)

(62)

0.04946 8.13193 x 1011  4.06596 x 107° 1.16409 x 1077

L1033 = - nd n4 + ns B noé +
51840 2.61274 x 106 7.94707 x 107 .

e e + — +0(n %)

(63)

We also obtain the Maclaurin series expansion of w,, w; and w, in (34)-(36) up
to 0(n~19), with
1 1 5 11 41 119 365 1091 3281
— +—+ + +

_ -10
“’O_E_FJ”FJrF ns  né n’ ns n? 0(n=")
(64)
1 14 73 338 1585 7574 36793 180698 893665 “10
e oM™
(65)
3 27 186 8010 136887 1799343 20769396 10
Q)ZZF—F— 5 + 6 — 7 + 8 - 9 +0(Tl )
(66)

Putting expressions (52)-(66) back to (48) and after some algebra, we obtain the
approximate closed form of E(¢$ — ¢)? in (40).

Proofs of Propositions 2.2 and 2.3:
The variance of ¢ can be expressed in terms of the first two moments of ¢ about
¢, where
2(P) = E(@ — $)* — (E(@) — ¢)*

(67)
Plugging the approximate expressions for the first two moments of ¢ in (21) and
(40) into (67) and after some simplification, we obtain the closed form
approximation as shown in (41). Also, the approximate standard deviation of ¢ in

(42) is obtained by taking the series expansion of the square root of u,(¢) in (41)
accordingly.



