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Abstract 

We revisit the problem of deriving analytically tractable expressions for lower order 

moments of the ordinary least squares (OLS) estimator in autoregressive models with unit 

roots. Simple algebraic techniques are used to approximate the series sums of the first two 

moments derived by Tsui and Ali (1991). Compared to the exact moment values obtained 

by numerical methods, it is found that our approximate closed forms in simple functions 

are reasonably accurate for a wide range of sample sizes. We also validate the numerical 

accuracy of asymptotic mean and variance derived by Shenton and Vinod (1995). 
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1.  Introduction 

Since the seminal work of Hurwicz (1950) and White (1961) on distributional 

properties of the OLS estimator  ̂ of the first-order autoregressive parameter  , it has 

spawned a vast statistical and econometric literature on autoregressive models and the 

unit root models. However, without knowledge of the exact distributions, the 

distributional properties of  ̂ in finite samples have been extensively explored in both 

analytical and computational approaches. Among others, Ullah (2004) and Choi 

(2015) provide excellent surveys of the methodology and salient tools for finite 

sample econometrics and the unit root models. For a standard AR(1) model with zero 

initial value and     disturbance terms, there is a long history of studies deriving 
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series expansions to approximate lower-order moments of the OLS estimator. For 

example, Hurwicz (1950) obtains a closed form expression for the first moment of  ̂ 

for | |    when the sample size is 3. Later, White (1961) obtains the first three 

terms for each of the first and second moments of  ̂. Shenton and Johnson (1965) 

extend White (1961) to obtain the first five terms for each of the first and second 

moments of  ̂. In early 1990's, Tsui and Ali (1991) extend Shenton and Johnson 

(1965) to approximate the first four moments of  ̂ by series sums. And Abadir (1993) 

obtains an impressive but complicated closed-form expression of the first moment of 

 ̂, which needs evaluation of infinite sums based on generalized hyperbolic functions. 

Moreover, Shenton and Vinod (1995) re-examine the moment issue and obtain 

asymptotic expressions for the mean, mean squared error and variance of  ̂, but there 

has been little discussion of their numerical accuracy. More recently, Phillips (2012) 

obtains an integral representation of the finite sample bias of  ̂ and also provides 

asymptotic expansions for the bias. In this paper, we extend Tsui and Ali (1991) to 

sum their moment series by integrals and obtain tractable closed-form expressions in 

simple functions for the mean and variance of  ̂. 

Although multivariate frameworks and more flexible structures of autoregressive 

models have been the subject of recent research, there is still a continuing interest in 

the finite-sample distributional properties of  ̂. For example, Phillips (2012) explores 

the application of the delta method and continuous mapping theorem to the indirect 

inference estimator in first order autoregressive estimation. Convenient expressions 

for  ( ̂) are in demand to correct finite sample bias and to price derivative securities 

(Phillips and Yu (2009). Tang and Chen (2009) indicate that the OLS bias and mean 

squared error of  ̂ have bearings on the estimation of continuous models with the 

mean-reversion parameter in interest rate processes.  

The main contribution of this paper is to provide convenient expressions in simple 

functions for the OLS bias and mean squared error (MSE) of  ̂ in a standard unit root 

model. In addition, the tractable bias and MSE expressions are useful in correcting 

parameter estimation. Moreover, it avoids numerical inaccuracy of moment values 

obtained by conventional simulation estimation, as Hansen (2014) remarks that such 

simulated moments can be substantially inaccurate unless the simulation size is very 

large. As a by-product, we validate the numerical accuracy of the apparently 

neglected expressions for mean and variance of  ̂  derived by Shenton and Vinod 

(1995). 
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The remainder of this section highlights the gist of the approach by Shenton and 

Johnson (1965) and the extension by Tsui and Ali (1991). Section 2 introduces the 

algebraic techniques to sum the Tsui and Ali's moment series for the mean of  ̂. 

Sections 3 extends the approach to the second moment. Asymptotic moment values 

are also compared. Section 4 assesses the numerical accuracy of the moment 

formulas, which are compared with exact values obtained by numerical methods and 

with values obtained from other closed form approximations in the literature. Section 

5 contains our final remarks. 

Consider the following first order autoregressive (AR(1)) model, 

  𝑦𝑡 =  𝑦𝑡−1 + 𝜖𝑡 ,   𝑡 =  , 2, 3,⋯ , 𝑛                                                     (1) 

where the initial value 𝑦 =  , | | =  , and 𝜖𝑡    ( ,   ) . Without loss of 

generality,    can be set to 1. For a sample of 𝑛 observations, 𝑦 = (𝑦1, 𝑦 ,  , 𝑦 ) 
 
, 

the OLS estimator of   is 

 ̂ =
∑  𝑛

𝑡=1  𝑦𝑡−1𝑦𝑡

∑  𝑛
𝑡=1  𝑦𝑡−1

2 =
𝑈

𝑉
 .                                                                              (2) 

White (1961) shows that  ̂ is expressible in terms of a ratio of two quadratic forms in 

normal variables   and  . The joint density function of 𝑦 is 

 (𝑦) = (2 )−       { 
 

2
∑  

 

𝑡 1

(𝑦𝑡   𝑦𝑡−1)
 } 

and the joint moment generating function of   and   is well-established that 

 
𝑀(𝑝, 𝑞)  =  [   (𝑝  𝑞 )]

 =   (𝑝, 𝑞)−
1

2 ,
                                                              (3) 

where   (𝑝, 𝑞) is the determinant of a symmetric tri-diagonal matrix,  = (  , ) with 

the non-zero elements being:   , =  +   + 2𝑞,  =  , 2, 3,  , (𝑛   )    , =  ; 

and   ,  1 =    1, =  ( + 𝑝),  =  , 2, 3,  , (𝑛   ), respectively. 

Following White (1961), Shenton and Johnson (1965) obtain expressions for the first 

two moments of  ̂ about  , with 

  ( ̂   ) = ∫ (∂𝜙  )𝑑𝑞,
∞

 
                                                                 (4) 

  ( ̂   ) = ∫  
∞

 
  (∂𝜙

  1 +   )𝑑𝑞,                                                    (5) 
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where 

  =
  

  
(  ( , 𝑞))−1                                                                                              (6) 

and  𝜙
 

= (
 

 𝜙
)  denotes the  𝑡  partial derivative with respect to  , which is 

evaluated at  =   after differentiation. In order to evaluate these integrals explicitly, 

Shenton and Johnson (1965) show that 

  ( , 𝑞) = ∑   − 
     

( )
    ,                                                                                      (7) 

where   ( , 𝑞) =  1( , 𝑞) =   and  

  
( )

=
(1   )𝑛−2 −1

  
∑ (

𝑟   
𝑠

) 𝑟( )(𝑛  𝑠  2) − (2𝑞) −  −1
    ,       𝑟  𝑛  2,

𝑟( ) = 𝑟(𝑟   )(𝑟  2)⋯ (𝑟  𝑠 +  ),

  
( )

= ( + 2𝑞) −1,     𝑛   ,

 1
( )

= 2𝑞(𝑛  2)( + 2𝑞) − ,     𝑛  2.

(8) 

The inverse of the square root of   ( , 𝑞) can be expanded as an infinite series, 

  
−1  

( , 𝑞) = ∑  ∞
   

  
(𝑛)

𝜙2 

(1   )(𝑛−1) 2
                                                                             (9) 

where   
( )

 is a function of 𝑛 and 𝑞, which satisfies the recurrence relation 

  
( )

=  
1

    
(𝑛) ∑ (𝑠 + 𝑟)  

( )
  − 

( )
 

   
 ,                                                               (10) 

in which   
( )

=   for s  (𝑛  2)  and   
( )

=  . By Fubini's theorem, moment 

expressions in (4)-(5) involving integrals of sums can be evaluated as sums of 

integrals by using (6) and (9). As an example, the OLS bias of  ̂ can be obtained as 

 ( ̂   ) = ∫  
∞

 
∑  ∞

   
    

(𝑛)
𝜙2 −1

(1   )
𝑛−1

2

𝑑𝑞 = ∑  ∞
   ∫  

∞

 

    
(𝑛)

𝜙2 −1

(1   )
𝑛−1

2

𝑑𝑞                            (11) 

Theoretically, one can obtain many terms in series expansion of the moments of  ̂ 

about   by term-wise integration. However, it is very burdensome as the number of 

integrals to be evaluated at the 𝑠𝑡  terms is proportional to 𝑠 . Tsui and Ali (1991) 

compute more than 15 terms for each of the first two moments of  ̂ about   in (4)-

(5), and have been able to use algebraic techniques to detect regularities among the 

terms for each of the moments. These regularities are useful in establishing general 
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expressions in series expansions for the moments of  ̂  about  , when | ̂|   . 

However, Tsui and Ali's infinite series converges quite slowly for | | =  , 

particularly for large sample sizes. In this paper, we suggest to approximate the upper 

limit of summation of the infinite series by matching moment values of  ̂ with those 

computed numerically using the algorithm by Tsui and Ali (1994). Such upper limits 

will serve as the upper bounds of integrals when deriving closed form approximations 

to the moments of  ̂. 
 

2.  Approximation to the first moment 

When | |   , the OLS bias of  ̂ in series expansion derived by Tsui and Ali (1991) 

is given as follows: 

 ( ̂   ) = ∑  ∞
  1    

  −1,                                 (12) 

where 

 1 =
− ( − )

(  1)[2]
,    =

1 

(   )[3]
,    = 6𝑠  (𝑠),     𝑠  3,         (13) 

with 𝑛[ ] = 𝑛(𝑛  2)(𝑛  4) (𝑛  2𝑠 + 2), 

 

  (𝑠)  =
(𝑛 + 4𝑠  4)[ − ]

(𝑛 + 4𝑠  3)[  1]

 =
(𝑛 + 4𝑠  4)(𝑛 + 4𝑠  6)⋯ (𝑛 + 4𝑠  4  2(𝑠  2) + 2)

(𝑛 + 4𝑠  3)(𝑛 + 4𝑠  5)⋯ (𝑛 + 4𝑠  3  2(𝑠 +  ) + 2)
.

 

(14) 

We note that the upper limit of summation for all four moment expressions of  ̂ 

about   in Tsui and Ali (1991) should have been written as   instead of 𝑛  2. In 

what follows we employ algebraic techniques to approximate the infinite sum of 

series in (12) and derive a closed form approximation for the bias of  ̂ in terms of 

simple functions. The idea is to express   (𝑠) as ratios of the gamma function and to 

exploit its well-known properties to obtain the approximation. Dividing each term in 

the numerator and denominator of   (𝑠) in (14), we get 

  (𝑠) = 2− 
 (𝑛 2 + 2𝑠   )  (𝑛 2 + 𝑠 +  )

 (𝑛 2 + 2𝑠    2)  (𝑛 2 + 𝑠  3 2)
  

(15) 
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where  ( ) is the gamma function. Expression (12) can be rewritten as an infinite sum 

of gamma functions, 

 ( ̂   )  
 2(𝑛  2)

(𝑛 +  )[ ]
 +

 2

(𝑛 + 5)[ ]
  

+
3

4
∑𝑠

 (  2 + 2   )  (  2 + 𝑠 +  )

 (𝑛 2 + 2𝑠    2)  (𝑛 2 + 𝑠  3 2)
   −1 .

∞

   

 

(16) 

To simplify the ratios of gamma functions in (16), we apply the uniqueness theorem 

of the gamma function, which states that for a constant  ,  ( )  ( +  ) can be 

approximated by  −  as     (see Titchmarsh (1939, p. 58)). For convenience, let 

 

 𝑎1 = 𝑛 2 + 2𝑠, and 𝑎 = 𝑛 2 + 𝑠,                                                  (17) 

 

we have 

 (𝑛 2 + 2𝑠   )

 (𝑛 2 + 2𝑠  
1

 
)

=
 (𝑎1   )

 (𝑎1  
1

 
)

 {  
 

𝑎1
}
−1  

𝑎1
−1  

 { +
 

2𝑎1
+

3

8𝑎1
 +  (𝑛− )} 𝑎1

−1  
     

 (𝑛 2 + 𝑠  3 2)

 (𝑛 2 + 𝑠 +  )
=

 (𝑎  3 2)

 (𝑎 +  )
 {  

3

2𝑎 
}
−   

𝑎 
−   

 { +
 5

4𝑎 
+

3 5

32𝑎 
 +  (𝑛− )} 𝑎 

−   
. 

(18) 

Substituting results in (18) into (15), we have 

  (𝑠)  2−   (𝑠)𝑎1
−1  

𝑎 
−   

, 

with 

  (𝑠) =  + (
 

2𝑎1

+
 5

4𝑎 
) + (

3

8𝑎1
 +

 5

8𝑎1𝑎 

+
3 5

32𝑎 
 ) +  (𝑛− ). 

(19) 
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The approximate bias of  ̂ in (16) becomes 

 ( ̂   )  
 2(𝑛  2)

(𝑛 +  )[ ]
 +

 2

(𝑛 + 5)[ ]
  +

3

4
∑  

∞

   

𝑠  (𝑠)𝑎1
−1  

𝑎 
−   

   −1. 

(20) 

For large 𝑛 , 𝑎1 and 𝑎  will also be large. We may truncate   (𝑠) up to terms of 

 (𝑛− )  so as to confine   (𝑠)  to  (𝑛− ) . After some algebra, the following 

proposition is in order. 

Proposition 1.1: When  =   and 𝑛  5 , the bias of  ̂ can be approximated by  

 ( ̂   )   
 .7826 

𝑛
+

5.  887

𝑛 
 

 2.97932

𝑛 
+

44.5    

𝑛 
 

443.375  

𝑛 
+

9662. 25  

𝑛 

  
 75557.2 875

𝑛 
+

2.64222     

𝑛 
 

3.53654     

𝑛 

 

(21) 
 

Proof: 

Based on the result in (20), for  =  , we approximate the infinite sum in (12) by 

straightforward integration, with the change of variables of 𝑠 𝑛 to 𝑢. We have 

3

4
∑  

∞

   

 𝑠  (𝑠)𝑎1
−1  

𝑎 
−   

  
3

4
∫  

 1

 

 𝑠  
 (𝑠)𝑎1

−1  
𝑎 

−   
𝑑𝑠,

 =
6

𝑛
∫  

 1  

   

   
 (𝑛𝑢)𝑢( + 4𝑢)−1  ( + 2𝑢)−   𝑑𝑢,

 

(22) 

where   
 (𝑠) denotes the truncated   (𝑠) in (19) containing six terms up to  (𝑛− ). 

Also, 𝑛1 =  .7𝑛, which is the approximate upper limit of summation obtained by 

matching the infinite sum in (12) with exact values of  ( ̂   )  computed 

numerically by Tsui and Ali (1994). For convenience, define 

 1( ,  ) = 6∫  
 1  

   

  
  ( ,  )2(   )𝑛(− − −1)𝑢( + 4𝑢)−1  − ( + 2𝑢)−   − 𝑑𝑢, 

(23) 
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where   
  ( ,  ) denotes the coefficient associated with the product of (  𝑎1)

  and 

(  𝑎 )
  in   

  (𝑛𝑢).  We have 

6

𝑛
∫  

 . 

   

  
 (𝑛𝑢)𝑢( + 4𝑢)−1  ( + 2𝑢)−   𝑑𝑢 = ∑  

 

   

∑ 

 − 

   

 1( ,  ) 

(24) 

For each  1( ,  ) in (24), we obtain its Maclaurin series expansion up to  (𝑛−1 ). 

They include 

 1( , ) =
 .2 74 

𝑛 
 

27

𝑛 
+

378

𝑛 
 

4 7 .25 

𝑛 
+

4  95

𝑛 
 

382269.375 

𝑛 
+

3.62     

𝑛 

  
3.45 63     

𝑛 
+  (𝑛−1 ),

 

(25) 

 1( , ) =
 .26883

𝑛 
 

 .52 79    −1 

𝑛 
 

54

𝑛 
+

972

𝑛 
 

 25 4.5 

𝑛 
+

 4 259.6 

𝑛 

  
 .46584     

𝑛 
+

 .47787     

𝑛 
+  (𝑛−1 ),

 

(26) 

 1( , ) =
 .2  5 

𝑛 
+

5.63788    −1 

𝑛 
 

54

𝑛 
+

  88

𝑛 
 

 8832.5 

𝑛 
+

26 982

𝑛 

 
3.37436     

𝑛 
+

4. 9478     

𝑛 
+  (𝑛−1 ), 

(27) 

 1(2, ) =
 .2 87 

𝑛 
 

 . 8 4    −1 

𝑛 
 

  8

𝑛 
+

324 

𝑛 
 

66825

𝑛 
+

 . 6348     

𝑛 
 

 .83836     

𝑛 
+  (𝑛−1 ),

 

(28) 
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 1( , ) =
 .26834

𝑛 
+

4.54348    −1 

𝑛 
 

  8

𝑛 
+

28 8

𝑛 
 

5 3  

𝑛 
+

7634 9

𝑛 
 

 . 5658     

𝑛 
+  (𝑛−1 ),

 

(29) 

 1( ,2) =
 .34939

𝑛 
 

4.25589    −1 

𝑛 
 

  8

𝑛 
+

2376

𝑛 
 

3572 

𝑛 
+

45 98 

𝑛 
 

5. 9 57     

𝑛 
+  (𝑛−1 ).

 

(30) 

We also obtain series expansion of  1  and    in (13) with terms up to  (𝑛−1 ), 

where 

 1 =  
2

𝑛
+

4

𝑛 
 

2

𝑛 
+

4

𝑛 
 

2

𝑛 
+

4

𝑛 
 

2

𝑛 
+

4

𝑛 
 

2

𝑛 
+  (𝑛−1 ),

 

(31) 

  =
 2

𝑛 
 

  8

𝑛 
+

696

𝑛 
 

396 

𝑛 
+

2 252

𝑛 
 

   628

𝑛 
+

566256

𝑛 
+  (𝑛−1 ). 

(32) 

Substituting the expansions in (25)-(32) into (20) and after some algebra, we obtain 

the result as shown in (21). 
 

3.  Approximation to the second moment 

In this section, we derive approximate closed form expressions for the second 

moment of  ̂  about   by a similar procedure used in Section 2. Details of the 

derivations are relegated to the Appendix. 

3.1. Second moment 

When | |   , the second moment of  ̂  about   (mean squared error) in series 

expansion is given by Tsui and Ali (1991) as follows: 

 ( ̂   ) = ∑ 

∞

   

   
  , 

(33) 
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where 

  =
𝑛  4𝑛 + 7

(𝑛 +  )[ ]
, 

 (34) 

 1 =
 (𝑛  6𝑛  25𝑛 + 42)

(𝑛 + 5)[ ]
, 

(35) 

  =
3(𝑛 +  6𝑛  57)

(𝑛 + 9)[ ]
, 

(36) 

   = 3𝐻 (𝑠)  (𝑠), for 𝑠  3   

(37) 

and 

  (𝑠) =
(𝑛 + 4𝑠  4)[ − ]

(𝑛 + 4𝑠 +  )[   ]
 , 

(38) 

𝐻 (𝑠) =  2 𝑠 + ( 6𝑛  38)𝑠 + (  𝑛  8𝑛   6)𝑠 + (𝑛 + 2𝑛  9𝑛 + 2) , 

(39) 

with 𝑛[ ] = 𝑛(𝑛  2)(𝑛  4)⋯ (𝑛  2𝑠 + 2). 

 

Proposition 2.1: When  =   and 𝑛  5 , the mean squared error of  ̂  can be 

approximated by 

 ( ̂   )  
 3.28574

𝑛 
 

69.9 775

𝑛 
+

26 .85853

𝑛 
+

 6 .8 44 

𝑛 
 

  294. 5388

𝑛 

+
33943. 875 

𝑛 
+

2.27422     

𝑛 
 

7.256 2     

𝑛 
 . 

(40) 

Proof: See the Appendix. 
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Proposition 2.2: When  =   and 𝑛  5 , the variance of  ̂ can be approximated by 

   ( ̂)  
  .  8 7

𝑛 
 

5 .7 36 

𝑛 
+

 88.484 8

𝑛 
+

452. 85 8

𝑛 
 

                   
 2498. 267 

𝑛 
+

74 76. 44 4

𝑛 
+

 .536      

𝑛 
 

6.  57     

𝑛 

 

(41) 

Proof: See the Appendix. 

Proposition 2.3: When  =   and 𝑛  5 , the standard deviation of  ̂  can be 

approximated by 

 ( ̂)  
3. 7932

𝑛
 

8. 3 24

𝑛 
+

 9.24422

𝑛 
+

 2 .3 565

𝑛 
 

 7 6. 49  

𝑛 
+

               
6532.54243

𝑛 
+

266396.6  8 

𝑛 
 

8.8955     

𝑛 
 

5.  3      

𝑛 
.

 

(42) 

Proof: See the Appendix. 

3.2. Comparison with other results 

The dominant terms in the first two moments of  ̂ can be obtained from expressions 

(21), (40) and (42). They are: 

    
  ∞

 𝑛 ( ̂   )    .7826 

    
  ∞

 𝑛  ( ̂   )   3.28574

    
  ∞

 𝑛 ( ̂)  3. 7932

 

(43) 

The corresponding values obtained by Shenton and Johnson (1965), and Vinod and 

Shenton (1996) are -1.7814, 13.2857 and 3.17996, respectively. Our results match at 

least to the second decimal place with those numerically reported in the literature. The 

discrepancy may be due to the loss of partial information when applying the 

uniqueness theorem to convert ratios of gamma functions, when approximating the 

infinite upper limit of summation of the moment series by a finite upper bound, and 

when approximating the series sum by definite integration. 
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4.  Accuracy checking 

Performances of the closed form approximations to the first two moments of  ̂ are 

compared to those analytical expressions available in the literature, with the exact 

values computed numerically by using the algorithm of Tsui and Ali (1994). The 

following specifications are in order. 

[a] TA-1 to TA-2 denote the first two moment expressions of  ̂ about   by Tsui and 

Ali in (12) and (33), with the infinite upper limits of summation truncated to  .7𝑛 and 

 . 6𝑛. MV-1 to MV-2 denote the approximate closed forms of the corresponding 

moments of  ̂ about   in (21) and (40). 

[b] MN-TA denotes Tsui and Ali's series sum of  ( ̂) in (12), with the infinite upper 

bound truncated to  .7𝑛. MN-3 terms, MN-6 terms and MN-9 terms denote the first 

three, six and nine terms of  ( ̂) in (21). Also, MN-SV denotes the expression for 

 ( ̂) derived by Shenton and Vinod (1995), which is truncated to  (𝑛− ), with 

 ( ̂)    
3.56286 

2𝑛   
+

22.25 44 37 

(2𝑛   ) 
 

96.54298 535

(2𝑛   ) 
   

(44) 

[c] SD-TA denotes the standard deviation of  ̂ obtained indirectly from Tsui and Ali's 

infinite series for the first two moments of  ̂  about   in (12) and (33), with the 

corresponding infinite upper bounds truncated to  .7𝑛 and  . 6𝑛, respectively. SD-3 

terms, SD-6 terms and SD-9 terms denote the first three, six and nine terms of  ( ̂) 

in (42). Moreover, SD-SV denotes the asymptotic standard deviation of  ̂ by Shenton 

and Vinod (1995), which is obtained by taking the square root of the variance with 

terms truncated to  (𝑛− ). That is 

  r( ̂)  
4 .448692

(2𝑛   ) 
 

736.46468

(2𝑛   ) 
+

2375. 884

(2𝑛   ) 
  

(45) 

All approximations and exact values are computed by Mathematica and in most of the 

cases, we take various sample size n=20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100, 150, 

200, 250, 300, 350, 400, 450 and 500. To save space, Tables 1-3 display some 

representative results for assessing the numerical accuracy of the approximations 

considered in [a]-[c]. All the exact and approximate moment values can be obtained 

upon request. 
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The exact and approximate values of the first two moments of  ̂  about   are 

displayed in Panels A-B of Table 1. As can be gleaned from Panel A, TA-1 and MV-

1approximate exceptionally well, matching the exact values of the OLS bias almost 

all the time to the fifth decimal place for 𝑛   5 . For 𝑛     , they are reasonably 

accurate at least to the third decimal place. The accuracy improves as sample size 

increases. In addition, as can be observed from Panel B, TA-2 and MV-2 match exact 

values of the second moment of  ̂ about   at least to the sixth decimal point for 

𝑛  2  , and at least to the fifth decimal place for 𝑛   5 . As such, our results 

provide some justifications for truncating the infinite upper limits of summation of 

Tsui and Ali series for the first two moments of  ̂  about   to  .7𝑛  and  . 6𝑛 , 

respectively. 

Table 2 displays the exact and approximate values of  ( ̂) computed by various 

approaches. As can be observed from Columns [2]-[5], values of all the five 

approximations are almost identical to each other for sample sizes ranging from 50 to 

500. They match the exact values up to the fourth decimal place for 𝑛  75.  In 

addition, there are no differences among the values computed by MN-3 terms, MN-6 

terms and MN-9 terms, which are also identical to those obtained by MN-SV. As 

such, MN-SV and MN-3 terms can be used to correct the OLS bias of  ̂ when  =  .  

Table 3 reports values of the standard deviation of  ̂  computed by various 

approximations. As can be observed, when 𝑛     , SD-SV performs relatively 

better than the other four approximations, matching the exact values at least to the 

fifth decimal place; whereas those by the four approximations match the exact values 

to the fourth decimal place in most of the cases. However, the relative discrepancy 

among SD-SV and SD-3 terms to SD-9 terms disappears for 𝑛   5 , as all five 

approximations match the exact values at least to the fifth decimal place for almost all 

of the cases. For example, when 𝑛 = 5 , the standard deviations of  ̂  are 

( . 64 5,  . 6 4 2,  . 6 488)  for Exact, SD-SV and SD-3 terms, respectively; 

whereas for 𝑛 =  5 , the corresponding values are ( . 2 825,  . 2 825,  . 2 828) 

for Exact, SD-SV and SD-3 terms, respectively. Hence, both SD-SV and SD-3 terms 

could be used as convenient approximations for  ( ̂) when 𝑛  5 . 

 

5.  Concluding remarks 

We have derived analytical expressions in simple functions for the OLS bias and 

mean squared error of  ̂  in a standard unit-root model. They are obtained by 
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summing the hitherto unresolved series sum of moments of  ̂ derived by Tsui and Ali 

(1991). When compared to the exact moment values computed by numerical methods, 

our tractable expressions are reasonably accurate for a wide range of sample sizes. 

Hence, they may serve as benchmarks for comparison with approximations derived 

from other approaches. In addition, expressions for the bias and mean squared error of 

 ̂ could be useful for bias correction and variance reduction in parameter estimation. 

Moreover, the algebraic techniques introduced in this paper is applicable to summing 

those Tsui and Ali's series expansion in the stationary case, alongside setting 

appropriate bounds for the series sum to yield tractable expressions for the moments 

of  ̂, which will be taken up in future research. 
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Table 1: Comparison of exact and approximate moment values of  ̂ when  =   

n 50 75 100 150 200 300 400 500 

Panel A:  ( ̂   )    −        

Exact -3.3813 -2.2938 -1.7354 -1.1671 -0.8791 -0.5886 -0.4424 -0.3544 

TA-1 -3.3337 -2.2917 -1.7358 -1.1675 -0.8795 -0.5887 -0.4427 -0.3546 

MV-1 -3.3706 -2.2889 -1.7328 -1.1661 -0.8787 -0.5886 -0.4425 -0.3545 

Panel B:  ( ̂   )    −        

Exact 47.9208 22.0232 12.6018 5.6989 3.2340 1.4500 0.8191 0.5258 

TA-2 47.9819 22.0410 12.6093 5.7011 3.2348 1.4503 0.8194 0.5258 

MV-2 47.9661 22.0444 12.6127 5.7028 3.2357 1.4506 0.8195 0.5259 

Notes: Exact: values computed by using the algorithm of Tsui and Ali (1994); 

TA-1-TA2: Series sum of Tsui and Ali (1991) for the first two moment of  ̂ about   in  

(12) and (33), with upper limit of summation truncated to  .7𝑛 and  . 6𝑛; 

MV-1 to MV-2: Approximate closed form expressions in (21) and (40). 
 

Table 2: Approximate mean of  ̂ when  =   

n Exact MN-SV MN-TA MN-3 terms MN-6 terms MN-9 terms 

50 0.9662 0.9667 0.9662 0.9663 0.9663 0.9663 

75 0.9771 0.9771 0.9771 0.9771 0.9771 0.9771 

100 0.9826 0.9826 0.9826 0.9827 0.9827 0.9827 

150 0.9883 0.9883 0.9883 0.9883 0.9883 0.9883 

200 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 

300 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 

400 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956 

500 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965 

Notes: Exact: values computed by using the algorithm of Tsui and Ali (1994); 

MN-SV: values computed by using the series expansion of Shenton and Vinod (1995) in (44);   

MN-TA: values computed by using the series sum of Tsui and Ali (1991) in (12), with the 

upper limit of summation truncated to  .7𝑛; 

MN-3 terms to MN-9 terms: values computed by using the first 3 terms, 6 terms and 9 

terms of the closed form of  ( ̂   ) in (21). 
 

Table 3: Approximate standard deviation of  ̂(   − ) when  =   

n Exact SD-SV SD-TA SD-3 terms SD-6 terms SD-9 terms 

50 6.0405 6.0402 6.0720 6.0488 6.0502 6.0502 

75 4.0941 4.0940 4.0974 4.0991 4.0994 4.0994 

100 3.0968 3.0968 3.0978 3.0999 3.1000 3.1000 

150 2.0825 2.0825 2.0828 2.0840 2.0840 2.0840 

200 1.5688 1.5688 1.5688 1.5696 1.5696 1.5696 

300 1.0505 1.0505 1.0506 1.0508 1.0508 1.0508 

400 0.7896 0.7896 0.7896 0.7898 0.7898 0.7898 

500 0.6326 0.6326 0.6325 0.6326 0.6326 0.6326 
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Notes: Exact: values computed by using the algorithm of Tsui and Ali (1994);  

SD-SV: values obtained from taking the square root of 𝑣𝑎𝑟( ̂) derived by Shenton and 

Vinod (1995) in (45);  

SD-TA: values computed by using the series expansion of Tsui and Ali (1991) in (12) and 

(33), with the upper limit of summation truncated to  .7𝑛 and  . 6𝑛; 

SD-3 terms to SD-9 terms: values computed by taking the first 3 terms, 6 terms and 9 

terms of the closed form of  ( ̂) in (42). 
 

Appendix 

Proof of Proposition 2.1: 

Applying the similar algebraic techniques to   (𝑠) of  ( ̂   )  in (38), we have 

   (𝑠)  2− 𝑃 (𝑠)𝑎1
−   

𝑎 
−   

,                                                        (46) 

where 

𝑃 (𝑠)   + (
5

2𝑎1
+

2 

4𝑎 
) + (

35

8𝑎1
 +

  5

8𝑎1𝑎 
+

567

32𝑎 
 ) +  (𝑛− ). 

(47) 

We have 

 ( ̂   )    +  1 +   +
3

64
∑  

∞

   

𝐻 (𝑠)𝑃 (𝑠)𝑎1
−   

𝑎 
−   

, 

(48) 

where   ,  1 and    are as defined in (34)-(36), and 𝐻 (𝑠) is a polynomial of 

degree 3 in 𝑠 as defined in (39). 

For  =  , we approximate the infinite sum in (48) by a finite sum, with the 

infinite upper limit of summation replaced by 𝑛 =  . 6𝑛 . Here, for a given 

sample 𝑛, 𝑛  is calibrated by matching values of  ( ̂   )  in (33) with exact 

values numerically computed by the algorithm of Tsui and Ali (1994). See Panel 

B of Table 1 for the numerical comparison under various sample sizes.  

We approximate the series sum by straightforward integration, with the change of 

variables from 𝑠 𝑛 to 𝑢 to obtain 

∑ 

∞

   

𝐻 (𝑠)𝑃 (𝑠)𝑎1
−   

𝑎 
−   

 
2 

𝑛 
∫  

 2  

   

𝐻 (𝑛𝑢)𝑃 
 ( + 4𝑢)−   ( + 2𝑢)−   𝑑𝑢, 

(49) 

where 𝑃 
 =  +

 

  1
+

 1

  2
. 

For convenience, we define the following function 
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  ( ,  ,  ) = 2     𝑛 − − − 𝐻 
 ( )∫  

 .1 

   

𝑢 ( + 4𝑢)−   − ( + 2𝑢)−   − 𝑑𝑢 

(50) 

where 𝐻 
 ( )  denotes the coefficient associated with 𝑢  in the product of 

polynomials 𝐻 ( ) and 𝑃 
 . 

The integral in (49) can be decomposed into a sum of integrals, 

2 

𝑛 
∫  

 .1 

   

𝐻 (𝑛𝑢)𝑃 
 ( + 4𝑢)−   ( + 2𝑢)−   𝑑𝑢 = ∑  

1

   

∑ 

1− 

   

∑  

 

   

  ( ,  ,  ) 

(51) 

For each   ( ,  ,  )  in (51), we obtain its MacLaurin series expansion up to 

 (𝑛−1 ). 

  ( , , ) =
3.85 46

𝑛2
 

 84.299 9

𝑛3
+

4477.3459 

𝑛4
 

87256.299 9

𝑛5
+

 .49527    6

𝑛6

 
2.35747    7

𝑛7
+

3.5   5    8

𝑛8
 

5. 2 87    9

𝑛9
+  (𝑛−1 ) 

(52) 

 

  ( , , ) =
2.  7  

𝑛 
 

 .6 568

𝑛 
 

2883.2  3

𝑛 
+

   224

𝑛 
 

2.29637     

𝑛 

+
4.33 64     

𝑛 
 

7.285 3     

𝑛 
+

 . 365    1 

𝑛 

+  (𝑛−1 ) 
(53) 

 

  ( , ,2) =
 .27423

𝑛 
 

 .65 29

𝑛 
+

 .6389    −1 

𝑛 
 

92 6

𝑛 
+

3744 

𝑛 

 
9.372 5     

𝑛 
+

 .87 5     

𝑛 
 

3.27 77     

𝑛 
+  (𝑛−1 ) 

(54) 

  ( , ,3) =  
 . 36 9

𝑛 
 

7.32258    −1 

𝑛 
+

8.2  72    −11

𝑛 

 
 . 8  2    − 

𝑛 
+

2592 

𝑛 
 

 . 5754     

𝑛 
+

2.667 7     

𝑛 

 
5.36 77     

𝑛 
+  (𝑛−1 ) 

(55) 
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  ( , , ) =
7.   76

𝑛 
 

369.97649

𝑛 
+

    2.8942 

𝑛 
 

2 5985.97649

𝑛 

+
3.97867     

𝑛 
 

6.6472     

𝑛 
+

 . 375     

𝑛 
+  (𝑛−1 ) 

(56) 

  ( , , ) =
3.44579

𝑛 
 

2.75663

𝑛 
 

5765.5 326

𝑛 
+

223488

𝑛 
 

5.596 3     

𝑛 

+
 . 3449     

𝑛 
 

2. 2356     

𝑛 
+  (𝑛−1 ) 

(57) 

 

  ( , ,2) =
 .45473

𝑛 
 

 . 7998

𝑛 
 

2.9  59    − 

𝑛 
 

 8432

𝑛 
+

83 744

𝑛 

 
2.27236     

𝑛 
+

4.87344     

𝑛 
+  (𝑛−1 ) 

(58) 

 

  ( , ,3) =
 . 5859

𝑛 
 

3.35498    −11

𝑛 
+

3.   25    − 

𝑛 
 

9.7927    − 

𝑛 

+
5 84 

𝑛 
 

2.3639     

𝑛 
+

6.5 629     

𝑛 
+  (𝑛−1 ) 

(59) 

 

  ( , , ) =
6.48543

𝑛 
 

37 . 29 5

𝑛 
+

  269.63  5

𝑛 
 

266675. 29 5

𝑛 

+
5.4253     

𝑛 
 

9.97624     

𝑛 
+

 .7 743     

𝑛 
+  (𝑛−1 ) 

(60) 

 

  ( , , ) =
3. 387 

𝑛 
 

2.43 97

𝑛 
 

5764.86 94

𝑛 
+

246528

𝑛 
 

6.8 688     

𝑛 

+
 .5 877     
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  ( , ,2) =
 .39  9

𝑛 
 

 .9267 

𝑛 
 

 .49349    − 

𝑛 
 

 8432

𝑛 
+

9 4688

𝑛 

 
2.7499     

𝑛 
+

6.48263     

𝑛 
+  (𝑛−1 ) 

(62) 

 

  ( , ,3) =  
 . 4946

𝑛 
 

8. 3 93    −11

𝑛 
+

4. 6596    − 

𝑛 
 

 . 64 9    − 

𝑛 
+

 
5 84 

𝑛 
 

2.6 274     

𝑛 
+

7.947 7     

𝑛 
+  (𝑛−1 )

 

(63) 

We also obtain the Maclaurin series expansion of   ,  1 and    in (34)-(36) up 

to  (𝑛−1 ), with 

  =
 

𝑛
 

 

𝑛 
+

5

𝑛 
+

  

𝑛 
+

4 

𝑛 
+

  9

𝑛 
+

365

𝑛 
+

  9 

𝑛 
+

328 

𝑛 
+  (𝑛−1 ) 

(64) 

 1 =  
 

𝑛
+

 4

𝑛 
 

73

𝑛 
+

338

𝑛 
 

 585

𝑛 
+

7574

𝑛 
 

36793

𝑛 
+

 8 698

𝑛 
 

893665

𝑛 
+  (𝑛−1 ) 

(65) 

  =
3

𝑛 
 

27

𝑛 
 

 86

𝑛 
+

8   

𝑛 
 

 36887

𝑛 
+

 799343

𝑛 
 

2 769396

𝑛 
+  (𝑛−1 ). 

(66) 

Putting expressions (52)-(66) back to (48) and after some algebra, we obtain the 

approximate closed form of  ( ̂   )  in (40). 
 

Proofs of Propositions 2.2 and 2.3: 

The variance of  ̂ can be expressed in terms of the first two moments of  ̂ about 

 , where 

  ( ̂) =  ( ̂   )  ( ( ̂)   )  
(67) 

Plugging the approximate expressions for the first two moments of  ̂ in (21) and 

(40) into (67) and after some simplification, we obtain the closed form 

approximation as shown in (41).  Also, the approximate standard deviation of  ̂ in 

(42) is obtained by taking the series expansion of the square root of   ( ̂) in (41) 

accordingly. 


